
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023 12679

FLUID: Towards Efficient Continuous Transaction
Processing in DAG-Based Blockchains

Junpei Ni , Student Member, IEEE, Jiang Xiao , Member, IEEE, Shijie Zhang , Student Member, IEEE,
Bo Li , Fellow, IEEE, Baochun Li , Fellow, IEEE, and Hai Jin , Fellow, IEEE

Abstract—In most blockchain-based application scenarios, a
complete application logic consists of multiple continuous trans-
actions, in which the initiation of one transaction depends on the
confirmation result of the previous one. This mandates that contin-
uous transactions must be processed in the correct order. Unfortu-
nately, existing chain-based blockchains fail to effectively support
continuous transaction processing due to considerable latency in
confirming continuous transactions. Recent studies shifted from
chain-based blockchains to Directed Acyclic Graph (DAG) based
blockchains, which reduced transaction confirmation latencies.
However, DAG-based blockchains store transactions in an out-
of-order manner that leads to unordered transaction processing.
To address this challenge, we propose FLUID, a new DAG-based
blockchain that supports continuous transaction processing while
delivering high performance. The fundamental idea of FLUID is
to design a transaction dependency tracking structure to ensure
that continuous transactions can be processed in the correct order.
FLUID utilizes a conflict resolution mechanism to provide instant
confirmation and to support concurrent transaction processing
with lower latencies. In addition, FLUID builds a checkpoint-
based verification mechanism to achieve deterministic consensus on
transaction processing results in the DAG. Extensive experiments
demonstrate that our proposed FLUID can improve the throughput
over state-of-the-art OHIE by 66% with two orders of magnitude
lower latencies.

Index Terms—Blockchain, continuous transaction processing,
DAG, data trading, storage model.

I. INTRODUCTION

DUE to the decentralized, tamper-proof and highly robust
nature, the blockchain technology can reach agreements

Manuscript received 15 November 2022; revised 12 March 2023; accepted
20 April 2023. Date of publication 2 May 2023; date of current version 8
November 2023. This work was supported in part by the National Key Research
and Development Program of China under Grant 2021YFB2700700, in part
by the Key Research and Development Program of Hubei Province under
Grant 2021BEA164, in part by the National Natural Science Foundation of
China under Grant 62072197, in part by the Knowledge Innovation Program of
Wuhan-Shuguang, a RGC RIF under Grant R6021-20, and in part by RGC
GRF under Grants 16209120, 16200221 and 16207922. Recommended for
acceptance by Y. Tong. (Corresponding author: Jiang Xiao.)

Junpei Ni, Jiang Xiao, Shijie Zhang, and Hai Jin are with the National
Engineering Research Center for Big Data Technology and System, Services
Computing Technology and System Lab, Cluster and Grid Computing Lab,
School of Computer Science and Technology, Huazhong University of Science
and Technology, Wuhan, Hubei 430074, China (e-mail: junpei@hust.edu.cn;
jiangxiao@hust.edu.cn; shijiezhang@hust.edu.cn; hjin@hust.edu.cn).

Bo Li is with the Hong Kong University of Science and Technology, Clear
Water Bay, Hong Kong (e-mail: bli@cse.ust.hk).

Baochun Li is with the Department of Electrical and Computer Engi-
neering, University of Toronto, Toronto, ON M5R 0A3, Canada (e-mail:
bli@ece.toronto.edu).

Digital Object Identifier 10.1109/TKDE.2023.3272312

Fig. 1. Transaction processing for data trading scenario. BalanceB indicates
the buyer’s ledger balance. BalanceS indicates the seller’s ledger balance.

on the transaction processing results from different parties with-
out the need of any trusted intermediaries, thereby supporting
trusted applications built on top of it [1]. Many distributed
applications such as data trading [2], [3], supply chain man-
agement [4], [5], and healthcare [6] have attempted to adopt the
blockchain technology to support more robust application logic.

