
IEEE Network • July/August 20231 0890-8044/23/$25.00 © 2023 IEEE

AbstrAct
Over the past few decades, a tremendous

amount of research attention has been received
to derive the network performance estimation
problem. In its context, network performance
estimators can provide an early-stage prediction
before emulation and real-world deployment,
which is essential for network design and optimi-
zation. The design philosophy of network perfor-
mance estimators is to design accurate estimators
with scalability and generality. However, conven-
tional rule-based network simulators are not able
to satisfy all these demands simultaneously. To
achieve these objectives, it has become an inev-
itable and appealing trend to empower network
performance estimators with machine learning,
especially with deep learning techniques. In this
article, we present a cursory glimpse of existing
results over the past five years in learning-based
network performance estimators, with a particular
focus on understanding the current challenges,
the basic ideas and issues of state-of-the-art solu-
tions, and essentially, the open challenges and
future directions in research attention.

IntroductIon
Network simulation is one of the most funda-
mental and challenging problems in computer
networking research. In the context of network
simulation, network performance estimators act
as a critical component and have evolved over
a few decades. It can provide an early-stage net-
work performance estimation before emulation
and real-world deployment, which is essential for
future network architecture optimization, such
as topology design and device parameter tun-
ing. The primary design objective with network
performance estimators is to be as accurate and
scalable as possible. Conventional rule-based sim-
ulators fail to meet such an objective: they are
accurate, but not necessarily scalable. Emerging
deep learning techniques offer a promising alter-
native.

Over the past few decades, a tremendous
amount of research attention has been received
to derive the network simulation problem. The
community has resorted to two different direc-
tions of research toward rule-based network sim-
ulation, which are illustrated in Table 1. The first
category is discrete event simulation (DES), which

serves as the most classic type of network simu-
lation. Typical DES-based simulators include ns-3
[1], OMNeT++ [2], and OPNET [3]. With pack-
et-level granularity, DES explicitly simulates each
packet and its associated events, enabling a com-
prehensive representation of all network com-
ponents and providing high simulation accuracy.
However, DES suffers from its scalability when we
encounter large-scale network simulation tasks,
like FatTree [4] topology for data center networks.
Although the direction of Parallel and Distributed
Discrete Event Simulation (PDDES) [5] has been
carefully explored to alleviate the synchronization
overhead associated with the communication traf-
fic between different processes, there is still no
speedup guarantee due to the nature of synchro-
nization algorithms being applied and the archi-
tecture of the computing platform in use.

The second network performance estimation
approach can be categorized as continuous simu-
lation. As the name implies, continuous simulation
focuses on interpreting the abstraction of traffic
flows in the target network. Many attempts have
been made toward continuous simulation, and
they can be divided into three branches.

The first branch of continuous simulation is
stochastic fluid models [6], an abstraction that
simplify the representation of data flows by treat-
ing it as a continuous fluid. These fluid models
are efficient as a flow-level solution which offer
computational efficiency, ease of analysis, and
scalability when compared to packet-level simula-
tions. However, these benefits are obtained at the
expense of accuracy. Secondly, Network calcu-
lus [7] is a theoretical flow-level analytic method
that offers a mathematical framework to reveal
worst-case bounds on network performance, such
as delay, jitter, and loss. Nevertheless, network
calculus requires precise bounds of arrival traffic
patterns to derive performance metrics, which
is challenging in increasingly complex network
environments. Lastly, the most advanced contin-
uous simulation approach is queueing-theoretic
models [8], which allows for accurate simulation
by characterizing system behavior using a queue-
ing model comprising packet arrival modeling
and scheduling server modeling. With respect to
packet-level queueing theories, simulators can
easily imitate the behavior of the whole network,
including packet arrivals and scheduling disci-

Learning-Based Network Performance Estimators: The Next Frontier for Network
Simulation
Kai Shen and Baochun Li

INTERPLAY BETWEEN MACHINE LEARNING AND NETWORKING
SYSTEMS

Digital Object Identifier:
10.1109/MNET.013.2300053 Kai Shen and Baochun Li are with the University of Toronto, Canada.

