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AbstrAct
Over the past few decades, a tremendous 

amount of research attention has been received 
to derive the network performance estimation 
problem. In its context, network performance 
estimators can provide an early-stage prediction 
before emulation and real-world deployment, 
which is essential for network design and optimi-
zation. The design philosophy of network perfor-
mance estimators is to design accurate estimators 
with scalability and generality. However, conven-
tional rule-based network simulators are not able 
to satisfy all these demands simultaneously. To 
achieve these objectives, it has become an inev-
itable and appealing trend to empower network 
performance estimators with machine learning, 
especially with deep learning techniques. In this 
article, we present a cursory glimpse of existing 
results over the past five years in learning-based 
network performance estimators, with a particular 
focus on understanding the current challenges, 
the basic ideas and issues of state-of-the-art solu-
tions, and essentially, the open challenges and 
future directions in research attention.

IntroductIon
Network simulation is one of the most funda-
mental and challenging problems in computer 
networking research. In the context of network 
simulation, network performance estimators act 
as a critical component and have evolved over 
a few decades. It can provide an early-stage net-
work performance estimation before emulation 
and real-world deployment, which is essential for 
future network architecture optimization, such 
as topology design and device parameter tun-
ing. The primary design objective with network 
performance estimators is to be as accurate and 
scalable as possible. Conventional rule-based sim-
ulators fail to meet such an objective: they are 
accurate, but not necessarily scalable. Emerging 
deep learning techniques offer a promising alter-
native.

Over the past few decades, a tremendous 
amount of research attention has been received 
to derive the network simulation problem. The 
community has resorted to two different direc-
tions of research toward rule-based network sim-
ulation, which are illustrated in Table 1. The first 
category is discrete event simulation (DES), which 

serves as the most classic type of network simu-
lation. Typical DES-based simulators include ns-3 
[1], OMNeT++ [2], and OPNET [3]. With pack-
et-level granularity, DES explicitly simulates each 
packet and its associated events, enabling a com-
prehensive representation of all network com-
ponents and providing high simulation accuracy. 
However, DES suffers from its scalability when we 
encounter large-scale network simulation tasks, 
like FatTree [4] topology for data center networks. 
Although the direction of Parallel and Distributed 
Discrete Event Simulation (PDDES) [5] has been 
carefully explored to alleviate the synchronization 
overhead associated with the communication traf-
fic between different processes, there is still no 
speedup guarantee due to the nature of synchro-
nization algorithms being applied and the archi-
tecture of the computing platform in use.

The second network performance estimation 
approach can be categorized as continuous simu-
lation. As the name implies, continuous simulation 
focuses on interpreting the abstraction of traffic 
flows in the target network. Many attempts have 
been made toward continuous simulation, and 
they can be divided into three branches.

The first branch of continuous simulation is 
stochastic fluid models [6], an abstraction that 
simplify the representation of data flows by treat-
ing it as a continuous fluid. These fluid models 
are efficient as a flow-level solution which offer 
computational efficiency, ease of analysis, and 
scalability when compared to packet-level simula-
tions. However, these benefits are obtained at the 
expense of accuracy. Secondly, Network calcu-
lus [7] is a theoretical flow-level analytic method 
that offers a mathematical framework to reveal 
worst-case bounds on network performance, such 
as delay, jitter, and loss. Nevertheless, network 
calculus requires precise bounds of arrival traffic 
patterns to derive performance metrics, which 
is challenging in increasingly complex network 
environments. Lastly, the most advanced contin-
uous simulation approach is queueing-theoretic 
models [8], which allows for accurate simulation 
by characterizing system behavior using a queue-
ing model comprising packet arrival modeling 
and scheduling server modeling. With respect to 
packet-level queueing theories, simulators can 
easily imitate the behavior of the whole network, 
including packet arrivals and scheduling disci-
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plines. Hence, it can accurately predict the delay 
and loss for each packet. Such an extremely effec-
tive means nevertheless encountered the scal-
ability issue. That is, its computation overhead is 
exponentially dependent on both the number of 
queues and their buffer sizes, rendering it imprac-
tical for large-scale network performance estima-
tions.