A complete application logic of a blockchain-based applica-
tion consists of multiple continuous transactions that are clearly
ordered, interdependent, and committed interactively by par-
ticipants. For instance, in a data trading application, a complete
application logic involving two parties includes three continuous
transactions (i.e., TX1, TX2, TX3), as shown in Fig. 1(a), the
interaction between the buyer and the seller goes through the fol-
lowing steps: (1)TX1: the buyer submits a purchase request; (2)
TX2: the seller delivers the data; (3) TX3: the buyer confirms
payment. These continuous transactions must be processed in
the correct order as depicted in Fig. 1(b), otherwise, any trans-
action loss or error will destroy the correctness and complete-
ness of the entire data trading. Compared with cryptocurrency
transfer transactions, continuous transactions have two unique
characteristics: (1) Transaction processing is done interactively

1041-4347 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The University of Toronto. Downloaded on February 20,2024 at 23:17:04 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0005-9854-2282
https://orcid.org/0000-0002-4216-0497
https://orcid.org/0000-0001-8489-4010
https://orcid.org/0000-0003-2083-9105
https://orcid.org/0000-0003-2404-0974
https://orcid.org/0000-0002-3934-7605
mailto:junpei@hust.edu.cn
mailto:jiangxiao@hust.edu.cn
mailto:shijiezhang@hust.edu.cn
mailto:hjin@hust.edu.cn
mailto:bli@cse.ust.hk
mailto:bli@ece.toronto.edu

12680 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023

Fig. 2. Processing latency of continuous transactions in the chain-based
blockchain storage model.

by multiple participants, and transaction execution has a definite
sequential relationship because there are dependencies between
transactions, e.g., TX2 is committed by the seller based on
the buyer’s TX1. (2) There is an intermediate state, which
means that the application logic is not yet complete and does
not change the state of the ledger. For example, TX1, TX2 are
intermediate states, and their execution results in no modification
to the ledger. Intermediate state may have an impact on atomic
property during the initiation and interactive processing phases
of continuous transactions, as peer nodes are unable to identify
conflicts between intermediate state transactions, resulting in
the possibility of transactions being recorded in the ledger that
cannot be executed or should not be executed. To ensure the
correct and complete application logic, blockchain systems must
be able to support continuous transaction processing.

However, existing chain-based blockchain systems fail to
effectively support continuous transaction processing. Since the
initiation of a transaction needs to wait for the confirmation of the
previous transaction when processing continuous transactions,
multiple continuous transactions within the same application
logic will be stored in separate blocks in the chain-based model.
This, however, leads to substantial latency that significantly
affects the efficiency of completing the application logic. We
evaluated the latency of the data trading process in Fig. 1(a) in
a chain-based blockchain (average block confirmation interval
3 s, up to 3000 transactions per block). As shown in Fig. 2,
the average processing latency of continuous transactions grows
substantially with the increasing number of transactions, which
is not affordable in real-world blockchain applications.

Recent studies shifted from chain-based blockchains toward
Directed Acyclic Graph (DAG) based blockchains [7], [8], [9],
which reduces the transaction confirmation latency. Specifi-
cally, transactions in DAG-based blockchains can be directly
appended to the DAG without the need for packaging into a
block, showing greater promise than chain-based blockchains
in supporting efficient transaction processing.

However, DAG-based blockchains still face several key chal-
lenges. First, how can sequential and interactive properties of
continuous transactions be achieved? DAG transactions have no
sequential relationships as they are arbitrarily appended to the
blockchain and are out of order. Second, how can the atomic
property be achieved, where the system is required to have a

uniquely determined record of the intermediate state? Since the
intermediate state does not change the ledger state, it can lead to
conflicting transactions being committed in a weak consistency
environment. Third, how do we guarantee the ultimate certainty
of the transaction set to ensure consistency among DAG nodes?

To address these challenges, in this paper, we propose FLUID,
a DAG-based blockchain that enables efficient continuous trans-
action processing. The main idea is to design a transaction
dependency tracking structure in a DAG-based blockchain that
forces continuous transactions to satisfy sequential relationships
according to dependencies. To avoid conflicting intermediate
states, we first set up a conflict resolution mechanism that uses
the trusted miners of the chain-based blockchain to perform
conflict resolution before transactions are submitted. Mean-
while, intermediate state transactions are not verified by nodes,
conflicting transactions are finalized by participants, and invalid
transactions will not be accepted by the system. To obtain a
consistent set of transactions, we design a checkpoint-based con-
sistency verification mechanism using deterministic consensus
in chain-based blockchain systems. In particular, although we
extend the DAG vertices from individual transactions to a de-
pendency tracking structure, since we do not change the logical
structure of the DAG ledger, they are still one transaction, which
allows different application transactions to coexist in one system.