IEEE Network • July/August 2023 2

plines. Hence, it can accurately predict the delay
and loss for each packet. Such an extremely effec-
tive means nevertheless encountered the scal-
ability issue. That is, its computation overhead is
exponentially dependent on both the number of
queues and their buffer sizes, rendering it imprac-
tical for large-scale network performance estima-
tions.

With the rapid development of deep learning,
there are recent research interests toward moving
away from the conventional wisdom of using rule-
based predictions, and shifting to the use of deep
learning techniques for network performance
estimation. The essence of applying deep learn-
ing algorithms is to replace the computationally
expensive parts of prior work with deep neural
networks (DNN), so that such learning-based net-
work performance estimators can achieve satis-
factory accuracy with high scalability. It is worth
emphasizing that the ultimate design objective is
to accurately estimate network performance with
scalability and generality. Over the past five years,
it has become a trend in academia to propose
high-quality network performance estimators by
leveraging deep learning algorithms.

In this article, we present a concise survey of
recent prominent research on the growing pop-
ularity of proposing network performance esti-
mators based on deep learning techniques. We
highlight several key challenges, share three state-
of-the-art learning-based network performance
estimators followed by their corresponding issues.
Furthermore, we provide insights toward potential
future directions in this field.

ExAmInIng thE chAllEngEs of lEArnIng-bAsEd
nEtwork PErformAncE EstImAtors

To date, existing research on discrete event sim-
ulation and continuous simulation has demon-
strated notable performance in either simulation
accuracy or scalability, not yet both. Inevitably,
their performances are still under satisfaction in
the face of large-scale networks because of their
inherent drawbacks. Getting away from previous-
ly commonly adopted rule-based network simu-
lators, we notice a trend in encapsulating deep
learning techniques to construct the next frontier
of network performance estimators. Taking full
advantage of deep neural networks, next-genera-
tion network performance estimators can be both
accurate and scalable. However, considering the
high performance estimation demand and the
widely diverging quality of different networks,
there are still several critical challenges that should
be seriously considered and carefully addressed.

AccurAcy
The accuracy of learning-based network perfor-
mance estimators is the most straightforward and
explicit evaluating metric. While deep learning
techniques showcase the potential to produce
accurate observations, we still need to guarantee
that the learning-based estimators are sufficient-
ly trained and can truly be comparable to those
of packet-level simulators, that is, discrete event
simulators. Additionally, to maximize accuracy,
one possible approach is to increase the interpret-
ability of the overall network structure. That is,
attempting to capture the connections between

the final evaluation metrics and the characteristics
of traffic flows, network topologies, and device
configurations. Higher interpretability will lead to
better employment of deep learning techniques,
which can also serve as an essential challenge for
accuracy improvement.

scAlAbIlIty
Scalability is another essential challenge for net-
work performance estimators. In order to design
scalable estimators to be employed in large-scale
networks, we seek to focus on lowering compu-
tational and communicational burdens, so as to
increase training efficiency. As accurate DES and
queueing-theoretic models are computational-
ly-complex to scale beyond one or a few devic-
es, deep learning techniques exhibit considerable
application potential due to their constant time
complexity during model inference. In that way,
one of the promising design philosophies is par-
allelism. With current distributed and parallel
deep learning frameworks, the inference of learn-
ing-based estimators can be accelerated easily.
However, only parallelism itself is not enough,
and how to combine other training approaches
reasonably on a parallel basis to improve efficien-
cy is also a decisive challenge.

gEnErAlIty
More importantly, the next frontier of network
performance estimators should be generalizable.
Ideally, such learning-based estimators should be
applicable to arbitrary network designs, encom-
passing network topologies, traffic patterns, and
network device configurations. Additionally, they
should be able to predict a variety of metrics,
such as delay, jitter, and loss. It is worth noting
that retraining the entire estimator model when
facing even minor network changes is not eco-
nomical. Thus, developing reliable and easily
adjustable learning-based estimators with generali-
ty is a substantial challenge.

bAsIc IdEAs And IssuEs of AdvAncEd solutIons
In this section, we walk through three representa-
tive frameworks for DNN-based network perfor-
mance estimators from the research community.
With our investigation of how deep neural net-
works are leveraged through the lens of recent
literature, we have seen that they created a trend
to replace a specific portion of network architec-
tures with advanced deep learning models for the
next frontier of network performance estimation.
Again, the ultimate design objectives are to accu-
rately estimate network performance with scalabil-
ity and generality.

routEnEt
In network performance estimation tasks, tradi-

TABLE 1. Characteristics of rule-based network
simulators.

