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Differential Privacy for Tensor-Valued Queries
Jungang Yang , Liyao Xiang , Member, IEEE, Ruidong Chen, Weiting Li, and Baochun Li , Fellow, IEEE

Abstract— Private individual information are increasingly
exposed through high-dimensional and high-order data, with
the wide deployment of learning techniques. These data are
typically expressed in form of tensors, but there is no principled
way to guarantee privacy for tensor-valued queries. Conventional
differential privacy is typically applied to scalar values without
a precise definition on the shape of the queried data. Realizing
that the conventional mechanisms do not take the data structural
information into account, we propose Tensor Variate Gaussian
(TVG), a new (�, δ)-differential privacy mechanism for tensor-
valued queries. We further introduce two mechanisms based
on TVG with an improved utility by imposing the unimodal
differentially-private noise. With the utility space available,
the proposed mechanisms can be instantiated with an optimized
utility, and the optimization problem has a closed-form solution
scalable to large-scale problems. Finally, we experimentally test
our mechanisms on a variety of datasets and models, demonstrat-
ing that TVG is superior than other state-of-the-art mechanisms
on tensor-valued queries.

Index Terms— Differential privacy, deep learning, stochastic
gradient descent.

I. INTRODUCTION

STORED and processed in the form of tensors, high-
dimensional and high-order data are growingly demanding

in a wide range of scenarios such as spatio-temporal user
behavior modeling, social network analysis, and particularly
big data applications. Tensors often preserve natural rep-
resentation of data such as multimedia data, graph data,
data cube, etc. Videos consist of correlated images over
time which is counter-intuitive to transform into matrices.
Graph data with multimodal features often contain multiple
dimensions. Data cube would lose too much information if
flattened into plain vectors. Obviously, different shapes of
the tensors would yield different interpretations on the data,
and thus demands special attention in handling its privacy
condition.

Theoretical and software tools are rapidly emerging to iden-
tify or solve problems expressed in tensor-forms. However,
these promising applications pose great threats to individual
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privacy, as the query results may single an individual out from
a population of data records. For example, through tensor-
valued features, an attacker is able to infer if a participant is
in the training set. Typically, differential privacy constrains an
adversary’s capability to deduce anything about an individual
with the released public information, but there is no princi-
pled way to guarantee differential privacy for tensors up to
now.

The conventional way of handling tensor-valued data is to
treat the tensor as a collection of its elements, or as a collection
of vectors to guarantee differential privacy. Hence the tensor’s
potential structural information and relation among elements
may be lost. For example, a symmetric tensor, of which
elements remain constant under any permutation of the indices,
would have different properties from others. In this work,
we specify the definition of differential privacy on tensors,
and design mechanisms to meet the definition.

Designing tensor-valued differential privacy mechanisms
is particularly challenging, not only because the high-
dimensional/order distribution is extremely complicated, but
also due to a lack of general privacy mechanisms applicable
to all forms of data. There are differential privacy mechanisms
for scalars [1], [2], vectors [3], or matrices [4], [5], but
there is no unified mechanism for different forms of data.
However, tensor forms are all-inclusive: a first-order tensor is
a vector, a second-order tensor is a matrix, and tensors of order
three or higher are high-order tensors. We try to address this
problem by designing a unified differential privacy mechanism
despite the specific shape of tensors.

Preserving utility and privacy at the same time for high-
dimensional/order data is also difficult. This originates from
the fundamental trade-off between data privacy and util-
ity. For tensor-valued data, the problem is more severe as
an overwhelming amount of noise may be inserted, lead-
ing to less useful data. Practical schemes have been pro-
posed to alleviate such loss, as in [3], [5]–[7]. As most
of the solutions are heuristic, there are no utility guar-
anteed, nor scalable approaches to large-scale applications.
We show our mechanism has a natural form that is easy
to optimize in terms of utility, and readily to deploy in
large scale.

In this work, we formalize the study of tensor-valued
differential privacy and innovatively propose a mechanism
called Tensor Variate Gaussian (TVG). Preserving data’s orig-
inal structure, TVG adds differentially-private, tensor-valued
noise to the data. The idea is to utilize the tensor variate
Gaussian distribution to guarantee (�, δ)-differential privacy,
and the guarantee only depends on the covariance matrices of
the noise. We rigorously prove that TVG meets differential
privacy, and more importantly show it has a tighter noise
bound, in light of which higher utility than previous works
can be achieved.
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We novelly found that TVG has many intriguing proper-
ties. Even if the tensor-valued data is reshaped, the same
(�, δ)-differential privacy may be guaranteed under TVG. That
allows flexibility in applying differential privacy regardless of
the specific tensor shape. We further discuss special cases of
TVG where the tensor-valued noise is set to be unimodal.
When the data and noise meet certain criteria, we apply
unimodal-noise mechanisms that guarantee differential privacy
at even tighter noise bounds and thus yielding higher data
utility.

Taking into account the utility subspace of data in practical
scenarios, we propose optimized differential privacy schemes
based on TVG. Actually, TVG implies a set of mechanisms
meeting the same differential privacy guarantee, which leaves
much design space for us to manipulate for achieving better
data utility. From the utility aspect, we observe different
modes or dimensions of a tensor may have different impacts
to the final results, depending on how the tensor-valued data is
involved in the tasks. For example, in a facial image, the hair
feature is more important than the background pattern feature
to a face recognition task. We can improve the performance
of such tasks by adding carefully-crafted directional noise,
i.e., a structural noise which incur minimum impact on the
final result. Hence we propose optimized schemes for TVG
by imposing different weights on different parts of the tensor.
Closed-form solutions for these optimization problems are
derived, rendering TVG readily be deployed in large-scale
scenarios.

We summarize highlights of our contributions as follows.
1) We propose a (�, δ)-differential privacy mechanism TVG

for tensor-valued queries. Regardless of the specific
shape of the tensor, TVG and its two variants enjoy
tighter noise bounds and higher utility than previous
works.

2) We introduce utility optimization schemes based
on TVG. Closed-form solutions and utility certificates
are derived for the optimized noise distribution in TVG.

3) A series of experiments were conducted on different
tensor-valued query functions, models and datasets.
Results show that TVG is scalable, and achieves better
utility than other mechanisms at the same privacy level.

II. RELATED WORK

Our work is mostly related to works in the following
categories.

A. Primitive Mechanisms

Primitive mechanisms refer to those whose privacy guar-
antee is self-contained, i.e., it does not depend on any
other mechanism. They include the Gaussian mechanism [8],
Laplace mechanism [2], Exponential mechanism [8], Johnson-
Lindenstrauss (JL) Transform [4], Matrix Variate Gaussian
(MVG) [5], and Matrix Mechanism (MM) [3].

Although none of the mechanisms are applicable to tensor-
valued queries, our work is still related to the additive noise
mechanisms such as Gaussian, Laplace, MVG, and MM.
The Gaussian mechanism applies i.i.d. Gaussian noise scaled
to the l2-sensitivity and guarantees (�, δ)-differential privacy.
Likewise, the Laplace mechanism adds noise drawn from the

Laplace distribution scaled to the l1-sensitivity of the query
function, and guarantees strong �-differential privacy. MM is
designed for linear queries, where the vector data x is queried
as W x and W is a query matrix. It adds a vector-valued
(Gaussian or Laplace) noise to the data and seeks an optimal
transform to minimize the impact of the noise on the data.
MVG is proposed for matrix-valued queries, and adds matrix-
valued noise to guarantee (�, δ)-differential privacy. It defines
l2-sensitivity on the Frobenius norm of the difference between
two adjacent matrices. Our work is also an additive noise
mechanism, but is about the tensor-valued queries. We prove
that our mechanism achieves (�, δ)-differential privacy based
on the l2-sensitivity of adjacent datasets.