In summary, our main contributions in this paper are as
follows:
� We are the first to formally define and characterize con-

tinuous transactions in blockchain systems. We design
a dependency tracking structure that forces continuous
transactions to be committed, executed, and stored in the
correct order in DAG-based blockchains.

� We propose a conflict resolution mechanism that resolves
potential conflicts and designs a checkpoint-based consis-
tency verification mechanism to guarantee data consistency
across nodes.

� We implement and evaluate FLUID, whose experimen-
tal results demonstrate its feasibility and superior effi-
ciency. Extensive experiments demonstrate that our pro-
posed FLUID can improve the throughput over the state-of-
the-art OHIE by 66% with two orders of magnitude lower
latency.

The remainder of the paper is organized as follows. We present
the background and related work in Section II. Section III gives
a system overview of FLUID. Section IV describes the detailed
design of the FLUID. Section V presents the implementation of
FLUID and the experimental evaluations. Finally, we conclude
in Section VI.

II. BACKGROUND AND RELATED WORK

In this section, we first introduce existing blockchain storage
models and how they relate to transaction processing. Next,
we briefly describe some related works on blockchain appli-
cations and system optimizations for chain-based and DAG-
based storage models. Finally, we compare FLUID with existing
approaches to demonstrate FLUID’s superiority in terms of
processing continuous transactions.

Authorized licensed use limited to: The University of Toronto. Downloaded on February 20,2024 at 23:17:04 UTC from IEEE Xplore. Restrictions apply.

NI et al.: FLUID: TOWARDS EFFICIENT CONTINUOUS TRANSACTION PROCESSING IN DAG-BASED BLOCKCHAINS 12681

Fig. 3. Processing of continuous transactions in different storage models. The tB indicates the latency of a block from packing to committing to the blockchain.
The tP indicates the latency for a transaction to be transmitted and processed. tB is much larger than tP .

A. Blockchain Storage Model and Transaction Processing

The blockchain storage model not only defines the data struc-
ture of transactions but also determines the entire blockchain
data flow. The blockchain data flow generally includes the phase
of transaction data being appended to the chain via verifica-
tion and consensus, as well as the phase of transactions being
processed by each node. The order in which transactions are
appended to the chain determines the order in which they are
processed by each node.

Chain-based storage models: The chain-based storage model
groups transaction data into separate blocks connected by hash
pointers. The blockchain maintains the updating state generated
by executing a collection of transactions in each block. As shown
in Fig. 3(a), after a peer initiates a transaction based on the
current state, the transaction waits to be packed into a block.
Once the block containing the transaction is committed, the
transaction can be processed according to its storage order in
the block.

Although the chain-based storage model achieves highly
robust data storage, it also has some drawbacks in terms of
supporting efficient transaction processing:

Unacceptable transaction confirmation latency: In the chain-
based storage model, transactions are confirmed in blocks, and
the confirmation latency of a transaction is approximately equal
to that of a block tB , as shown in Fig. 3. Each block needs to
be verified by the consensus algorithm, which requires complex
computations or multiple rounds of communication, leading to a
high block confirmation latency. For instance, Bitcoin [10] that
adopts Proof-of-Work (PoW) has an average block confirmation
interval of up to 10 minutes. Some blockchain systems using
Byzantine Fault Tolerance (BFT) consensus algorithms have
relatively small latencies yet still reach the second level, such as
EOS [11], with a block confirmation interval of three seconds.

The crux of the problem is that the chain-based blockchain
storage model commits and processes transactions on a block-
by-block basis, which indicates that continuous transactions
must go through several block cycles.

DAG-based storage models: The DAG-based storage model
serves as an alternative to enable fast transaction confirmation.
The classical DAG-based blockchain storage model employs a
directed acyclic graph structure based on the tangle protocol [7],
where transactions constitute the set of vertices. When a node
submits a new transaction, it must select the two previous trans-
actions for validation and reference them by building directed

edges. If a vertex v has a path to a vertex u through the directed
edges, it means that v indirectly verifies the validity of u. Once
a node finds a transaction that conflicts with the tangle history,
the node will not approve the conflicting transaction in a direct
or indirect manner and invalidate it. The submitted transactions
can be processed instantly without waiting to be packed into
blocks, thereby reducing transaction confirmation latency tP .
This makes the tP in Fig. 3 significantly smaller than tB . This
storage model thus shows promise in supporting the processing
of highly concurrent transactions.