Simulators Accuracy Granularity Scalability

DES [–3] high packet-level low

Fluid models [6] low flow-level high

Network calculus [7] low flow-level high

Queueing-theoretic models [8] high packet-level low

IEEE Network • July/August 20233

tional simulators struggle to provide functional
networks models for accurate predictions. To
bridge this gap, it is conceivable that deep learn-
ing algorithms can be used to understand the
complex relationships among topology, routing,
and input traffi c, thereby producing accurate esti-
mates of key performance indicators (KPIs) like
delay distribution and loss.

As one of the fi rst attempts toward this direc-
tion, Rusek et al. [9] designed a new framework,
named RouteNet, to predict key performance
indicators of the whole network by employ-
ing Graph Neural Networks (GNN) [10]. The
high-level idea is to build the network as a graph,
where each edge represents a link between net-
work devices (e.g., routers, switches). In particu-
lar, GNN is leveraged to process the graph so as
to capture the complex relationships in each path
given the network topology and routing config-
urations. According to relational reasoning and
combinatorial generalization over graph-based
information structure, RouteNet can estimate
the performance of arbitrary topologies, routing
schemes and variable traffi c intensity.

Figure 1 demonstrates that RouteNet accom-
modates variable-size network topologies, arbi-
trary source-destination routing schemes, and
traffi c matrix as input while predicting end-to-end
key performance indicators as output. In detail,
RouteNet treats the entire network between the
source and the destination as a black-box, and
employs GNN models to construct the mes-
sage-passing architecture specifically tailored to
produce accurate performance estimates. The
model produces two types of output: packet-level
information, such as end-to-end delay represent-
ing packet sojourn time from source to destina-
tion, and link-level information, which includes
statistics for each link or path, like packet drop
rate over a period of time for each pair of devices.
Note that the main assumption behind RouteNet
is that the information for all links, as well as paths
that are constructed by links, can be encoded in
learnable vectors of real numbers. Based on this
assumption, RouteNet is built upon the following
two principles:
• The state of a path depends on the state of

all the links that lie on the path.
• The state of a link depends on the state of all

the paths that traverse the link.
As one of the early-stage explorers to build

network performance estimators upon deep neu-
ral networks, there are a number of clear advan-
tages brought forth by RouteNet. The most salient
advantage is its prediction capability over arbi-
trary topologies, routing schemes and variable

traffi c intensity. Secondly, benefi ting from its net-
work-scale modeling, which encompasses the
entire network in a single model, RouteNet is scal-
able by performing with low computational cost
in acceptable time budgets. Hence, RouteNet can
be used for Quality of Service (QoS)-aware rout-
ing optimization tasks by evaluating the resulting
performance after testing new routing modifi ca-
tions. In addition, it can also be useful to explore
the optimal network device upgrading problem.

With the design philosophies in mind, we
argue that RouteNet has the potential to perform
better in many aspects. It is intuitive to point out
that the scope of the network-scale GNN-based
model can be narrowed down to achieve more
interpretability of networks, and thus achieve
better estimation performance. For the accuracy
challenge, RouteNet only performs well on small-
scale networks, and it is far from satisfaction when
facing more complicated network topologies.
Although RouteNet supports a variety of QoS-
aware performance metrics that include delay,
jitter, and packet drops, it is impossible to pro-
vide more fl exibility toward extra accurate perfor-
mance indicators. For instance, the quantile-based
end-to-end measure, which is not sub-additive.
Moreover, RouteNet is devoid of higher generali-
ty due to its inherent drawback of using specially
trained model for each network. Even though the
computational overhead is manageable, the cus-
tomized source-destination settings restrict the
possibilities to reuse pre-trained models, posing a
challenge for rapid model deployment on large-
scale networks.