With the rapid development of deep learning, 
there are recent research interests toward moving 
away from the conventional wisdom of using rule-
based predictions, and shifting to the use of deep 
learning techniques for network performance 
estimation. The essence of applying deep learn-
ing algorithms is to replace the computationally 
expensive parts of prior work with deep neural 
networks (DNN), so that such learning-based net-
work performance estimators can achieve satis-
factory accuracy with high scalability. It is worth 
emphasizing that the ultimate design objective is 
to accurately estimate network performance with 
scalability and generality. Over the past five years, 
it has become a trend in academia to propose 
high-quality network performance estimators by 
leveraging deep learning algorithms.

In this article, we present a concise survey of 
recent prominent research on the growing pop-
ularity of proposing network performance esti-
mators based on deep learning techniques. We 
highlight several key challenges, share three state-
of-the-art learning-based network performance 
estimators followed by their corresponding issues. 
Furthermore, we provide insights toward potential 
future directions in this field.

ExAmInIng thE chAllEngEs of lEArnIng-bAsEd 
nEtwork PErformAncE EstImAtors

To date, existing research on discrete event sim-
ulation and continuous simulation has demon-
strated notable performance in either simulation 
accuracy or scalability, not yet both. Inevitably, 
their performances are still under satisfaction in 
the face of large-scale networks because of their 
inherent drawbacks. Getting away from previous-
ly commonly adopted rule-based network simu-
lators, we notice a trend in encapsulating deep 
learning techniques to construct the next frontier 
of network performance estimators. Taking full 
advantage of deep neural networks, next-genera-
tion network performance estimators can be both 
accurate and scalable. However, considering the 
high performance estimation demand and the 
widely diverging quality of different networks, 
there are still several critical challenges that should 
be seriously considered and carefully addressed.

AccurAcy
The accuracy of learning-based network perfor-
mance estimators is the most straightforward and 
explicit evaluating metric. While deep learning 
techniques showcase the potential to produce 
accurate observations, we still need to guarantee 
that the learning-based estimators are sufficient-
ly trained and can truly be comparable to those 
of packet-level simulators, that is, discrete event 
simulators. Additionally, to maximize accuracy, 
one possible approach is to increase the interpret-
ability of the overall network structure. That is, 
attempting to capture the connections between 

the final evaluation metrics and the characteristics 
of traffic flows, network topologies, and device 
configurations. Higher interpretability will lead to 
better employment of deep learning techniques, 
which can also serve as an essential challenge for 
accuracy improvement.

scAlAbIlIty
Scalability is another essential challenge for net-
work performance estimators. In order to design 
scalable estimators to be employed in large-scale 
networks, we seek to focus on lowering compu-
tational and communicational burdens, so as to 
increase training efficiency. As accurate DES and 
queueing-theoretic models are computational-
ly-complex to scale beyond one or a few devic-
es, deep learning techniques exhibit considerable 
application potential due to their constant time 
complexity during model inference. In that way, 
one of the promising design philosophies is par-
allelism. With current distributed and parallel 
deep learning frameworks, the inference of learn-
ing-based estimators can be accelerated easily. 
However, only parallelism itself is not enough, 
and how to combine other training approaches 
reasonably on a parallel basis to improve efficien-
cy is also a decisive challenge.

gEnErAlIty
More importantly, the next frontier of network 
performance estimators should be generalizable. 
Ideally, such learning-based estimators should be 
applicable to arbitrary network designs, encom-
passing network topologies, traffic patterns, and 
network device configurations. Additionally, they 
should be able to predict a variety of metrics, 
such as delay, jitter, and loss. It is worth noting 
that retraining the entire estimator model when 
facing even minor network changes is not eco-
nomical. Thus, developing reliable and easily 
adjustable learning-based estimators with generali-
ty is a substantial challenge.

bAsIc IdEAs And IssuEs of AdvAncEd solutIons
In this section, we walk through three representa-
tive frameworks for DNN-based network perfor-
mance estimators from the research community. 
With our investigation of how deep neural net-
works are leveraged through the lens of recent 
literature, we have seen that they created a trend 
to replace a specific portion of network architec-
tures with advanced deep learning models for the 
next frontier of network performance estimation. 
Again, the ultimate design objectives are to accu-
rately estimate network performance with scalabil-
ity and generality.

routEnEt
In network performance estimation tasks, tradi-

TABLE 1. Characteristics of rule-based network  
simulators.