However, the DAG-based storage model that appends trans-
actions in parallel also has the following drawback:

Unordered transaction storage: Some transactions without
reference relationships in the DAG do not have a strict sequence
in terms of storage. This may lead to two issues when processing
these transactions: 1) they are processed in different orders at
different nodes, and 2) they are mutually unverifiable since
there is no reference relationship between them. As shown in
Fig. 3(b), TX3

1 is issued after TX1
1 , yet there is no storage order

betweenTX3
1 andTX1

1 in the DAG since they have no reference
relationship. If TX1

1 and TX3
1 belong to the same application

logic, TX3
1 should be processed after TX1

1 . However, their
unordered storage causes nodes to process them in an unfixed
order, which breaches the correct application logic. Besides,
when processing TX3

1 , nodes have no means to locate TX1
1

via references for verification.
Even though the DAG-based blockchain storage model is not

yet capable of reliably handling continuous transactions, it is
naturally low-latency, which provides good prerequisites for
supporting a wider range of application scenarios. Its unordered
transaction storage issue can be corrected by additional means.

B. Related Work

Many researchers employ blockchain to reinvent applications
that lack a foundation of trust, such as data trading [2], [3], [17],
[18], [19], supply chain [4], [5], privacy protection [6], [20], [21],
and new computing paradigm [22], [23], [24]. A wide range of
application scenarios containing continuous transactions are the
focus of this paper, and they all include a complete application
logic involving multiple parties. Moreover, improving the over-
all efficiency of completing application logic is a critical issue
in most scenarios.

The above works are implemented based on a general single-
chain system, and we have discussed the shortcomings of this

Authorized licensed use limited to: The University of Toronto. Downloaded on February 20,2024 at 23:17:04 UTC from IEEE Xplore. Restrictions apply.

12682 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023

TABLE I
COMPARISON OF FLUID WITH EXISTING BLOCKCHAIN SYSTEMS

scheme before. In recent years, many efforts have been made
to optimize the performance of chain-based storage models.
Some works have been done to obtain better system performance
and balance security by designing more advanced consensus
algorithms [12], [25], [26], [27]. Meanwhile, some works [16],
[28], [29], [30], [31] propose lightweight storage solutions to
effectively reduce storage overhead and improve scalability. To
enable more efficient transaction processing, some works [32],
[33], [34], [35], [36] utilize modern multi-core advantages to
improve the concurrency of execution to accelerate transac-
tion processing. However, they ignore the application logic
implied in transaction processing. Limited by the serial structure
of the chain-based storage model, these existing efforts face
unacceptable efficiency problems when processing continuous
transactions.

To resolve the inefficiency of chain-based storage models,
many researchers have focused on DAG-based blockchain stor-
age models in recent years. Typical DAG-based storage model
defines each vertex in a DAG as a transaction (e.g., IOTA [7],
ByteBall [8], Nano [9]). This has the advantage of enhancing
the parallelism of transaction processing, thereby yielding lower
processing latency compared to chain-based blockchains. How-
ever, such a scheme makes the blockchain data storage out of
full order, which makes linear data validation difficult. To ensure
the ordered data storage, some works utilize blocks as each
vertex in the DAG and extend the conventional consensus algo-
rithms adopted by chain-based blockchains. Conflux [13] and
OHIE [14] extend the chain-based storage model and process
multiple concurrent blocks to improve the system throughput.
They can confirm the full order of data through a unified ordering
algorithm. However, their transaction commitment still needs to
wait for block packing and a complex mining process, which
still suffers from high confirmation latency. DAG-Rider [37]
proposes an asynchronous Byzantine atomic broadcast protocol
in two layers, where the second layer performs a full ordering
of the proposals in the DAG. Occam [15] proposes a scheme
that adaptively changes the DAG concurrency according to
the transaction demand in the network. However, as discussed
before, current DAG-based storage models could not directly
apply to application scenarios that contain continuous trans-
actions. Nezha [38] optimizes transaction processing towards
DAG-based storage models. It only improves the performance

of concurrent transaction processing yet ignores the support for
continuous transaction processing.

Table I presents a comparison of some representative
blockchain systems with our work. To sum up, existing research
efforts neglect the continuous transactions that may be included
in many application logic and the relationship between the
blockchain storage model and transaction processing. By con-
trast, this paper presents FLUID, enabling efficient continuous
transaction processing in DAG-based blockchains. Compared to
OHIE systems, it maintains the dependencies between continu-
ous transactions and can process them with millisecond latency
in terms of continuous transaction processing.