mImIcnEt
RouteNet has shown that there is a crucial inter-
play between deep learning techniques and net-
work performance estimators. Continuing their
work on modeling the whole network by deep
neural networks, Zhang et al. [11] proposed
MimicNet by combining DES and deep learn-
ing techniques. Similar to RouteNet, MimicNet is
inspired by providing users with an abstraction of
the simulation for a portion of the network while
leveraging the advances in deep learning tech-
niques. A signifi cant diff erence in the motivation
of MimicNet, however, is the severe scalability
issue of modern networks. Throughout its obser-
vations, modern networks, especially data center
networks, connect up to hundreds of thousands
of machines, which should be capable of process-
ing hundreds of billions of packets per second in
aggregation. As a consequence, MimicNet targets
on scale-out network architectures, in particular,
FatTree topology. In essence, FatTree topology is
a layered network architecture, consisting of core,
aggregation, and edge layers with multiple parallel
paths between nodes. In addition, a cluster refers
to a pod of switches in the edge and aggregation
layers, and in a k-pod FatTree, each cluster con-
tains k switches with k ports per switch.

As proposed to address the scalability issue
in scale-out data center networks, MimicNet is
believed to have two outstanding design shining
points. Firstly, MimicNet sheds the first light on
designing accurate and scalable network perfor-
mance estimators by reducing the scope of the
DNN from network scale to cluster scale. By con-
structing and composing models at the granular-

FIGURE 1. The core architecture of RouteNet is a
GNN-based model. It takes topology, rout-
ing, and traffi c matrix as input, and outputs
source-destination key performance indicators.

 GNN-based
model

Topology

Routing

Traffic matrix

S
ource-destination K

P
Is

(delay, jitter and loss)

 GNN-based
RouteNet

IEEE Network • July/August 2023 4

ity of individual data center clusters, which are
named as mimics, MimicNet employs DNNs to
model their performance. This approach allows it
to perform packet-level accurate simulations for
each cluster within the data center network. In
more detail, as a cluster-level estimator, MimicNet
removes the observable eff ects of internal traffi c
and bake its effects into the cluster-level predic-
tions. Therefore, MimicNet uses mimics to resem-
ble regular clusters and predicts how the network
of the cluster will affect packets on the basis of
external traffi cs.

The second significant design philosophy of
MimicNet is to combine DES and continuous sim-
ulation, as well as deep learning techniques. It is
worth noting that the goal of MimicNet is not to
replicate the effects of large-scale network sim-
ulation, but to generate results that are able to
exhibit their characteristics. Hence, it is natural to
conceive a simple but eff ective design of network
estimators, in which the system, is coupled by two
key models responsible for packet-level simulation
and network behaviors learning, respectively. DES
finishes the packet-level accurate simulation of
clusters, and its output includes detailed queueing
and transport layer dynamics. Afterwards, deep-
learning-based internal models will be leveraged
to train mimics that learn both non-observable
internal and cross-cluster behaviors based on the
collected data.

Figure 2 illustrates the end-to-end, fully auto-
mated workfl ow of MimicNet. There are fi ve steps
in the full workfl ow of MimicNet: data generation,
model training, model testing, hyper-parameter
tuning, and large-scale simulation. The usage of
MinicNet begins with a small-scale data genera-
tion. In such a small subset of the full simulation,
two clusters will communicate with each other,
and the generated full-fi delity, small-scale simula-
tion results will be utilized for later model training
and testing stages. Next, MimicNet adopts Long

Short Term Memory (LSTM) [12] models as the
core, which will be trained and tested recursively.
Augmenting this training phase is a confi gurable
hyper-parameter tuning stage in which Mimic-
Net explores various options for modeling. With
respect to the hyper-parameter tuning stage, Mim-
icNet aims to maximize the accuracy of end-to-
end metrics like throughput and Flow-Completion
Time (FCT), as well as increasing the generality to
larger confi gurations and diff erent traffi c matrices.
The fi nal step involves replacing clusters in large-
scale networks with tuned mimics to accelerate
simulation and increase prediction accuracy. Also,
it is worth noting that a salient feature of Mimic-
Net is that the fi rst four steps are all done at small
scale, which serve as the main reason why Mim-
icNet is able to outperform prior works in rapid
training and deployment.