Johnson-Lindenstrauss (JL) Transform is a multiplica-
tive noise mechanism, most often used in the covariance
query or covariance estimation. It generates a randomized
noise matrix and multiplies the sensitive matrix-valued data
by the generated noise matrix. The JL transform publishes a
sanitized covariance matrix that preserves differential privacy
w.r.t. bounded changes.

Apart from these basic mechanisms, we notice that a
number of advanced schemes have also been proposed. Zero-
concentrated differential privacy [9] imposes a bound on the
moment generating function of the privacy loss, and enjoys a
nice composition property than conventional differential pri-
vacy. Balle and Wang [1] improves the conventional Gaussian
mechanism by directly using the Gaussian cumulative density
function instead of a tail bound approximation.

Our work is also aligned with works addressing the utility of
additive noise such as [5]–[7]. The optimal noise distribution
is found by Geng and Viswanath [6] in terms of the magnitude
of the noise, but has restriction on data dimensions. Similar
to [7], we formulate the problem of seeking the optimal noise
distribution as a constrained optimization problem, and such
a distribution in fact indicates directional noise as introduced
in [5].

B. Sampling and Composition

There are mechanisms whose privacy guarantee is deducted
from the primitive mechanisms. Examples include com-
position schemes [8], [10]–[14], privacy amplification by
sampling [15], etc. Abadi et al. [10] introduce a new account-
ing method to compose the Gaussian mechanism, which
reduces the total amount of additive noise with the same
privacy guarantee, whereas Kairouz et al. put forward an
optimal composition scheme for the general distribution of
noise. Works of [12], [14] offer dynamic accounting methods
based on the runtime convergence of the algorithm. And
Lécuyer et al. [13] enforce a global differential privacy guar-
antee in a continuously growing data regime. Our work is
orthogonal to these works but certainly can be applied together
with these mechanisms.

C. Learning With Differential Privacy

There are a wide range of works applying differential pri-
vacy mechanisms to machine learning algorithms. Depending
on different privacy-preserving goals, we have differentially-
private inputs [5], [16], outputs [17], [18], gradients [12]–[14],
[19]–[22], and objective functions [23]–[25], etc. We pay par-
ticular attention to the machine learning applications as they
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are most likely to deal with data of high dimensions or orders.
Our mechanism can be applied to the inputs, outputs and
gradients wherever the objects in protection are of tensor form.

D. Tensor Decomposition With Differential Privacy

In big data analysis, tensor decomposition is also an
important tool. In decomposing the tensor, it is necessary
to use differential privacy for sensitive data protection, such
as [26], [27]. These works mainly focus on preserving the
sensitive eigenvectors and eigenvalues generated by tensor
decomposition, as well as improving their effectiveness. And
these works can apply one of the mechanisms in Sec. II-A to
guarantee differential privacy. Therefore, tensor decomposition
with DP is mainly an application of the DP mechanism, but
rather a DP primitive specific to tensors. Our mechanism
can also be applied to tensor decomposition as a primitive
mechanism.

Overall, we consider our work proposes a primitive differ-
ential privacy mechanism, which is orthogonal to sampling
and composition schemes but certainly can be combined with
any of these. The major application of this work is where the
tensor-valued data is sensitive and requires to be protected.

III. PRELIMINARIES

In this section, we prepare the readers with prior knowledge
for ease of understanding our work.

A. Differential Privacy

Differential privacy is proposed to constrain an attacker’s
capability to gain additional knowledge about a particular data
record despite that it is in the dataset or not. The privacy
guarantee is expressed by the logarithmic distance between the
posterior probability distributions of two adjacent inputs given
the outputs. Adjacent inputs are defined on two datasets differ
by one unit of distance. Different metrics of the distance can be
used, which leads to different variants of differential privacy.
We use � to define the upper bound of the distribution distance
and δ to denote the residual probability. Formally, letting X
and X ′ be the pair of adjacent inputs, O be the output set and
M be the private mechanism, we have

Definition 1 ((�, δ)-Differential Privacy): A randomized
mechanism M gives (�, δ)-differential privacy if for any
datasets X and X ′ differing by at most one unit, and for any
possible output O,

Pr(M(X) ∈ O) ≤ e� Pr(M(X ′) ∈ O) + δ. (1)

In the special case of δ = 0 we call M �-differentially
private.

B. Relevant Definitions and Lemmas

As we mainly focus on tensors, we clarify some of the
tensor-related definitions and lemmas adopted in this paper.

Definition 2 (Orders, Fibers, and Slices): Following the
convention of [28], we define:

• The order of a tensor is the number of its dimensions,
also known as ways or modes.

• Fibers are the higher-order analogue of matrix rows and
columns. A fiber is defined by fixing every index but one.

• Slices are two-dimensional sections of a tensor, defined
by fixing all but two indices.

We give an example for ease of understanding. The dataset
of CIFAR-10 consisting of images of 32 × 32 × 3, which
are 3-order tensors. Assume that X ∈ R

32 × 32 × 3 contains
elements xi jk , i ∈ [32], j ∈ [32], k ∈ [3]. In particular,
(x111, x112, x113) is a fiber.

Definition 3 (n-Mode Matrix Product): The n-mode
(matrix) product of a tensor X ∈ R

I1×I2×···×IN with a matrix
U ∈ R

J×In is denoted by X ×n U, where n ∈ [N], and is
of size I1 × · · · × In−1 × J × In+1 × · · · × IN . Elementwise,
we have

(X ×n U)i1 ...in−1 j in+1 ...iN
=

In∑
in=1

xi1i2 ...iN u j in . (2)

Definition 4 (Tensor Inner Product): The inner product of
two tensors X ,Y ∈ R

I1×I2×···×IN is defined as

〈X ,Y〉 =
I1∑

i1=1

I2∑
i2=1

. . .

IN∑
iN =1

xi1i2 ...iN yi1i2 ...iN . (3)

It follows immediately that 〈X ,X 〉 = ‖X‖2.
Definition 5 (Matricization: transforming a tensor into a

matrix:) Matricization is the process of reordering the ele-
ments of an N-way array into a matrix. The mode-n matri-
cization of a tensor X ∈ R

I1×I2×···×IN is denoted by X(n) and
arranges the mode-n fibers to be the columns of the resulting
matrix. Tensor element (i1, i2, . . . , iN ) maps to matrix element
(in, j), where

j = 1 +
N∑

k=1,k �=n

(ik − 1)Jk with Jk =
k−1∏

m=1,m �=n

Im . (4)

A more general treatment of matricization can be found
in [29].

Definition 6 (Standard Normal Distribution (SND)): If a
tensor-valued random variable N ∈ R

I1×I2×···×IN follows a
standard normal distribution (SND), its probability density
function is

Pr(N ) = 1

(2π)
I
2

exp

{
−1

2
〈N ,N 〉

}
, (5)

where I = I1 I2 · · · IN .
Note that if a tensor follows SND, each element of the tensor

Ni1...iN follows the normal distribution N (0, 1). Besides the
above definitions, we introduce some tensor-related lemmas
concerning our work.

Lemma 1 (n-Mode Matrix Product to Kronecker Prod-
ucts [29]): Let X ,Y ∈ R

I1×···×IN be tensors and Un ∈ R
J×In

for all n ∈ {1, . . . , N}. Then for any n ∈ [N], we have

Y = X ×1 U1 ×2 U2 . . . ×N UN ⇔
Y(n) = UnX(n) (UN ⊗ · · · ⊗ Un+1 ⊗ Un−1 ⊗ · · · ⊗ U1)

� ,

(6)

where ⊗ means the Kronecker product and the Y(n) is the
mode-n matricization of Y , which is defined in Def. 5.