III. FLUID OVERVIEW

A. Design Goals

We design FLUID with the following design goals:
� Supporting sequential, interactive processing of continu-

ous transactions: In order to reliably handle application
logic that contains continuous transactions, we need to
ensure in the new design that continuous transactions can
be committed and processed sequentially and interactively,
make it satisfy the sequential and dependency properties.

� Ensure atomicity of continuous transaction processing: We
need to avoid conflicting intermediate states being finalized
in the new design.

� Supporting low latency continuous transaction processing:
While meeting the need to reliably process continuous
transactions, we need to ensure that the new design would
provide superior continuous transaction processing perfor-
mance. It should be a significant performance improvement
over existing chain-based solutions.

� Improving data consistency: Data consistency in DAG-
based blockchain is weak, nodes in the system should be
able to make fast and accurate verification of the consis-
tency of local data with other peers.

B. Notations

To introduce the FLUID solution design in a more concrete
and visual way, we place FLUID in the application scenario of
data trading.

Authorized licensed use limited to: The University of Toronto. Downloaded on February 20,2024 at 23:17:04 UTC from IEEE Xplore. Restrictions apply.

NI et al.: FLUID: TOWARDS EFFICIENT CONTINUOUS TRANSACTION PROCESSING IN DAG-BASED BLOCKCHAINS 12683

Fig. 4. FLUID’s architecture.

Participants: The main participants in the system can be
grouped into three categories, which contain the inherent roles
of the underlying system and the participants of the data trading
application:
� Access node (NA), the buyer in a data trading. It is the

initiator of data trading by submitting data requests to other
resource nodes.

� Resource node (NR), the seller in a data trading. It keeps
some data resources and will respond to access requests
submitted by NA.

� Verification node (NV), peer node in the blockchain sys-
tem. It is not a participant in data trading, but supervises
the data trading process of NA and NR to guarantee the
consistency of the data.

Note that, for an entity node, it may belong to more than one
of the above node types at the same time.

Transaction symbols: In the data trading scenario, we as-
sume that a data trading contains three transactions TReq,
TResp, TACK , which denote data request, data reply, and trans-
action confirmation, respectively. Meanwhile, we use TXn

m to
denote a specific transaction, and subscripts are the label of
the continuous transaction, having the same subscript means
they belong to the same continuous transaction. The superscript
indicates the sequential relationship of the transactions. For
example, TX2

1 denotes TResp in a data trading with number 1.

C. System Overview

To achieve the design goals, FLUID re-structured the DAG-
based blockchain ledger so that it could provide more efficient
continuous transaction processing while retaining the original
blockchain features. Fig. 4 shows an overview of FLUID, which
contains the core modules designed for the key challenges, as
well as an illustration of the workflow in a data trading scenario.

In order to achieve reliable and efficient processing of con-
tinuous transactions in a disordered DAG model and to avoid
conflicts as much as possible, a dependency tracking struc-
ture is designed. It redefines the structure of vertices in the
DAG, where interdependent continuous transactions replace
individual blockchain transactions. Based on this structure, the
acknowledgment of the intermediate state during interaction is

delayed, and nodes do not perform immediate acknowledgment
of the intermediate state transactions. To avoid conflicts be-
tween transactions, we design a TCG-based conflict resolution
mechanisms that listen for new transactions and maintain a state
lock to validate and block potentially conflicting transactions
for submission to the network. To compensate for the weak
data consistency of the DAG system, FLUID synchronizes data
through checkpoint transactions. Checkpoints are constructed
based on a local checksum at a specific moment in time, through
which nodes can lightly and quickly discover differences be-
tween replicas.

Continuous transaction processing workflow: As shown in
Fig. 4, the workflow of FLUID in data trading scenarios can be
summarized in the following steps:
� ❶ Transaction initiation: A node NA first constructs a

transaction TReq to obtain the data owned by NR and
forward it to the trusted consensus group. The miners will
verify the validity of the transaction and forward the valid
transaction to the peers.

� ❷ Transaction processing:NR and NA will process trans-
actions based on the TReq and TResp they received. The
peers will update the state based on the results of these
transactions.

� ❸ Consistency verification: The leading miners will pe-
riodically initiate checkpoint transactions, and NV will
perform deterministic consensus on the DAG data digests
in the checkpoint transactions based on the consensus
algorithm.