Simulators Accuracy Granularity Scalability

DES [–3] high packet-level low

Fluid models [6] low flow-level high

Network calculus [7] low flow-level high

Queueing-theoretic models [8] high packet-level low
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tional simulators struggle to provide functional 
networks models for accurate predictions. To 
bridge this gap, it is conceivable that deep learn-
ing algorithms can be used to understand the 
complex relationships among topology, routing, 
and input traffi  c, thereby producing accurate esti-
mates of key performance indicators (KPIs) like 
delay distribution and loss.

As one of the fi rst attempts toward this direc-
tion, Rusek et al. [9] designed a new framework, 
named RouteNet, to predict key performance 
indicators of the whole network by employ-
ing Graph Neural Networks (GNN) [10]. The 
high-level idea is to build the network as a graph, 
where each edge represents a link between net-
work devices (e.g., routers, switches). In particu-
lar, GNN is leveraged to process the graph so as 
to capture the complex relationships in each path 
given the network topology and routing config-
urations. According to relational reasoning and 
combinatorial generalization over graph-based 
information structure, RouteNet can estimate 
the performance of arbitrary topologies, routing 
schemes and variable traffi  c intensity.

Figure 1 demonstrates that RouteNet accom-
modates variable-size network topologies, arbi-
trary source-destination routing schemes, and 
traffi  c matrix as input while predicting end-to-end 
key performance indicators as output. In detail, 
RouteNet treats the entire network between the 
source and the destination as a black-box, and 
employs GNN models to construct the mes-
sage-passing architecture specifically tailored to 
produce accurate performance estimates. The 
model produces two types of output: packet-level 
information, such as end-to-end delay represent-
ing packet sojourn time from source to destina-
tion, and link-level information, which includes 
statistics for each link or path, like packet drop 
rate over a period of time for each pair of devices. 
Note that the main assumption behind RouteNet
is that the information for all links, as well as paths 
that are constructed by links, can be encoded in 
learnable vectors of real numbers. Based on this 
assumption, RouteNet is built upon the following 
two principles:
• The state of a path depends on the state of 

all the links that lie on the path.
• The state of a link depends on the state of all 

the paths that traverse the link.
As one of the early-stage explorers to build 

network performance estimators upon deep neu-
ral networks, there are a number of clear advan-
tages brought forth by RouteNet. The most salient 
advantage is its prediction capability over arbi-
trary topologies, routing schemes and variable 

traffi  c intensity. Secondly, benefi ting from its net-
work-scale modeling, which encompasses the 
entire network in a single model, RouteNet is scal-
able by performing with low computational cost 
in acceptable time budgets. Hence, RouteNet can 
be used for Quality of Service (QoS)-aware rout-
ing optimization tasks by evaluating the resulting 
performance after testing new routing modifi ca-
tions. In addition, it can also be useful to explore 
the optimal network device upgrading problem.

With the design philosophies in mind, we 
argue that RouteNet has the potential to perform 
better in many aspects. It is intuitive to point out 
that the scope of the network-scale GNN-based 
model can be narrowed down to achieve more 
interpretability of networks, and thus achieve 
better estimation performance. For the accuracy 
challenge, RouteNet only performs well on small-
scale networks, and it is far from satisfaction when 
facing more complicated network topologies. 
Although RouteNet supports a variety of QoS-
aware performance metrics that include delay, 
jitter, and packet drops, it is impossible to pro-
vide more fl exibility toward extra accurate perfor-
mance indicators. For instance, the quantile-based 
end-to-end measure, which is not sub-additive. 
Moreover, RouteNet is devoid of higher generali-
ty due to its inherent drawback of using specially 
trained model for each network. Even though the 
computational overhead is manageable, the cus-
tomized source-destination settings restrict the 
possibilities to reuse pre-trained models, posing a 
challenge for rapid model deployment on large-
scale networks.