Performance-wise, MimicNet achieves high
accuracy on all metrics, including FCT, through-
put and Round-Trip Time (RTT). Across the entire
range, the Cumulative Distribution Function
(CDF) of MimicNet adhere closely to the ground
truth (i.e., the full-fi delity, packet-level simulation),
and behaves much better than other continuous
simulators. It is reasonable to achieve such high
accuracy as it utilizes DES to accurately simu-
late a small subset of the scale-out network, and
thus can obtain and feed the LSTM model with
detailed information such as queueing and pro-
tocol interactions. With respect to the scalability,
MimicNet performs surprisingly good that it can
provide consistent speedups up to 675 for the
largest network that full-fidelity DES simulators
could handle, which has 128 clusters in a FatTree
topology. Above that size, full-fi delity DES could
not finish within three months, while MimicNet
can finish in under an hour. From this point of
view, the scalability of MimicNet is incredibly
remarkable, benefi ting from its substantial design
philosophy that models each cluster as a whole.

FIGURE 2. The workfl ow of MimicNet includes 5 steps: a) Data generation through small-scale observations;
b) Model training; c) Model testing; d) Hyper-parameter tuning to produce tuned LSTM models for use
in mimics, which speed up large-scale simulations; e) Large-scale simulation by replacing the majority of
the network.

Hyper-parameter Tuning

 Learned
Model

Model Testing

Data Generation

Feature
Extraction

Module

LSTM model

+

Model Training

Hyper-tuned
Models

Large-scale

Simulation

Hyper-tuned
Models
Hyper-tuned
Models

IEEE Network • July/August 20235

Although MimicNet achieves orders of magni-
tude reduction in simulation completion time of
modern scale-out data center networks, its gener-
ality is still a severe concern. Along this direction,
we argue that MimicNet only works for FatTree
networks. Hence, we question its generality, and
believe that it is not able to be agile in adapting
to more complex and challenging network topol-
ogies.

dEEPQuEuEnEt
Continuing the prevailing work of MimicNet, Yang
et al. [13] set their sights on further improving
the generality of network performance estimators
and proposed DeepQueueNet. There are three
insights of their estimator design. First, based on
the success of the predecessor that achieves high
accuracy and scalability by narrowing down the
scope of DNN-based estimators from the network
level to cluster level, DeepQueueNet is motivated
to further narrow down the scope of DNN-based
estimators to device level. Second, DeepQueueN-
et seeks to address the unsolved generality issue,
making it more cost-eff ective to adapt to chang-
es in network settings. This ensures that network
performance estimators will not be confined to
a specifi c topology. The last insight lies in provid-
ing packet-level statistics to reveal concrete per-
formances about specifi c devices, fl ows, or even
packets. In other words, DeepQueueNet aims to
promote performance visibility to the packet level.

With the goal of achieving accurate, scalable,
and general deep-learning-based network esti-
mators with packet-level visibility, DeepQueueN-
et, combines prior networking knowledge and
advanced simulation techniques. More specifi cal-
ly, it starts with solid queueing-theoretic modeling
of networks, and utilizes deep neural networks to
model the mathematically-intractable or computa-
tionally-expensive parts.

To run the simulations with the underlying
deep learning framework, there are basically three
steps in the workfl ow. The fi rst step is simulation
preparation and device modeling. Similar to DES,
we need to prepare simulation settings to feed
DeepQueueNet, which include network topolo-
gies, device confi gurations, and traffi c generators.
Meanwhile, as a device-scale network perfor-
mance estimator, DeepQueueNet trains and main-
tains a device library. In this library, deep learning
algorithms are applied to predict the input-out-
put relationships of various network devices, such
as routers and switches. As such, users can eas-
ily retrieve device models from the pre-trained

device library based on their specified device
configurations. Consequently, DeepQueueNet
can own the packet-level visibility from the pre-
dicted results of each device while maintaining
the generality across network devices and traffi c
patterns. Afterwards, the second step is to com-
pose the network. Given the network topology,
DeepQueueNet will map it to a corresponding
neural network architecture. Hence, it surpasses
MimicNet in terms of the generality for network
topologies because of its fl exibility in device set-
ting within the network. Lastly, DeepQueueNet
will run parallel inference. That is, decomposes
the network for parallel inferences. It proposed
a core execution algorithm to guarantee the cor-
rectness of the framework running, and greatly
increased the scalability to network sizes as it pro-
cesses packets in batches.