We list the notations used in this paper in Table. I for ease
of reading.
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TABLE I

NOTATIONS

IV. TENSOR VARIATE GAUSSIAN MECHANISM

In this section, we first introduce the tensor-valued dif-
ferential privacy mechanism called Tensor Variate Gaussian
(TVG), and give the main theorem along with its sketch proof.
The tensor-valued differential privacy mechanism is mostly
different from the scalar-valued one in that the data or query
are in tensor form, and we need to guarantee differential
privacy on high-dimensional/order distributions regardless of
the specific shape of the tensor.

We first define l2-sensitivity on a pair of adjacent tensors
as follows:

Definition 7 (l2-sensitivity): The l2-sensitivity of the query
function f (X ) ∈ R

I1×I2×···×IN is defined as

s2( f ) = sup
d(X ,X ′)=1

‖ f (X ) − f (X ′)‖, (7)

where ‖·‖ is the tensor norm, X and X ′ are datasets expressed
as tensors, whose fibers are data records. Then d(X ,X ′) = 1
means that X and X ′ are neighboring datasets differing by
only a single record.

Based on the standard normal distribution on tensors
(Def. 6), we define tensor variate Gaussian distribution T VG
and its variable Z as below:

Definition 8 (Tensor Variate Gaussian): A tensor variate
Gaussian distribution T VG (μ,�1, . . . , �N ) has mean μ ∈
R

I1×I2×···×IN , and covariance matrices �k ∈ R
Ik×Ik

for k ∈ [N] and each �k is a positive semidefinite
matrix. If an N-order tensor-valued random variable Z ∼
T VG (μ,�1, . . . , �N ), there exists a SND tensor N ∈
R

I1×I2×···×IN such that

Z = μ + N ×1 U1 ×2 U2 ×3 . . . ×N UN , (8)

where Uk ∈ R
Ik×Ik satisfies UkU�

k = �k for each k ∈ [N].
And the probability density function for Z is

Pr(Z) = 1

(2π)
I
2 |U1|I/I1 |U2|I/I2 · · · |UN |I/IN

exp

{
−1

2
〈N ,N 〉

}
,

(9)

where I = I1 I2 · · · IN .

Note that N = (Z − μ) ×1 U−1
1 ×2 U−1

2 ×3 . . . ×N U−1
N ,

and N is a special case of tensor variate Gaussian that
N ∼ T VG(0, E1, . . . , EN ), where Ek ∈ R

Ik ×Ik , ∀k ∈ [N]
is the identity matrix. By Eq. 8, it is clear that the tensor
variate Gaussian is a linear transformation of the SND. With
the above definition, we apply additive tensor-valued noise
following T VG distribution in the TVG mechanism stated in
the following.

Definition 9 (TVG Mechanism): For a given query function
f (X ) ∈ R

I1×···×IN and a tensor variate Gaussian Z ∼
T VG (0,�1, . . . , �N ), the TVG mechanism is defined as:

TVG( f (X )) = f (X ) + Z. (10)

Similar to the Gaussian mechanism [8] and MVG [5], TVG
adds zero-mean randomized noise to the query result. Note
that �k ∈ R

Ik ×Ik for k ∈ [N] are the covariance matrices of
different modes for Z , which are subject to design. In our
main theorem to be discussed, we mainly show what forms
of the covariance matrices would ensure the mechanism to
be differentially-private. Before introducing our main theorem,
we first present lemmas used in the proof of the theorem. Due
to space constraint, we only illustrate a sketch proof of our
theorem, and leave the complete proofs of the lemmas and
theorem in supplemental materials.

Lemma 2 (Tensor norm inequality): Let Uk ∈ R
Ik×Ik for

k ∈ [N], and X ,Y ∈ R
I1×···×IN be a pair of tensors which

satisfy:

X = Y ×1 U1 ×2 U2 ×3 . . . ×N UN . (11)

Then we have the tensor norm inequality that

‖X‖ ≤ ‖Y‖‖U1‖F‖U2‖F . . . ‖UN ‖F . (12)

See Appendix A-A for the proof.
Lemma 3 (The bound of the SND tensor): For a tensor

N ∈ R
I1×I2×···×IN following the standard normal distribution,

δ ∈ (0, 1) and ζ(δ)2 = −2 ln δ + 2
√−I1 I2 . . . IN ln δ +

I1 I2 . . . IN , we have

Pr[‖N‖2
F ≤ ζ(δ)2] ≥ 1 − δ. (13)

By Lemma 2 and 3, we can prove the main theorem on
TVG mechanism defined in Def. 9:

Theorem 1 (Tensor Variate Gaussian): We have a query
function f (X ) ∈ R

I1×···×IN , and a tensor variate Gaussian
noise Z ∼ T VG (0,�1, . . . , �N ) ∈ R

I1×···×IN . �1, . . . , �N
are the covariance matrices and Uk ∈ R

Ik×Ik satisfies
UkU�

k = �k for each k ∈ [N]. The TVG mechanism
guarantees (�, δ)-differential privacy if U1, . . . , UN satisfy

‖U−1
1 ‖2

F . . . ‖U−1
N ‖2

F ≤
(
−β + √

β2 + 8α�
)2

4α2 . (14)

α = s2
2 ( f ), and β = 2ζ(δ)s2( f ), where s2( f ) is the l2-

sensitivity of f (X ) and ζ(δ) is defined in Lemma 3.
Note that the right side of Eq. (14) is a constant once the

privacy parameters � and δ are given. Hence the theorem
shows that to guarantee differential privacy for tensor-valued
data, one only needs to satisfy the constraint on Frobenius
norms concerning covariance matrices of the additive noise Z .
We include a sketch proof here, and for the full proof, please
refer to Appendix A-B.
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Proof: (Sketch) By Def. 1, to guarantee (�, δ)-differential
privacy, we should have the following satisfied for each pair
of datasets X ,X ′ and any possible output set O:

Pr( f (X ) + Z ∈ O) ≤ e� · Pr( f (X ′) + Z ∈ O) + δ,

which can be rewritten as

Pr(Z ∈ O − f (X )) ≤ e� · Pr(Z ∈ O − f (X ′)) + δ.

We express Z in terms of a SND tensor by Eq. (8) and
define the following events:

R1 = {N : ‖N‖2 ≤ ζ 2(δ)}, R2 = {N : ‖N‖2 > ζ 2(δ)},
where ζ 2(δ) is defined in Lemma 3. By the definition of ζ 2(δ)
and Lemma 3, we have Pr({Z ∈ O− f (X )}∩R2) ≤ Pr(R2) ≤
δ. And thus we only needs to find the sufficient conditions for
the following inequality to hold:

Pr({Z ∈ O− f (X )} ∩ R1)≤e� · Pr({Z ∈ O− f (X ′)} ∩ R1).

Letting O′ = O − f (X ) and 	 = f (X ) − f (X ′), we find
that

Pr(Z ∈ O′ ∩ R1)

≤ e� · Pr(Z ∈ (O′ + 	) ∩ R1)

⇔
∫
O′∩R1

exp(− 1
2‖Z ×1 U−1

1 ×2 . . . ×N U−1
N ‖2)dZ∫

(O′+	)∩R1
exp(− 1

2‖Z ×1 U−1
1 ×2 . . . ×N U−1

N ‖2)dZ

≤ e� ⇔ 1

2
‖	′‖2 + 〈	′,Q′〉 ≤ �,

where 	′ = 	×1 U−1
1 ×2 . . .×N U−1

N , and Q′ = Q×1 U−1
1 ×2

. . .×N U−1
N ,∀Q ∈ O′∩R1. It is obvious that the last inequality

consists of two parts and we will prove the bound for each.
For conciseness, we define φ =

‖U−1
1 ‖F ‖U−1

2 ‖F . . . ‖U−1
N ‖F . By Lemma 2, it can be

proved that the first part satisfies

‖	′‖2 = ‖	 ×1 U−1
1 ×2 . . . ×N U−1

N ‖2 (15a)

≤ s2
2 ( f )φ2. (15b)

Similarly, we derive the bound for the second part:

〈	′,Q′〉 ≤ s2( f )ζ(δ)φ. (16)

By combining two Eq. (15b)(16), the sufficient condition is

s2( f )2φ2 + 2s2( f )ζ(δ)φ ≤ 2�. (17)

Note that φ can only be non-negative. By solving inequality
Eq. (17), we have

φ ≤ −β + √
β2 + 8α�

2α
,

where α = s2
2 ( f ), β = 2s2( f )ζ(δ). And this is exactly the

noise bound in Thm. 1.
By Thm. 1, one only need to satisfy the constraint on

the covariance matrices of the additive noise to meet the
differential privacy guarantee. Being aware that the constraint
only deals with the Frobenius norm, we further provide the
following corollary concerning the shape of the additive noise.
The proof can be found in supplemental materials.