mImIcnEt
RouteNet has shown that there is a crucial inter-
play between deep learning techniques and net-
work performance estimators. Continuing their 
work on modeling the whole network by deep 
neural networks, Zhang et al. [11] proposed 
MimicNet by combining DES and deep learn-
ing techniques. Similar to RouteNet, MimicNet is 
inspired by providing users with an abstraction of 
the simulation for a portion of the network while 
leveraging the advances in deep learning tech-
niques. A signifi cant diff erence in the motivation 
of MimicNet, however, is the severe scalability 
issue of modern networks. Throughout its obser-
vations, modern networks, especially data center 
networks, connect up to hundreds of thousands 
of machines, which should be capable of process-
ing hundreds of billions of packets per second in 
aggregation. As a consequence, MimicNet targets 
on scale-out network architectures, in particular, 
FatTree topology. In essence, FatTree topology is 
a layered network architecture, consisting of core, 
aggregation, and edge layers with multiple parallel 
paths between nodes. In addition, a cluster refers 
to a pod of switches in the edge and aggregation 
layers, and in a k-pod FatTree, each cluster con-
tains k switches with k ports per switch.

As proposed to address the scalability issue 
in scale-out data center networks, MimicNet is 
believed to have two outstanding design shining 
points. Firstly, MimicNet sheds the first light on 
designing accurate and scalable network perfor-
mance estimators by reducing the scope of the 
DNN from network scale to cluster scale. By con-
structing and composing models at the granular-

FIGURE 1. The core architecture of RouteNet is a 
GNN-based model. It takes topology, rout-
ing, and traffi  c matrix as input, and outputs 
source-destination key performance indicators.
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ity of individual data center clusters, which are 
named as mimics, MimicNet employs DNNs to 
model their performance. This approach allows it 
to perform packet-level accurate simulations for 
each cluster within the data center network. In 
more detail, as a cluster-level estimator, MimicNet 
removes the observable eff ects of internal traffi  c 
and bake its effects into the cluster-level predic-
tions. Therefore, MimicNet uses mimics to resem-
ble regular clusters and predicts how the network 
of the cluster will affect packets on the basis of 
external traffi  cs.

The second significant design philosophy of 
MimicNet is to combine DES and continuous sim-
ulation, as well as deep learning techniques. It is 
worth noting that the goal of MimicNet is not to 
replicate the effects of large-scale network sim-
ulation, but to generate results that are able to 
exhibit their characteristics. Hence, it is natural to 
conceive a simple but eff ective design of network 
estimators, in which the system, is coupled by two 
key models responsible for packet-level simulation 
and network behaviors learning, respectively. DES 
finishes the packet-level accurate simulation of 
clusters, and its output includes detailed queueing 
and transport layer dynamics. Afterwards, deep-
learning-based internal models will be leveraged 
to train mimics that learn both non-observable 
internal and cross-cluster behaviors based on the 
collected data.

Figure 2 illustrates the end-to-end, fully auto-
mated workfl ow of MimicNet. There are fi ve steps 
in the full workfl ow of MimicNet: data generation, 
model training, model testing, hyper-parameter 
tuning, and large-scale simulation. The usage of 
MinicNet begins with a small-scale data genera-
tion. In such a small subset of the full simulation, 
two clusters will communicate with each other, 
and the generated full-fi delity, small-scale simula-
tion results will be utilized for later model training 
and testing stages. Next, MimicNet adopts Long 

Short Term Memory (LSTM) [12] models as the 
core, which will be trained and tested recursively. 
Augmenting this training phase is a confi gurable 
hyper-parameter tuning stage in which Mimic-
Net explores various options for modeling. With 
respect to the hyper-parameter tuning stage, Mim-
icNet aims to maximize the accuracy of end-to-
end metrics like throughput and Flow-Completion 
Time (FCT), as well as increasing the generality to 
larger confi gurations and diff erent traffi  c matrices. 
The fi nal step involves replacing clusters in large-
scale networks with tuned mimics to accelerate 
simulation and increase prediction accuracy. Also, 
it is worth noting that a salient feature of Mimic-
Net is that the fi rst four steps are all done at small 
scale, which serve as the main reason why Mim-
icNet is able to outperform prior works in rapid 
training and deployment.