One of the most prominent design aspects of
DeepQueueNet, we argue, concerns the device
modeling. There are three types of devices con-
sidered in this framework: link device, switch
device and router device. For the simplest link
device with only one input and one output port,
DeepQueueNet regards it as an operator that
adds a latency to all packets in the ingress time
series, where the latency calculation is based on
the length of each packet and the characteristics
of the link (i.e., the length, the bandwidth, and the
propagation speed of the link). Generally, multi-
port network devices take the packet stream of
each ingress port as the first input, obtain a for-
warding tensor as the second input, and output
packet streams of all egress ports to represent the
device-level simulation. Notably, the forwarding
tensor acts as an indicator of the forwarding path
from the ingress port to the the egress port of all
packets.

As illustrated in Fig. 3, multi-port network
device models have two sub-models: packet-level
forwarding model (PFM) and packet-level traf-
fic-management model (PTM). The packet-level
forwarding model specifi es the forwarding behav-
ior of the device, that is, to describe the device
behavior explicitly using tensor multiplication
of the given forwarding tensor and the ingress
stream information. The advantage of adopting
such PFMs is to enable high scalability by forward-
ing in batches, while previous studies could only
process each packet sequentially.

With respect to PTM, its model will predict
how much delay is experienced for each pack-
et. Given the pre-processed packet vector, it will
perform inference from pre-trained DNN mod-
els and add delays to each packet in batches. As
a sequence-to-sequence processing task, Deep-
QueueNet chose the Transformer architecture
[14] with attention mechanism to train the PTM.
Figure 4 reveals the detailed DNN architecture
of the PTM. According to the generated pack-
et-level training data from DES simulators, train-
ing PTM follows the approach of regression in
forecasting the delay a packet experiences in a
device. The sojourn time of each packet serves
as the response variable, and the features extract-
ed from the feature extraction model are regard-
ed as the predictors. In implementation details,
DeepQueueNet selects a 2-layer Bidirectional
Long Short Term Memory (BLSTM) [15] cell for
the Decoder-Encoder mechanisms, and three par-

FIGURE 3. There are three parts in multi-port device model of DeepQueueNet:
packet-level forwarding model, packet-level traffi c-management model, and
statistical error correction model. The overall device model takes ingress
stream and forwarding tensor as input, and outputs the egress stream.

Ingress stream

Forwarding tensor

Multi-port Device Model

PFM
tensor

multiplication
SEC

PTM

E
gress stream

IEEE Network • July/August 2023 6

allel heads are jointly attended to the informa-
tion from different representation subspaces at
different positions. In addition, DeepQueueNet
also designed a statistical error correction (SEC)
model as the post-PTM part, where the eff ect of
the accumulated errors of the predicted sojourn
time will not be propagated along the packet
transmission path.

As the state-of-the-art network performance
estimator, DeepQueueNet is superior to all pre-
vious simulators in many aspects. Firstly, it pro-
vides accurate delay distributions in an end-to-end
fashion, which is close to the ground-truth in
many modern networks. Secondly, DeepQueueN-
et achieves packet-level visibility, which help to
realize expressive device models, process pack-
ets in batches, and predict the input-output rela-
tionship. Besides, DeepQueueNet has better
generality than all previous deep-learning-based
estimators. Its generality performs well for diff er-
ent traffi c generation models, topologies, and traf-
fic management mechanisms. Last but not least,
DeepQueueNet is scalable because of its ability
of parallel inferences and its near-linear speedup
with the number of additional GPUs.