Corollary 1: TVG mechanism TVG1( f (X )) = f (X ) +
Z1 where Z1 ∼ T VG (0,�1, . . . , �N ) ∈ R

I1×···×IN is

Fig. 1. An example of reshaping tensors.

(�, δ)-differentially private. By reshaping f (X ) to f ′(X ),
and Z1 to Z2, where f ′(X ),Z2 ∈ R

J1×···×JM for any
J1 . . . JM = I1 . . . IN , a new TVG mechanism can be defined:
TVG2( f ′(X )) = f ′(X ) + Z2. If Z2 ∼ T VG (0, �1, . . . , �M )
where �m ∈ R

Jm×Jm , ∀m ∈ [M], then TVG2 satisfies the
same (�, δ)-differential privacy with TVG1.

See Appendix C-A for the proof. If the reshaped noise
follows the tensor variate Gaussian distribution of zero mean,
and the tensor-valued data can be reshaped accordingly,
the resulting TVG mechanism satisfies the same differential
privacy guarantee as the original one. We give an example of
reshaping a tensor of the form 2 × 2 × 2 into a 2 × 4 matrix,
and then to a vector of length 8 in Fig. 1. This property builds a
connection between different forms of tensors under the same
differential privacy guarantee, and indicates that however the
tensor is reshaped, the same differential privacy may be met
with the same total amount of noise (when the reshaped noise
also satisfies the TVG distribution).

Theorem 1 gives the condition that TVG mechanism should
hold for satisfying (�, δ)-differential privacy. It is obvious that
this condition is only related to the covariance matrices of
the additive noise, which leaves much space for designing the
specific covariance matrices and the noise. In the next section,
we will introduce mechanisms with careful consideration of
the design space.

Consider the following use case of TVG. In the task of
sensitive image classification, convolutional neural networks
are adopted as the model. The shape of the gradients of the first
convolutional layer is 5 × 5 × 6, representing 6 convolution
kernels with each kernel of size 5 × 5. Queries to the gradients
are adopted to update the neural network parameters during
training. Since these gradients are generated by the sensitive
training data, it requires TVG for preserving privacy at each
release.

V. UNIMODAL GAUSSIAN NOISE

In this section, we present two special forms of TVG where
noise bounds can be further improved, and thus a better utility
can be achieved at the same privacy guarantee. In particular,
we assume the additive noise Z ∼ T VG (0,�1, . . . , �N ) is
unimodal, which means one mode of the noise is directional
noise, and all other modes are set to be i.i.d.

We first show an improvement over the general TVG by
adding unimodal directional noise Z . W.l.o.g., we assume
mode-1 of Z is the directional noise and the rest are i.i.d., i.e.,
Uk = Ek,∀k = 2, . . . , N (Ek represents the identity matrix).
Note that the result is not a special case of Thm. 1 by simply
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Fig. 2. The diagram of unimodal directional noise. Upper: a 3-order
tensor X ∈ R

2 × 2 × 2 with column, row, and tube fibers. Lower: the three
subfigures are projections of the same tensor in three different modes. The
yellow dots represent a SND variable N with all its modes being i.i.d. The
blue dots denote a variable X = N ×1 U1 with one mode being directional
noise and the rest being i.i.d. The distribution of its column fiber is decided
by the covariance matrix �1 = U1U�

1 . The red line (or dot) indicates the
utility subspace of the data.

substituting Uk with Ek . We derive a new noise bound which
is I2 I3 . . . IN times tighter than that of Thm. 1.

A. Unimodal Directional Noise

The unimodal directional noise (UDN) means that we select
one mode of the noise to be directional noise. For example,
for data records with different features, we can sample noise
such that the noise applied to data records are independently
drawn from the same distribution, whereas the noise added to
features are correlated.

We further use a toy example in Fig. 2 to clarify the
point. The upper figure shows a 3-order tensor-valued noise
decomposed into 3 rank-1 tensors, which are respectively
fibers of different modes. The lower figure describes the tensor
noise by different modes. The yellow dots represent the SND
tensor N whereas the blue dots denote X = N ×1 U1.
In practice, such unimodal noise can be generated by applying
mode-n matrix product to the SND tensor, which only changes
the noise directions of mode-n fibers.

Now we see how the unimodal directional noise can
improve the noise bound. For clear comparison, we first state
a direct extension of Thm. 1 to UDN. By directly substituting
Un = En,∀n = 2, . . . , N to the left-hand side of the
inequality (14), we get

‖U1
−1‖2

F ≤
(
−β + √

β2 + 8α�
)2

4I2 . . . IN α2 . (18)

By our new theorem, the right-hand side bound can be
improved by I2 I3 . . . IN :

Theorem 2 (Unimodal Directional Noise): Given Uk =
Ek,∀k = 2, . . . , N, TVG mechanism guarantees (�, δ)-
differential privacy if

‖U1
−1‖2

F ≤
(
−β + √

β2 + 8α�
)2

4α2 . (19)

where α = s2
2 ( f ), and β = 2ζ(δ)s2( f ).

Please refer to Appendix A-C for the proof. It is clear
that the theorem presents that a tighter noise bound for the
covariance matrices of the noise. Since the differential privacy
condition only depends on U1 here, we are only required to
meet the constraint of Eq. (19). This also suggests room to
design U1 specific to the application.

Note that the covariance matrix �k = UkU�
k and the sin-

gular value decomposition (SVD) of �k is �k = WUk Sk W�
Uk

.
We set Uk = WUk SUk where SUk S�

Uk
= Sk . Observing that in

designing U1, we have the freedom to substitute any unitary
matrix WU1 into the SVD of U1. We found that in the particular
case where U1 is a diagonal matrix, we can further improve the
noise bound by I1 times. Based on that, we derive the second
special form of TVG with independent directional noise.

B. Independent Directional Noise

The independent directional noise (IDN) suggests that one
mode of the noise is independent-directional, and other modes
are i.i.d. For example, for data records with different features,
independent directional noise indicates that the noise applied
to different feature dimensions are independent while the noise
applied to different data records are sampled independently
from the same distribution. For most applications, the assump-
tion is valid as we do not have any prior knowledge about
the correlation between different features but can only assume
independence.

W.l.o.g., we assume U1 is a diagonal matrix and Uk = Ek,
∀k = 2, . . . , N . At the first glance, independent directional
noise is a special case of the unimodal directional noise, and
Thm. 2 should be applied accordingly. However, we found
that the conclusion of Thm. 2 is yet suboptimal and we can
obtain a tighter bound under certain constraints. Note that by
choosing U1 to be diagonal, we in fact let the row-wise noise
WU1 = E1, where E1 is the identity matrix with the same size
of U1. Moreover, we assume that the data to be protected can
be scaled to the same range, i.e., each element of f (X ) is in
range [a, b].