Performance-wise, MimicNet achieves high 
accuracy on all metrics, including FCT, through-
put and Round-Trip Time (RTT). Across the entire 
range, the Cumulative Distribution Function 
(CDF) of MimicNet adhere closely to the ground 
truth (i.e., the full-fi delity, packet-level simulation), 
and behaves much better than other continuous 
simulators. It is reasonable to achieve such high 
accuracy as it utilizes DES to accurately simu-
late a small subset of the scale-out network, and 
thus can obtain and feed the LSTM model with 
detailed information such as queueing and pro-
tocol interactions. With respect to the scalability, 
MimicNet performs surprisingly good that it can 
provide consistent speedups up to 675 for the 
largest network that full-fidelity DES simulators 
could handle, which has 128 clusters in a FatTree 
topology. Above that size, full-fi delity DES could 
not finish within three months, while MimicNet
can finish in under an hour. From this point of 
view, the scalability of MimicNet is incredibly 
remarkable, benefi ting from its substantial design 
philosophy that models each cluster as a whole.

FIGURE 2. The workfl ow of MimicNet includes 5 steps: a) Data generation through small-scale observations; 
b) Model training; c) Model testing; d) Hyper-parameter tuning to produce tuned LSTM models for use 
in mimics, which speed up large-scale simulations; e) Large-scale simulation by replacing the majority of 
the network.
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Although MimicNet achieves orders of magni-
tude reduction in simulation completion time of 
modern scale-out data center networks, its gener-
ality is still a severe concern. Along this direction, 
we argue that MimicNet only works for FatTree 
networks. Hence, we question its generality, and 
believe that it is not able to be agile in adapting 
to more complex and challenging network topol-
ogies.

dEEPQuEuEnEt
Continuing the prevailing work of MimicNet, Yang 
et al. [13] set their sights on further improving 
the generality of network performance estimators 
and proposed DeepQueueNet. There are three 
insights of their estimator design. First, based on 
the success of the predecessor that achieves high 
accuracy and scalability by narrowing down the 
scope of DNN-based estimators from the network 
level to cluster level, DeepQueueNet is motivated 
to further narrow down the scope of DNN-based 
estimators to device level. Second, DeepQueueN-
et seeks to address the unsolved generality issue, 
making it more cost-eff ective to adapt to chang-
es in network settings. This ensures that network 
performance estimators will not be confined to 
a specifi c topology. The last insight lies in provid-
ing packet-level statistics to reveal concrete per-
formances about specifi c devices, fl ows, or even 
packets. In other words, DeepQueueNet aims to 
promote performance visibility to the packet level.

With the goal of achieving accurate, scalable, 
and general deep-learning-based network esti-
mators with packet-level visibility, DeepQueueN-
et, combines prior networking knowledge and 
advanced simulation techniques. More specifi cal-
ly, it starts with solid queueing-theoretic modeling 
of networks, and utilizes deep neural networks to 
model the mathematically-intractable or computa-
tionally-expensive parts.

To run the simulations with the underlying 
deep learning framework, there are basically three 
steps in the workfl ow. The fi rst step is simulation 
preparation and device modeling. Similar to DES, 
we need to prepare simulation settings to feed 
DeepQueueNet, which include network topolo-
gies, device confi gurations, and traffi  c generators. 
Meanwhile, as a device-scale network perfor-
mance estimator, DeepQueueNet trains and main-
tains a device library. In this library, deep learning 
algorithms are applied to predict the input-out-
put relationships of various network devices, such 
as routers and switches. As such, users can eas-
ily retrieve device models from the pre-trained 

device library based on their specified device 
configurations. Consequently, DeepQueueNet
can own the packet-level visibility from the pre-
dicted results of each device while maintaining 
the generality across network devices and traffi  c 
patterns. Afterwards, the second step is to com-
pose the network. Given the network topology, 
DeepQueueNet will map it to a corresponding 
neural network architecture. Hence, it surpasses 
MimicNet in terms of the generality for network 
topologies because of its fl exibility in device set-
ting within the network. Lastly, DeepQueueNet
will run parallel inference. That is, decomposes 
the network for parallel inferences. It proposed 
a core execution algorithm to guarantee the cor-
rectness of the framework running, and greatly 
increased the scalability to network sizes as it pro-
cesses packets in batches.