However, there are still some notable disad-
vantages that cannot be overlooked. The most
obvious limitation of DeepQueueNet is that it
cannot deal with stateful behaviors of network
devices. This limitation is because the network-lay-
er design will ignore the complex interactions
among the high layers, such as the underlying
transport protocols, the network layer traffic
management mechanisms, as well as any possi-
ble interaction between devices. Moreover, the
DeepQueueNet puts aside the prediction of pack-
et drops, limiting its applicability to networks with
only well-behaved performances (i.e., no packet
drop), thus reducing its practical value in realistic
environments.

rEcAP
In summary, RouteNet takes the initial step in uti-
lizing DNNs for network simulation. Expanding
on this idea and targeting data-center networks,
MimicNet reduces the network portion that
DNNs mimic from the entire network to the clus-
ters, signifi cantly enhancing scalability. Finally, the
most advanced DeepQueueNet models network
devices, substantially improving accuracy and
generality while maintaining satisfactory scalabil-
ity. Among these three work, MimicNet exhibits
the highest scalability due to its original focus on
scale-out networks, whereas DeepQueueNet pos-
sesses the highest accuracy and generality.

oPEn chAllEngEs And futurE dIrEctIons
In retrospect, the meteoric rise of research inter-
ests in deep-learning-based network performance
estimators was largely fueled by the rapid mat-
uration of deep learning technologies, as well
as by the need of accurate network simulation,
most notably in large-scale modern networks. The
essence of deep-learning-based estimators is to
take full advantage of both solid queueing the-
ories and advanced deep learning techniques,
realizing potentially accurate, scalable ones with
generality on network simulation tasks. However,
there are many open technical challenges in the
next frontier of estimators to be addressed before

fully realizing its benefi ts.

bEttEr gEnErAlIty
While recent estimators have demonstrated good
performance in their experiments, there is still
room for improvement in terms of generality. For
instance, next-generation learning-based estima-
tors should focus on generalizing more complex
network devices. Even though DeepQueueNet is
generalizable to arbitrary topologies, traffic pat-
terns, and network devices, we argue, it still needs
to maintain a relatively large device library for dif-
ferent switch models. Consequently, it lacks the
generality to adapt to new device models that
have not been previously trained with the cor-
responding parameters. Worse, these estimators
have not been well and fully evaluated under real-
istic modern network scenarios.

bEttEr IntErPrEtAbIlIty
Another visible roadblock to realistic performance
improvement of deep-learning-based estimators is
the interpretability of their design. Refl ecting on
the development of network performance esti-
mators, increased interpretability was achieved
by narrowing of the application scope of DNNs,
which substantially improved the accuracy of the
prediction. Hence, exploring ways to better inter-
pret the network through a deeper understanding
of networking theories is a worthwhile question
to address, as it may enhance the rationality of
estimators and consequently improve prediction
performance.

In light of the aforementioned open challeng-
es, we discuss the following potential research
directions for future studies.

AccommodAtIng morE dEvIcEs
As mentioned above, higher interpretability can
help increase accuracy as it leverages DNNs to
imitate more reasonable modules. Thus, it is one
of the promising directions to use DNNs to per-
form more black-box modeling of traffi c manage-
ment mechanisms on the device scale. In fact, it
is a meaningful research direction to model more
complicated packet-processing network devices.
For example, modeling some network devices
that can split or combine packets.

FIGURE 4. The DNN architecture of the packet-level
traffi c management model.

Packet
stream

Feature
Extraction

BLSTM

BLSTM

BLSTM

...

N

BLSTM
N Encoder

Packet
delays

Attention

BLSTM

BLSTM

BLSTM

...

N

BLSTM
NDecoder

IEEE Network • July/August 20237

nArrowIng down thE scoPE of dnns

Another promising approach is to further narrow
down the scope of DNNs by interpreting the com-
ponents of each network device and using DNNs
to replace only the computationally complex
parts. For instance, improved generality could be
achieved by utilizing DNNs to represent only the
ports in a switch. In that case, network devices
could be composed initially, followed by connect-
ing the network using the composed devices and
given topologies. As a result, maintaining a large
device library would be unnecessary, potentially
leading to increased generality.