Particularly, letting U1 = diag[σ1, . . . , σI1 ] ∈ R
I1×I1 be

a diagonal matrix, the probability density function (pdf) for
Z ∼ T VG(0,�1, . . . , �N ) can be written as

Pr(Z) = 1

(2π)I/2|U1|I/I1

· exp

⎛
⎝−

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN =1

z2
i1i2 ···iN

2σ 2
i1

⎞
⎠ , (20)

where I = I1 I2 · · · IN . Given the pdf above, we can improve
the bound for ‖U−1

1 ‖F with the following theorem.
Theorem 3 (Independent Directional Noise): Let Z ∼

T VG (0,�1, E2 . . . , EN ) ∈ R
I1×I2×...×IN where �1 = U1U�

1
and U1 = diag[σ1, . . . , σI1 ] ∈ R

I1×I1 . If we normalize each
element of f (X ) to the same range [a, b], TVG mechanism
TVG( f (X )) = f (X ) + Z guarantees (�, δ)-differential pri-
vacy if

‖U−1
1 ‖2

F ≤ I1

ŝ2
2 ( f )

(
−ζ(δ) +

√
ζ 2(δ) + 2�

)2
, (21)

with ζ(δ) defined in the Lemma 3 and ŝ2( f ) = (b −
a)

√
I1 I2 . . . IN .
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The proof is based on the pdf of Z and can be found in
Appendix A-D. It is worth mentioning that the proof utilizes
the fact the tensor noise only uses one mode-1 matrix product,
and thus eliminates many unnecessary relaxation of the bound.
Hence it results in a tighter noise bound.

To see how the result compares with that of unimodal
directional noise, we only need to replace U1 as a diagonal
matrix in Thm. 2. Thus we have

‖U−1
1 ‖F ≤ 1

ŝ2
2 ( f )

(
−ζ(δ) +

√
ζ 2(δ) + 2�

)2
.

Obviously, we have improved the noise bound by I1 times.
An interesting observation is that, when we intentionally
ignore some structural information of the tensor-valued noise,
and rewrite the probability density function as an element-wise
function Eq. (20), the noise bound actually improves.

VI. PRIVACY AND UTILITY

We show in this section that TVG has a natural form to
be optimized w.r.t. the utility subspace. If we know some
dimensions/directions/modes of the tensor are more important
than others, we can select noise directions/distributions such
that less noise is inserted to the more important part of
the tensor, at the cost of a higher level of noise adding to
the less important part. By treating the TVG theorem as
a differentially-private constraint, we formulate the problem
from an optimization perspective. A closed-form solution is
obtained which minimizes the total impact of the noise on
the output, and the form of the solution is scalable to large-
size problems. Based on the solutions, two practical noise
generation algorithms are proposed. Moreover, we discuss the
value of the objective function w.r.t. the shape of the tensor.

A. Utility Objective

Depending on how data is applied in the downstream task,
the utility subspace of data can be taken into account when
choosing the specific noise distribution in TVG. Such utility
subspace can be obtained directly from the downstream task,
for example, it is known a prior some features of the data are
critical to the task while others are not. Or in some cases,
the relative importance can be drawn by analyzing the data
itself, i.e., a differentially-private SVD performed on the data
to differentiate different directions. We give an example to
explain this in Fig. 2.

In Fig. 2, we depict the utility subspace projected on
the three modes in red. In the middle and right bottom
figures, the utility subspace is a dot since its direction is
vertical to mode-2 and mode-3. That indicates that mode-2
and mode-3 of the noise have little impact on the data utility.
In the left bottom figure, the blue dots represent a directional
noise which is vertical to the utility direction. The choice of
directional noise (blue dots) is better than the i.i.d. one (yellow
dots) in terms of the utility, as it applies less noise to the utility
subspace. The example suggests that, we can create directional
noise with consideration of utility.

Following the idea, we propose a scheme that, given
the utility subspace, the noise distribution can be designed
accordingly to bring minimum impact to the utility while
satisfying the differential privacy constraint. The problem is

formulated as a constrained optimization problem of which
the objective is the expected amount of noise projected to the
utility subspace, under the differential privacy constraint. For
simplicity, we assume the utility subspace is linear, and other
cases can be discussed accordingly.

Assume the task has linear utility subspace in all modes
such that:

Y = f (X ) ×1 W1 ×2 W2 . . . ×N WN ,

where f (X ) ∈ R
I1×I2×···×IN , Wk ∈ R

Jk×Ik represents the
utility subspace. Y ∈ R

J1×J2×···×JN is the output. To preserve
privacy, we sample a noise Z ∼ T VG(0,�1,�2 . . . , �N ) and
make predictions on the perturbed query result:

Ŷ = [ f (X ) + Z] ×1 W1 ×2 W2 . . . ×N WN .

According to [3], [6] and other mechanisms, we define our
objective as the error on the original query result, measured by
the expected norm of weighted noise. If the error is minimized,
it means less perturbation is done to the output. The goal is
to minimize:

min
U1...UN

E‖Y − Ŷ‖2 ⇔ min
U1...UN

E‖Z ×1 W1

×2W2 . . . ×N WN ‖2. (22)

By applying Lemma 1, we could transform the tensor to a
matrix form. We turn the objective into:

min
U1...UN

E‖Z ×1 W1 ×2 W2 . . . ×N WN ‖2

⇔ min
U1...UN

E‖W1U1N(1) (WN UN ⊗ · · · ⊗ W2U2)
� ‖2

F

⇔ min
U1...UN

‖W1 U1‖2
F‖W2 U2‖2

F . . . ‖WN UN ‖2
F

⇔ min
U1...UN

‖W1 WU1 SU1‖2
F . . . ‖WN WUN SUN ‖2

F ,

where Uk = WUk SUk is defined by the SVD of �k in
Sec. V-A and SUk = diag(σk1, . . . , σkIk ). By letting Pki =∑Jk

j=1(Wk WUk )
2
j i , we can write our objective as

min
U1...UN

N∏
k=1

Ik∑
i=1

Pki σ
2
ki . (23)

B. Privacy Constrained Optimization

In light of the utility objective of Eq. (23), we propose opti-
mized schemes which seek noise distributions that minimize
the error while satisfying the differential privacy constraint.
The privacy constraints are given by Eq. (14). If we substitute
Uk = WUk SUk and SUk = diag(σk1, . . . , σkIk ), k ∈ [N] to
Eq. (14), and since WUk is a unitary matrix, we can rewrite
the constraint and formulate the problem as the following
optimization problem:

min
U1...UN

N∏
k=1

Ik∑
i=1

Pkiσ
2
ki ,

s.t.
N∏

k=1

Ik∑
i=1

1

σ 2
ki

≤ B, (24)

where α, β, B are defined in Table. I.
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The problem follows the form of a geometric program that
can be solved efficiently. KKT conditions [30] can be applied
and we obtain optimal solutions:

N∏
k=1

σ 2
kik =

∏N
k=1

∑Ik
i=1

√
Pki∏N

k=1

√
Pkik B

, ∀ik ∈ [Ik], k ∈ [N], (25)

We consider all σki satisfying the above equation are
optimal solutions to the problem. Given the optimal solutions,
we can calculate the minimum value of the error as:

ErrorTVG(Y, �, δ) =
(∏N

k=1
∑Ik

i=1

√
Pki

)2

B
. (26)

The detailed derivation can be found in Appendix B.
1) Unimodal Directional Noise (UDN): For a straightfor-

ward illustration, we follow the assumption in Thm. 2 to
add unimodal noise of which the mode-1 noise is directional
noise. And Uk = Ek,∀k = 2, . . . , N . We could formulate the
optimization problem w.r.t. UDN similarly:

min
U1

I1∑
i=1

Piσ
2
i , s.t.