One of the most prominent design aspects of 
DeepQueueNet, we argue, concerns the device 
modeling. There are three types of devices con-
sidered in this framework: link device, switch 
device and router device. For the simplest link 
device with only one input and one output port, 
DeepQueueNet regards it as an operator that 
adds a latency to all packets in the ingress time 
series, where the latency calculation is based on 
the length of each packet and the characteristics 
of the link (i.e., the length, the bandwidth, and the 
propagation speed of the link). Generally, multi-
port network devices take the packet stream of 
each ingress port as the first input, obtain a for-
warding tensor as the second input, and output 
packet streams of all egress ports to represent the 
device-level simulation. Notably, the forwarding 
tensor acts as an indicator of the forwarding path 
from the ingress port to the the egress port of all 
packets.

As illustrated in Fig. 3, multi-port network 
device models have two sub-models: packet-level 
forwarding model (PFM) and packet-level traf-
fic-management model (PTM). The packet-level 
forwarding model specifi es the forwarding behav-
ior of the device, that is, to describe the device 
behavior explicitly using tensor multiplication 
of the given forwarding tensor and the ingress 
stream information. The advantage of adopting 
such PFMs is to enable high scalability by forward-
ing in batches, while previous studies could only 
process each packet sequentially.

With respect to PTM, its model will predict 
how much delay is experienced for each pack-
et. Given the pre-processed packet vector, it will 
perform inference from pre-trained DNN mod-
els and add delays to each packet in batches. As 
a sequence-to-sequence processing task, Deep-
QueueNet chose the Transformer architecture 
[14] with attention mechanism to train the PTM. 
Figure 4 reveals the detailed DNN architecture 
of the PTM. According to the generated pack-
et-level training data from DES simulators, train-
ing PTM follows the approach of regression in 
forecasting the delay a packet experiences in a 
device. The sojourn time of each packet serves 
as the response variable, and the features extract-
ed from the feature extraction model are regard-
ed as the predictors. In implementation details, 
DeepQueueNet selects a 2-layer Bidirectional 
Long Short Term Memory (BLSTM) [15] cell for 
the Decoder-Encoder mechanisms, and three par-

FIGURE 3. There are three parts in multi-port device model of DeepQueueNet: 
packet-level forwarding model, packet-level traffi  c-management model, and 
statistical error correction model. The overall device model takes ingress 
stream and forwarding tensor as input, and outputs the egress stream.
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allel heads are jointly attended to the informa-
tion from different representation subspaces at 
different positions. In addition, DeepQueueNet
also designed a statistical error correction (SEC) 
model as the post-PTM part, where the eff ect of 
the accumulated errors of the predicted sojourn 
time will not be propagated along the packet 
transmission path.

As the state-of-the-art network performance 
estimator, DeepQueueNet is superior to all pre-
vious simulators in many aspects. Firstly, it pro-
vides accurate delay distributions in an end-to-end 
fashion, which is close to the ground-truth in 
many modern networks. Secondly, DeepQueueN-
et achieves packet-level visibility, which help to 
realize expressive device models, process pack-
ets in batches, and predict the input-output rela-
tionship. Besides, DeepQueueNet has better 
generality than all previous deep-learning-based 
estimators. Its generality performs well for diff er-
ent traffi  c generation models, topologies, and traf-
fic management mechanisms. Last but not least, 
DeepQueueNet is scalable because of its ability 
of parallel inferences and its near-linear speedup 
with the number of additional GPUs.