IV. FLUID DESIGN

In this section, we expand on the design ideas and details of
the solution for FLUID and how it addresses the three challenges
in Section I.

A. Dependency Tracking Structure

As discussed in the previous section, the obvious problem of
DAG-based blockchain is that the transaction data structure can-
not manifest the dependencies between continuous transactions,
and the storage of transactions in the DAG is out-of-order. To
enable continuous transaction processing, we need a mechanism
to keep track of dependencies between continuous transactions.

Strawman design: Although the commit of transactions in
DAG-based is unordered, we can record the relative order of
continuous transactions with dependency tracking. Specifically,
if any transaction includes the information of which transaction
it depends on, any node processing the transactions in the
blockchain would buffer it until its dependencies are satisfied.

However, the strawman design may introduce other problems,
potential intermediate state conflicts may undermine the atom-
icity of continuous transactions:

Example 1: As shown in Fig. 5, after the buyer submits the
purchase information TX1

1 , the seller might submit conflicting
TX2

1 and TX2′
1 . Since these two transactions do not affect

the ledger state at the current moment, there is no conflict in
transaction content between TX2

1 and TX2′
1 , and they can be

acknowledged by nodes in the ledger. However, the buyer will

Authorized licensed use limited to: The University of Toronto. Downloaded on February 20,2024 at 23:17:04 UTC from IEEE Xplore. Restrictions apply.

12684 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023

Fig. 5. An example of a conflicting intermediate state.

only process one of them. If the buyer chooses to confirm TX2
1 ,

TX2′
1 submitted to the ledger will not be confirmed and also

cannot be discarded. Hence, the submission of TX2′
1 breaks

atomicity.
In addition, the absence of a single record that points to a con-

tinuous transaction as a whole makes data records trivial, which
brings additional challenges for data auditing and retrieval. The
above problems motivate us to explore better solutions.

Based on the above analysis, we get two insights: (1) Inter-
mediate state transactions can be suspended for an acknowledg-
ment after they are committed to the system. (2) In addition to
introducing basic dependency tracking information, the storage
continuity of continuous transactions should be ensured, i.e.,
keeping interdependent continuous transactions concatenated.

Since dependency tracking information is usually represented
by the hash of the dependent transaction, and the vertices of
the DAG are also linked by hashes (i.e., edges in the DAG),
we could reorganize the structure of the DAG by directly using
dependency tracking information as the edges between vertices.
However, we cannot rely on only one type of edge to connect
vertices since a newly committed transaction does not depend
on other transactions in the DAG. Thus, we follow the edges
in the original DAG-based blockchain to verify the vertex (i.e.,
committed transaction) being connected. Besides, according to
the first insight, we stipulate that any vertex in an intermediate
state cannot be chosen to connect with until the continuous
transactions are completed. By combining the above ideas, we
design a novel DAG topology as shown in Fig. 6(a). The DAG
topology of FLUID is composed as follows:

Vertex: One vertex consists of complete continuous trans-
actions, where the continuous transactions are forcibly linked
together by dependency tracking information. It is a logical-level
vertex that may contain multiple transactions rather than a
single transaction in existing DAG-based blockchains. Taking
data trading as an example, a DAG vertex consists of TReq ,
TResp, TACK , which are concatenated together through depen-
dent hashes, such as TX1

4 , TX2
4 , TX3

4 in Fig. 6(a). Besides,
continuous transactions that have not yet satisfied atomicity
cannot be regarded as vertices, such as TX1

7 and TX1
5 , TX2

5

in the figure.
Edge: There are two types of edges in FLUID, one links con-

tinuous transactions and another links DAG vertices. The edges
between DAG vertices are created by nodes randomly selecting
two vertices to verify when a new transaction is committed.
The edges of continuous transactions are deterministic, and they
represent the dependencies between continuous transactions.

Notice that the DAG vertices in FLUID are formed by the
participants during the interaction rather than being submitted

Fig. 6. FLUID’s dependency tracking structure.

together at some point. Besides, since continuous transactions
in intermediate states do not constitute DAG vertices, they are
not acknowledged by peers. Therefore, one important differ-
ence between our design and the DAG topology that does not
incorporate a dependency tracking structure is the timing of the
acknowledgement of intermediate states. As shown in Fig. 6(a),
TX2

1 will be acknowledged after TX3
1 is committed. TX2′

1 that
conflict with it will be discarded without affecting the atomicity
of continuous transactions.