I1∑
i=1

1

σ 2
i

≤ B. (27)

By Eq. (25), we could get the optimal solution:

σ 2
i =

∑I1
j=1

√
Pj√

Pi B
, ∀i = 1, . . . , I1. (28)

We can also obtain the optimal objective value by Eq. (26):

ErrorUDN(Y, �, δ) =
(∑I1

i=1

√
Pi

)2

B
. (29)

To generate the unimodal Gaussian noise, we need the
covariance matrix �1. Differential privacy guarantee is already
satisfied by calculating σ 2

i from Eq. 28, and we still need
to design WU1 . We can simply adopt differentially-private
SVD schemes [31], [32] to obtain the principal components
of W as WU1 . Then we compute the covariance matrix �1 by
U1 = WU1 SU1 . Finally, a tensor-valued noise Z is sampled
from T VG(0,�1, E2 . . . , EN ). The scheme is summarized
in Alg. 1.

2) Independent Directional Noise (IDN): In the case of
independent directional noise, we have WU1 = E1. Given
Thm. 3 and Eq. (24), the optimized distribution of noise can
be obtained by replacing the constraint of (27) with Eq. (21).
The algorithm based on the independent directional noise is
almost the same with Alg. 1 except that

B = I1

ŝ2
2 ( f )

(
−ζ(δ) +

√
ζ 2(δ) + 2�

)2
,

and WU1 = E1.
3) Error and Tensor Shape: In our deduction, we found that

in spite of the tensor shape, if the same differential privacy is
guaranteed, TVG always yields the same error in the optimal
case. That means, by TVG, the same differential privacy
guarantee on the tensor always leads to the same utility, which
has nothing to do with the shape of the tensor. Specifically,
we have the following corollary, and the proofs are provided
in Appendix C-B.

Algorithm 1 Generating Optimized Tensor Noise
Input: (a) privacy parameters �, δ, (b) l2 sensitivity s2( f ), (c)

the utility subspace W ∈ R
J×I1 , (d) the directions of the

noise in mode-1 fibers WU1 ∈ R
I1×I1

Output: f (X ) + Z
1: compute α, β as α = s2

2 ( f ), and β = 2ζ(δ)s2( f )

2: compute B = (−β+
√

β2+8α�)2

4α2

3: for i ∈ {1, . . . , I1} do
4: Pi = ∑J

j=1(W WU1)
2
j i

5: σ 2
i =

∑I1
j=1

√
Pj√

Pj B
6: end for
7: compute the diagonal matrix SU1 = diag(σ1, . . . , σI1 )
8: compute U1 = WU1 S1
9: sampling Ni1 i2 ...iN from N (0, 1) for all i1, i2, . . . , iN

10: compute Z = N ×1 U1
11: return f (X ) + Z

Corollary 2: Consider two linear models Y = f (X ) ×1
W1 ×2 W2 . . . ×N WN ∈ R

I1×···×IN and Y ′ = f ′(X ) ×1
W1

′×2 W2
′ . . .×N WN

′ ∈ R
J1×···×JM , where f ′(X ) is reshaped

from f (X ), and Wk
′, k ∈ [N] are reshaped from Wk , k ∈

[N], ensuring each element in f ′(X ) is multiplied by the
same coefficient as it is in f (X ). When (�, δ)-differentially
private TVG mechanism is respectively applied, we have
ErrorTVG(Y, �, δ) = ErrorTVG(Y ′, �, δ).

VII. COMPARISON WITH OTHER MECHANISMS

For a better understanding of the position of this work in the
current literature, we compare TVG with existing differential
privacy mechanisms on high-dimensional data, mainly Matrix
Mechanism [3] and Matrix Variate Gaussian [5]. Moreover,
we show the applicability of TVG to Rényi differential privacy
and general composition rules.

Different from mechanisms adding homogeneous noise in
all directions, TVG inserts heterogeneous noise in different
directions. Directional noise are also considered in MVG,
however, TVG takes the downstream task into account in
generating the directional noise, reducing the impact of noise
on utility.

A. Comparison With Matrix Mechanism

Matrix Mechanism (MM) has been adopted for answering
linear queries with differentially-private vector data.

Definition 10 (Matrix mechanism [3]): Given an m × n
workload itmatrix W, a p × n strategy matrix A that supports
W and a differentially private algorithm K(A, x) that answers
A with a given database instance x. The matrix mechanism
MK,Aoutputs the following vector:

MK,A(W, x) = W A+K(A, x)

where

K(A, x) = Ax + ‖A‖b̃,

and b̃ = (b1, . . . , bn) is a vector of i.i.d random variables that
does not depend on W or x.
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Note that W above is analogous to the linear utility subspace
in TVG. The goal of MM is to minimize the following error
defined on A, A+, b̃:

ErrorMM = E‖A‖‖W A+b̃‖2
F = ‖A‖‖W A+‖2

F V ar(b1).

Hence, MM seeks pseudoinverse matrix A+ to minimize the
above error. However, the optimization problem is a semidef-
inite program and has no analytic solution, which costs about
O(m4(m + n)4) to search the solution. The semidefinite pro-
gramming procedure largely constrains the scalability of the
mechanism. It would be extremely complicated to solve A+
in a very high-dimensional scenario. In comparison, the error
of TVG is defined by Eq. (26) and the error minimization
problem can be transformed into a convex one with a closed-
form solution, which has a lower time complexity of O(mn2).
While it is common for MM and TVG to search for an
optimal noise direction, TVG has a closed-form solution and
has broader application to tensor of all shapes.

B. Comparison With Matrix Variate Gaussian

Matrix Variate Gaussian (MVG) mechanism guarantees
(�, δ)-differential privacy for matrix-valued queries through
the matrix variate Gaussian distribution:

MVGm,n(M,�,) = Pr(X |M,�,),

where � ∈ R
m×m is the row-wise covariance and  ∈ R

n×n

is the column-wise covariance. Similar to TVG, MVG is also
an additive noise scheme:

Definition 11 (MVG [5]): Given a matrix-valued query
function f (X) ∈ R

m×n, and a matrix-valued random variable
Z ∼ MVGm,n(0,�,), the MVG mechanism is defined as

MVGm,n( f (X)) = f (X) + Z.

The differential privacy guarantee is imposed by the constraint
on � and :

Theorem 4 (MVG [5]): Let

σ(�−1) = [σ1(�
−1), . . . , σm(�−1)]T ,

σ (−1) = [σ1(
−1), . . . , σn(−1)]T ,

be the vectors of the non-increasingly ordered singular value
of �−1 and −1 respectively. The MVG mechanism guaran-
tees (�, δ)-differential privacy if � and  satisfy the following
condition:

‖σ(�−1)‖2‖σ(−1)‖2 ≤
(−β0 +

√
β2

0 + 8α0�)
2

4α2
0

, (30)

where α0 = [Hr + Hr,1/2]γ 2 + 2 Hrγ s2( f ), β0 =
2(mn)1/4 Hrζ(δ)s2( f ), γ = supX ‖ f (X )‖F , r = min{m, n}
and Hr is generalized harmonic numbers of order r .

For fair comparison with MVG, we list the matrix case in
TVG below. By Thm. 1, noise Z needs to satisfy

‖σ(�−1)‖2‖σ(−1)‖2 ≤
(
−β + √

β2 + 8α�
)2

4α2
√

mn

= 16�2

(β + √
β2 + 8α�)2

√
mn

(31)

to guarantee (�, δ)-differential privacy. In the equation, α =
s2

2 ( f ), and β = 2ζ(δ)s2( f ). Compared to α0 in Eq. (30), α is
reduced by 1

s2
2 ( f )

[(Hr + Hr,1/2)γ
2 + 2 Hrγ s2( f )]. And β is

reduced by (mn)
1
4 Hr comparing with β0 in Eq. (30). Overall,

the right-hand side of inequality (31) is about H 2
r times larger

than that of inequality (30). A larger right-hand side value
indicates a smaller amount of noise minimally required to
ensure differential privacy, and thus better utility. Such utility
improvement is mainly because we use Lemma 2 rather than
the harmonic numbers in the proof.