APPlIcAtIons for nEtwork oPtImIzAtIon
In addition to building estimators with higher scal-
ability and better generality, we can also focus
on applying them to network optimization tasks.
To some extent, it is an inevitable and appealing
trend to leverage the predictions of network per-
formance estimators to apply modifications in a
network configuration. In particular, we point out
that potential optimization tasks include but are
not limited to the following two problems. Firstly,
how to optimize the QoS-aware routing based on
the simulation results? Secondly, how to optimize
the network by adding new links in the topology
or upgrading network devices.

AcknowlEdgmEnts
The research was supported in part by a RGC RIF
grant under the contract R6021-20, and RGC GRF
grants under the contracts 16209120, 16200221
and 16207922.

RefeRences
[1] G. F. Riley and T. R. Henderson, ”The ns-3 Network Simu-

lator,” Modeling and Tools for Network Simulation, vol. 14,
2010, pp. 15–34.

[2] A. Varga, ”A Practical Introduction to the OMNeT++ Simu-
lation Framework,” Recent Advances in Network Simulation,
2019, pp. 3–51.

[3] Z. Lu and H. Yang, Unlocking the Power of OPNET Modeler,
Cambridge University Press, 2012.

[4] M. Al-Fares, A. Loukissas, and A. Vahdat, ”A Scalable, Com-
modity Data Center Network Architecture,” Proc. ACM SIG-
COMM, 2008, pp. 63–74.

[5] S. Jafer, Q. Liu, and G. Wainer, ”Synchronization Methods
in Parallel and Distributed Discrete-event Simulation,” Sim-
ulation Modelling Practice and Theory, vol. 30, 2013, pp.
54–73.

[6] V. Misra, W. Gong, and D. Towsley, ”Fluid-Based Analysis
of a Network of AQM Routers Supporting TCP Flows with
an Application to RED,” Proc. ACM SIGCOMM, 2000, pp.
151–60.

[7] F. Ciucu and J. Schmitt, ”Perspectives on Network Calculus
— No Free Lunch, But Still Good Value,” Proc. ACM SIG-
COMM, 2012, pp. 311–22.

[8] H. Zhang, ”Service Disciplines for Guaranteed Performance
Service in Packet-Switching Networks,” Proc. the IEEE, vol.
83, no. 10, 1995, pp. 1374–96.

[9] K. Rusek et al., ”RouteNet: Leveraging Graph Neural Net-
works for Network Modeling and Optimization in SDN,”
IEEE JSAC, vol. 38, no. 10, 2020, pp. 2260–70.

[10] F. Scarselli et al., ”The Graph Neural Network Model,” IEEE
TNN, vol. 20, no. 1, 2008, pp. 61–80.

[11] Q. Zhang et al., ”MimicNet: Fast Performance Estimates for
Data Center Networks with Machine Learning,” Proc. ACM
SIGCOMM, 2021, pp. 287–304.

[12] F. A. Gers, J. Schmidhuber, and F. Cummins, ”Learning to
Forget: Continual Prediction with LSTM,” Neural Computa-
tion, vol. 12, no. 10, 2000, pp. 2451–71.

[13] Q. Yang et al., ”DeepQueueNet: Towards Scalable and
Generalized Network Performance Estimation with Pack-
et-level Visibility,” Proc. ACM SIGCOMM, 2022, pp. 441–57.

[14] J. Devlin et al., ”BERT: Pre-Training of Deep Bidirectional
Transformers for Language Understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[15] Z. Huang, W. Xu, and K. Yu, ”Bidirectional LSTM-CRF Mod-
els for Sequence Tagging,” arXiv preprint arXiv:1508.01991,
2015.

BiogRaphies
Kai Shen is currently pursing his M.A.Sc. degree at the Depart-
ment of Electrical and Computer Engineering, University of
Toronto. He received his B.Eng. degree in Computer Science
and Engineering from The Chinese University of Hong Kong,
Shenzhen. His research interests include networking, deep learn-
ing and federated learning.

Baochun Li received his B.Eng. degree from Tsinghua University
and his M.S. and Ph.D. degrees from the University of Illinois
at Urbana-Champaign. He is a professor in the Department of
Electrical and Computer Engineering, University of Toronto.
He is a Fellow of IEEE and Fellow of the Canadian Academy of
Engineering.