In Fig. 6(b), we give an example of a dependency tracking
structure in a data trading scenario. TReq denotes a data trading
request submitted by the buyer. TResp denotes the response from
the seller. TACK denotes the trade confirmation submitted by
the buyer. They express the dependencies between transactions
via hashes. Note that after the final confirmation of continuous
transactions, the summary of continuous transactions needs to
be concatenated to obtain a summary of the entire transac-
tion, as in Fig. 6(b) with TxHash = H(TACK) +ReqHash
+RespHash.

It is important to note that the dependency tracking struc-
ture only determines the edges between continuous transactions

Authorized licensed use limited to: The University of Toronto. Downloaded on February 20,2024 at 23:17:04 UTC from IEEE Xplore. Restrictions apply.

NI et al.: FLUID: TOWARDS EFFICIENT CONTINUOUS TRANSACTION PROCESSING IN DAG-BASED BLOCKCHAINS 12685

within a vertex and does not affect the edges between vertices.
The dependency tracking structure can be customized based
on the application logic to meet the transaction dependencies
in various scenarios. The principle of the dependency tracking
structure is that there must be a starting transaction (e.g., a
data request in data trading) and an ending transaction (e.g.,
a transaction confirmation in data trading) that summarizes the
dependency tracking structure so that it is consistent with other
continuous transactions in the DAG ledger.

For example, in a scenario with one buyer and multiple
sellers [23], [24], user purchase data from different sellers
for federated processing. The following dependency tracking
structure described in Fig. 6(c) can be designed based on this
application logic, which matches the transaction dependencies
in the one-to-many trading scenario can satisfy the order of
interactions between nodes. Thus, buyer and sellers can submit
request, return data, and confirm trading based on this depen-
dency tracking structure.

Therefore, different DAG vertices can be designed according
to the application requirements as a way to support multiple
application logic.

B. Continuous Transaction Processing in FLUID

After introducing FLUID’s dependency tracking structure,
this subsection will focus on how FLUID can resolve conflicts
and interactively complete continuous transaction processing.

1) TCG-Based Conflict Resolution Mechanism: Conflicts
caused by intermediate state can occur during the initial commit
phase of a continuous transaction or during interaction process-
ing. The dependency tracking structure resolves potential inter-
mediate state conflicts during interaction processing because it
avoids immediate validation of intermediate state transactions.
However, the current design still has the potential for conflicts
at the beginning of a transaction, which affects atomicity. We
give the following example to explain this problem:

Example 2: Take the example of a data trading where a user
with a balance of 10 initiates two simultaneous purchase requests
with an overhead of 10. For the blockchain node, the purchase
request does not reduce the user’s balance until it has been
executed. Therefore, both requests are valid when verifying the
transaction. However, only one of these two requests should be
submitted. Therefore, under the influence of the intermediate
state, the potentially conflicting transaction is confirmed on the
ledger. However, the potential conflict will eventually occur. For
the above example, both sellers of the trade may have provided
resources, yet the user can only complete one trade. From a
transaction processing point of view, one of the trading actions
cannot be completed, but the seller has executed the transaction
as it should have, which breaks the atomicity.

Therefore, we need a mechanism to resolve this potential
conflict in transaction initiation phase.

The dependency tracking structure cleverly avoids the po-
tential conflict of intermediate state transactions during the
interaction. Notice that we do not actually set out to resolve
the conflict after it occurs, but rather to avoid it. We would
like to continue this line of thinking. The point is that once

Fig. 7. Transaction initiation and submission.

the potentially conflicting transaction described above is com-
mitted, the outcome of the conflict seems inevitable. Therefore,
it occurred to us that we could listen for and discover these
potentially conflicting transactions before they are committed
to the DAG system, and prevent them from being committed
to the respective system nodes. The remaining question is who
should perform this task. Obviously, it is difficult for all peer
nodes to do this job together, which would add an additional
data synchronization challenge to the system. However, having
a node or set of nodes specified in advance would undermine the
reliability of the system. It occurs to us that the miner selection
algorithm gives us a third option, where we can plug part of the
chain-based blockchain’s capabilities into FLUID in the form of
a plug-in and use its miner selection algorithm to obtain a Trusted
Consensus Group (TCG) of trusted miners who can perform
this listening task. We have chosen the Delegated Proof of Stake
(DPoS) miner election algorithm [11], [39] in FLUID to obtain
a rotating group of trusted miners by node voting. All nodes in
the system can participate in miner voting and election. The set
of nodes that receive the most votes will become the miners.