C. Rényi Differential Privacy and Composition

We shortly prove that TVG is a general mechanism which
also satisfies (α, �)-Rényi Differential Privacy (RDP) [33], and
can be directly applied composition as a primitive mechanism.

For any pair of adjacent datasets X and X ′, the Rényi
divergence between query results on the two datasets is

Dα(Pr( f (X ) + Z ∈ O)‖ Pr( f (X ′) + Z ∈ O))

= 1

α − 1
EPr( f (X ′)

(
Pr( f (X ) + Z ∈ O)

Pr( f (X ′) + Z ∈ O)

)α

= 1

α − 1

∫
R

exp(−α

2
‖Z ×1 U−1

1 ×2 . . . ×N U−1
N ‖2

− 1 − α

2
‖Z + 	 ×1 U−1

1 ×2 . . . ×N U−1
N ‖2)dZ

≤ α‖	‖2
F ‖U−1

1 ‖2
F . . . ‖U−1

N ‖2
F (32)

Therefore if α‖	‖2
F ‖U−1

1 ‖2
F . . . ‖U−1

N ‖2
F ≤ �, TVG satis-

fies (α, �)-RDP.
The TVG mechanism could also take advantage of advanced

composition approaches such as the moments accountant tech-
nique [10] and optimal composition [11].

VIII. EVALUATIONS

For fair evaluations of our proposed mechanisms, we con-
duct a series of experiments on a variety of query functions,
models and datasets, and compare the results against a number
of existing mechanisms.

A. Setup

1) Datasets and Tasks: We select typical learning tasks
from multiple areas such as computer vision, data mining,
text mining where the data are likely to be sensitive. Data
can be private and proprietary to the data owner so that its
release should preserve privacy. For example, the testing data
can be sensitive personal images, and the neural network
features computed on these data should not reflect any personal
information. Another example is that the training data is
private and the model trained on these data is supposed to
preserve individual privacy.

For computer vision, we select three image classification
tasks, respectively on MNIST [34], CIFAR-10 [35], and
SVHN [36]. MNIST contains gray-scale images of handwrit-
ten digits, while CIFAR-10 and SVHN consist of real-world
RGB images. Each dataset has 10 categories of images. For
data mining tasks, we run classification tasks respectively
on Adult [37], Credit 1. Adult is a small-scale dataset on

1Credit dataset: https://www.kaggle.com/mlg-ulb/creditcardfraud.
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which one can predict whether income exceeds a threshold.
Credit is a highly unbalanced dataset that aims to recognize
fraudulent credit card transactions. For text mining, we choose
a binary classification task on IMDB [38] dataset. We also
have CTG [37] to run the covariance estimation task.

2) Baselines and Metrics: We compare TVG with other
differential privacy mechanisms dealing with high-dimensional
data. The baselines include: i.i.d. Gaussian mechanism
(Gaussian), Optimized mechanism (Optimized) [7], Matrix
Variate Gaussian (MVG) [5], Matrix Mechanism (MM) [3],
and Johnson-Lindenstrauss (JL) Transform [4]. We implement
UDN and IDN as solutions to the optimized scheme (Sec. VI).
In fact, Gaussian, Optimized and MM are designed for scalar-
valued or vectorized queries, not specific to tensors or matri-
ces. We follow the convention of [10] to flatten each tensor
to a collection of its elements and apply the schemes. And
we reshape tensors to matrices to apply matrix mechanism
MVG. However, it should be noted that all these baselines
do not have precise DP definition on tensors, instead their
DP guarantee holds on the collection of elements, but not
the original tensor values. Nevertheless, we still adopt them
to show the practicality of our proposal. Particularly in the
experiments, differentially-private SVD/PCA is implemented
to seek directional noise in MVG. MM is only applied to
small-scale datasets due to its high complexity. JL transform
is only used in the covariance estimation.

For most of the experiments, we use testing accuracy
as the utility metric to compare different mechanisms. For
unbalanced dataset Credit, Area Under Curve(AUC) is adopted
as the metric. In the experiment of covariance estimation,
residual sum of square (RSS) is used as the metric. Let X
be the clean data matrix and X̂ be the perturbation result.
Ŝ = 1

N X̂ X̂� is the covariance estimate for S = 1
N X X�. Let

{v̂i } be the eigenvector of Ŝ, and ρ(v̂i ) = v̂�
i Sv̂i . RSS is

defined as

RSS(Ŝ) =
∑

i

(λi − ρ(v̂i ))
2, (33)

where λi is the i th eigenvalue of Ŝ.

3) Privacy-Preserving Targets: For each task, we can have
different privacy-preserving targets. We categorize the targets
into three types: model gradients, training features, and testing
data. For the first type, we assume we are training models on
private training datasets and thus the model should be learned
in a differentially-private manner. Specifically, we adopt the
noisy stochastic gradient descent [10] as our optimization
algorithm, and the query function returns differentially-private
gradients. For the second type, we consider feature release
on private training datasets. This often happens when the
model is trained distributedly on more than one parties where
one party extracts features from the raw data, and the other
party trains on the released features. The query function
releases differentially-private intermediate features, and the
features would be further trained. For the third type, since
the testing data is sensitive, the query function returns a
differentially-private version of the prediction output on the
testing data. We state the implementation detail by types as
follows.

TABLE II

SETUP FOR STOCHASTIC GRADIENT DESCENT (SGD)

B. Implementation Details

1) Type I: Private Stochastic Gradient Descent (SGD):
We deploy experiments on datasets including MNIST, Credit
and Adult. The setup is in Table II. Noisy stochastic gradient
descent [10], [19] is adopted as the differentially-private
optimization algorithm. We reiterate the procedures as follows:

1) Take a random sample from the training set with sam-
pling probability q .

2) Compute the gradients on this sample.
3) Clip each gradient by its l∞ norm. The clip value is C .
4) Average the gradients for a batch of samples, and apply

perturbation to the averaged gradients.
5) Update the corresponding model parameters with the

perturbed average gradients. And go back to 1).
a) Query function: Note that the query function here is

a batch sum function on gradients:

f (X ) =
L∑

i=1

g(xi ), (34)

where g(xi ) is the gradient of the example xi and L is the
batch size. The shape of f (X ) is the same as the network.
For example, in LeNet, the shape of gradients of the first
convolution layer is 5 × 5 × 6. For neighboring datasets
{X ,X ′}, the l2-sensitivity is

s2( f ) = sup
X ,X ′

∥∥ f (X ) − f (X ′)
∥∥

F = 2C
√

I1 I2 . . . IN ,

(35)

where C is the clip value in Table II, and only the gradient
of the largest shape is reported. Actually, we are perturbing
more gradients than that. Following the convention, we perturb
gradients per batch and group several batches into a lot for
adding noise. The average provides an unbiased estimator,
the variance of which quickly decreases with the size of the
group. We use the same composition scheme [11] for IDN,
UDN and MVG to compose differentially-private gradients
of each lot. Since the moments accountant method [10] is
claimed as the state-of-the-art composition for the Gaussian
mechanism, we adopt it respectively for Gaussian and MM.
We also amplify the privacy guarantee [15] in the sampling
step for all mechanisms in comparison. Please find the detailed
composition and amplification scheme in Appendix D. Step 4)
is where we implement different privacy mechanisms. In UDN,
MVG and MM, we set W to identity matrix E since the utility
subspace is unknown. Directional noise can be considered in
the future if the sensitivity of each gradient is known.
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TABLE III

SETUP FOR PRIVATE TRAINING FEATURE AND TESTING DATA

TABLE IV

COMPARISON OF ERROR

2) Type II: Private Training Features: Four datasets are
adopted: MNIST, CIFAR-10, SVHN, and IMDB. We consider
all of their training data as private and aim to protect the
training data privacy. We modify each model by replacing
its activation function with tanh(·) to normalize the released
intermediate-layer feature to the range of (−1, 1). For all
datasets, stochastic gradient descent is adopted as the optimizer
and in each iteration, a batch of 256 input instances are
randomly selected to train the optimizer. Configuration details
are given in Table III.

a) Query function: We set the query function as the
identity query f (X ) = X . X is the training features in the
experiment. For example, the feature tensor shape over MNIST
dataset is 256 × 16 × 5 × 5 , which is a 4-order tensor. For
neighboring datasets {X, X ′}, the l2-sensitivity is the feature
size multiplied by the feature range. Here our range is set to
(−1, 1), and thus the l2-sensitivity is

s2( f ) = sup
X ,X ′

∥∥X − X ′∥∥
F = 2

√
I1 I2 . . . IN (36)

The released features are perturbed once before training. For
UDN, IDN, MVG and MM, we set the utility subspace W to
E since no prior knowledge about the training data is known.
For the i.i.d. Gaussian and MM, l2-sensitivity is computed for
each element and for UDN, IDN and MVG, their l2-sensitivity
is computed directly on the feature tensor. This is due to the
composition of different mechanism, which could know more
detail theories in supplemental materials Appendix D.