However, there are still some notable disad-
vantages that cannot be overlooked. The most 
obvious limitation of DeepQueueNet is that it 
cannot deal with stateful behaviors of network 
devices. This limitation is because the network-lay-
er design will ignore the complex interactions 
among the high layers, such as the underlying 
transport protocols, the network layer traffic 
management mechanisms, as well as any possi-
ble interaction between devices. Moreover, the 
DeepQueueNet puts aside the prediction of pack-
et drops, limiting its applicability to networks with 
only well-behaved performances (i.e., no packet 
drop), thus reducing its practical value in realistic 
environments.

rEcAP
In summary, RouteNet takes the initial step in uti-
lizing DNNs for network simulation. Expanding 
on this idea and targeting data-center networks, 
MimicNet reduces the network portion that 
DNNs mimic from the entire network to the clus-
ters, signifi cantly enhancing scalability. Finally, the 
most advanced DeepQueueNet models network 
devices, substantially improving accuracy and 
generality while maintaining satisfactory scalabil-
ity. Among these three work, MimicNet exhibits 
the highest scalability due to its original focus on 
scale-out networks, whereas DeepQueueNet pos-
sesses the highest accuracy and generality.

oPEn chAllEngEs And futurE dIrEctIons
In retrospect, the meteoric rise of research inter-
ests in deep-learning-based network performance 
estimators was largely fueled by the rapid mat-
uration of deep learning technologies, as well 
as by the need of accurate network simulation, 
most notably in large-scale modern networks. The 
essence of deep-learning-based estimators is to 
take full advantage of both solid queueing the-
ories and advanced deep learning techniques, 
realizing potentially accurate, scalable ones with 
generality on network simulation tasks. However, 
there are many open technical challenges in the 
next frontier of estimators to be addressed before 

fully realizing its benefi ts.

bEttEr gEnErAlIty
While recent estimators have demonstrated good 
performance in their experiments, there is still 
room for improvement in terms of generality. For 
instance, next-generation learning-based estima-
tors should focus on generalizing more complex 
network devices. Even though DeepQueueNet is 
generalizable to arbitrary topologies, traffic pat-
terns, and network devices, we argue, it still needs 
to maintain a relatively large device library for dif-
ferent switch models. Consequently, it lacks the 
generality to adapt to new device models that 
have not been previously trained with the cor-
responding parameters. Worse, these estimators 
have not been well and fully evaluated under real-
istic modern network scenarios.

bEttEr IntErPrEtAbIlIty
Another visible roadblock to realistic performance 
improvement of deep-learning-based estimators is 
the interpretability of their design. Refl ecting on 
the development of network performance esti-
mators, increased interpretability was achieved 
by narrowing of the application scope of DNNs, 
which substantially improved the accuracy of the 
prediction. Hence, exploring ways to better inter-
pret the network through a deeper understanding 
of networking theories is a worthwhile question 
to address, as it may enhance the rationality of 
estimators and consequently improve prediction 
performance.

In light of the aforementioned open challeng-
es, we discuss the following potential research 
directions for future studies.

AccommodAtIng morE dEvIcEs
As mentioned above, higher interpretability can 
help increase accuracy as it leverages DNNs to 
imitate more reasonable modules. Thus, it is one 
of the promising directions to use DNNs to per-
form more black-box modeling of traffi  c manage-
ment mechanisms on the device scale. In fact, it 
is a meaningful research direction to model more 
complicated packet-processing network devices. 
For example, modeling some network devices 
that can split or combine packets.

FIGURE 4. The DNN architecture of the packet-level 
traffi  c management model.
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nArrowIng down thE scoPE of dnns

Another promising approach is to further narrow 
down the scope of DNNs by interpreting the com-
ponents of each network device and using DNNs 
to replace only the computationally complex 
parts. For instance, improved generality could be 
achieved by utilizing DNNs to represent only the 
ports in a switch. In that case, network devices 
could be composed initially, followed by connect-
ing the network using the composed devices and 
given topologies. As a result, maintaining a large 
device library would be unnecessary, potentially 
leading to increased generality.

APPlIcAtIons for nEtwork oPtImIzAtIon
In addition to building estimators with higher scal-
ability and better generality, we can also focus 
on applying them to network optimization tasks. 
To some extent, it is an inevitable and appealing 
trend to leverage the predictions of network per-
formance estimators to apply modifications in a 
network configuration. In particular, we point out 
that potential optimization tasks include but are 
not limited to the following two problems. Firstly, 
how to optimize the QoS-aware routing based on 
the simulation results? Secondly, how to optimize 
the network by adding new links in the topology 
or upgrading network devices.
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