3) Type III: Private Testing Data: Datasets include MNIST,
CIFAR-10, SVHN, IMDB, and CTG. The experimental setup
is the same as Type II, shown in Table III. Each model
is trained on the unperturbed training dataset and tested on
private testing data. We choose the output from the last con-
volutional layer of each model as the private testing features.
The query is also the identity function.

a) Query function: Similarly, we set the query function
as the identity query f (X ) = X where X is the testing
feature in the experiment. The l2 sensitivity is the same with
Type II experiments. On Cora, we set the query function
as the covariance matrix query f (X ) = 1

N XX T , where
X ∈ [−1, 1]26 × 2126. For neighboring datasets

{
X ,X ′}, the

l2 -sensitivity is

s2( f ) = sup
X ,X ′

∥∥∥x j x T
j − x ′

j x ′T
j

∥∥∥
F

2126
= 2

√∑262

i=1 x j (i)2

2126
= 52

2126
.

Since it is known how each feature is processed in the
model, we set the utility subspace in UDN, IDN, MVG
and MM as the model weights associated with the released
features. We use Alg. 1 to generate noise in UDN and IDN.
As the directional matrix WU1 of UDN and MVG could
be any orthogonal matrix, here we choose the right-singular
matrix of W as WU1 . In MVG, we adopt the binary preci-
sion allocation strategy from [5] to decide the importance
of different directions. Due to the time complexity issue,
we only implement MM on IMDB and CTG. We calculate the
l2-sensitivity for each mechanism in the same way as
in Type II.

C. Experimental Results

Before delving into the experimental results, we first present
theoretical analysis of the expected error of each differen-
tial privacy mechanism. The theoretical results are presented
in Table IV. In the table, I = I1 I2 . . . IN is the product of
each dimension of each order, and I1 is the dimension of the
first order of the tensor where we apply directional noise. For
Type I Gaussian, we adopt the same σg in the differentially-
private SGD in [10]. For Type II and III Gaussian, σ is the
standard deviation of the i.i.d Gaussian distribution in the
scalar-valued Gaussian mechanism [8], i.e., σ ≥ c	2( f )/�
and c2 > 2 ln(1.25/δ). BMV G , BU DN , BI DN are respectively
calculated by the right-hand side of Eq. (30), (19) and (21).

For ease of understanding the theoretical results, we give
approximation of the expected noise magnitude in each case
besides the exact value. As we found, for private SGD,
Optimized has the least perturbation error among all but
without an accurate DP guarantee on tensors. This is because
‘flattening’ operation on tensors obfuscates tensors of the
same collection of elements but different shapes. And for
the private training and testing data, IDN and Gaussian have
the same order of expected error. However, the results are
given without considering directional noise. If the directional
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Fig. 3. Type I: Private stochastic gradient descent (SGD). IDN shows close performance to Optimized which does not have precise DP guarantee on tensor
data. UDN is slightly inferior to IDN but still better than MM and MVG.

Fig. 4. Type II: Private training features. IDN performs best overall, followed by the Gaussian mechanism. Their performance is close to each other except
that IDN yields higher accuracies in the high privacy regime (� is small). UDN and MVG have worse performance. As � grows, UDN gradually gains
advantage over MVG.

Fig. 5. Type III: Private testing data. IDN has the best performance overall, followed by the i.i.d. Gaussian on image classification datasets. MM has an
inferior performance to IDN overall. UDN is worse than Gaussian but no worse than MVG. The barely visible error bars indicate that the experimental results
are highly consistent.

noise is applied, IDN is supposed to incur less error. JL
and MM are missing from Table. IV since the error is data-
dependent or not deterministic.

In the following, we will present experimental results under
a variety of privacy settings and see how much they agree with
the theoretical error.

1) Type I Results: Fig. 3 reports accuracies under different
�s when fixing δ = 10−5. ‘Unperturbed’ represents the case
with no privacy guarantee. As we can tell, for all cases, accu-
racies steadily improve as � increases, which agrees with the
privacy-utility tradeoff. In general, the accuracy performance
agrees with the theoretical error analysis. In the experiment
on Adult, the performance of MM is a little better than
MVG, but is still worse than UDN. The performance of IDN
degrades slightly from Optimized whereas both IDN and UDN
outperform the rest of the baselines.

2) Type II Results: Fig. 4 reports accuracies under different
�s when fixing δ = 10−5. Compared with Type I results,
the relative performance of UDN is worse in Type II since
the l2-sensitivity is computed on each element, rather than
the entire tensor, and thus leading to a looser noise bound.
Actually, the performance of all mechanisms is in accords

with the theoretical results in Table IV. The i.i.d. Gaussian has
similar accuracy performance with IDN, since their noise is of
the same order of magnitude. But IDN still has superior per-
formance than Gaussian in the regime where � is small. In the
experiment on IMDB, we could observe that the performance
of MM is poorer than IDN and Gaussian mechanism, but
comparable with UDN. Moreover, the variation of accuracy
on MM is quite substantial, indicating unstable performance
across different runs of experiments.

3) Type III Results: Fig. 5 reports accuracies under different
�s when fixing δ = 10−5. Different from Type II, the accuracy
results on private testing data are less fluctuated than that on
private training features, and thus reveal the general trend
better. Overall, the trend is consistent with Table IV. The
accuracy gap between IDN and Gaussian is larger than that of
Type II results, and it may be because directional noise from
the optimized scheme is taken into account. Although UDN’s
performance is inferior to IDN and Gaussian, it still has better
performance than MVG, especially when � ≥ 1.

On the IMDB dataset, we found that MM performs exceed-
ingly well when � is large, almost equivalent to IDN. But on
CTG, MM only performs as good as the Gaussian mechanism,
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which is worse than IDN. We reckon that the performance of
MM largely depends on a carefully chosen utility subspace W ,
i.e., how well W describes the linear utility subspace. Other-
wise, MM has a similar performance with the Gaussian. The
results on CTG clearly distinguish different mechanisms for
all levels of privacy. JL or MM are worse than UDN and IDN
in terms of RSS.

IX. CONCLUSION

In this paper, we propose a new differential privacy mech-
anism for tensor-valued queries, called TVG. We show that
TVG enjoys a tighter noise bound than previous works,
and thus has better utility. Two special forms of TVG are
discussed: unimodal directional noise (UDN) and independent
directional noise (IDN). We found that by removing some
structural information, UDN and IDN progressively achieve
better utility under the same differential privacy guarantee.
In practical settings where the utility subspace of the data is
known, we further improve the utility by implementing opti-
mized schemes over differential privacy constraints. Closed-
form solutions to the optimization problems are derived.
Experimental results under a variety of settings have shown
the practicality of TVG mechanisms.
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