Specifically, the process of submitting a data trading request
to FLUID can be divided into two phases, transaction initiation
and transaction submission. The specific scheme is as follows:

Transaction initiation: As described in Section II, when NA

initiates a new transaction TReq , NA fills the payload with the
transaction content and randomly selects two complete transac-
tions from the DAG for validation, and finally signs the TReq .

Transaction submission: Transactions initiated by NA are not
immediately broadcast to the DAG network, but are listened
to by the trusted consensus group and verified for potential
conflicts. In order to verify transactions, the miner must know
the current available balance of each node in the network, so a
method is needed to keep track of transactions that have currently
been submitted by the miner but have not yet completed. It occurs
to us that the balance occupied by these outstanding transactions
can be locked, i.e., a status lock can be cached to record the bal-
ance occupation. The value of the locked balance represents the
unavailable portion of the current account balance. Therefore,
the actual available balance equals the account balance minus
the locked balance. With the above conditions in place, all that
remains is to get the miner nodes to agree on the validity of the
submitted transaction and then submit this transaction.

As shown in Fig. 7, after Alice constructs a transaction TReq,
she submits the transaction to the leading miner NV1

in the
trusted consensus group. NV1

will verify if the transaction
expense exceeds the available account balance and sign the

Authorized licensed use limited to: The University of Toronto. Downloaded on February 20,2024 at 23:17:04 UTC from IEEE Xplore. Restrictions apply.

12686 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023

Fig. 8. Interactive continuous transaction processing.

verification result (valid or not), then forward the transaction
and account state to other miners (NV 2 to NVm shown in
Fig. 7). Other miners will calculate the local account state based
on the transaction content and compare it with the data sent
from NV 1. If the local state meets the transaction submission
condition and is consistent with the leading miner’s state, the
transaction will be signed as a valid transaction. Otherwise, it
will be signed as an invalid transaction. Each miner returns the
verification result to NV 1, and NV 1 will count the verification
results received from other miners. When at least 2/3 of the
miners regard the transaction as valid, NV 1 packages the signed
verification result and the transaction and then broadcasts it to
the DAG network. The other miners will update the state of the
local locked accounts accordingly. If the transaction is verified
as invalid, NV 1 will roll back the local account state and return
a submission failure message to NA with the signed result from
other miners.

2) Interactive Continuous Transaction Processing: An ex-
ample of node interaction based on the dependency tracking
structure of data trading is given in Fig. 8(b): (1) At time t1,
the buyer submits a request TX1

3 (TReq) to the trusted consen-
sus group in the FLUID, and the transaction is broadcast in
the FLUID after verification. (2) At time t2, the seller submits
the reply message TX2

3 (TResp) of the data trading based on the
received request TX1

3 . (3) At time t3, the buyer verifies the reply
TX2

3 based on the received reply TX2
3 and submits the confir-

mation message TX3
3 (TACK) of the trading. (4) At time t4,

the buyer submits another trading request TX1
6 . Although TX1

6

is submitted to the DAG ledger, it has not yet received a re-
sponse from the seller. This continuous transaction has not been
finally confirmed, so other nodes will not select it for validation
approval when initiating new transaction requests. Notice that
all nodes can quickly verify the validity of transactions during

node interactions based on the dependency tracking structure.
Transactions that do not satisfy the interaction order will be
discarded.

To ensure the liveness of transaction processing, a timeout
mechanism needs to be set. For TReq or TResp that are not
processed within the time limit, the subsequent transactions will
be constructed and committed by the node that initiates TReq or
TResp to ensure the integrity of transaction processing.

Due to the interactive nature of continuous transactions, the
atomic property of continuous transactions is not broken even
if there is a conflicting intermediate state of the transaction. In
the case of a conflicting TResp, NA will select a valid record
to reply to based on the information received. Because these
conflicting intermediate states are not verified by the peer nodes
as blockchain transactions, only the continuous transactions
confirmed by TACK are valid, and the other intermediate states
will be discarded. So these intermediate states do not break the
atomic property of continuous transactions.

C. Checkpoint-Based Consistency Verification

A significant problem with transaction processing based on
the DAG-based blockchain is the weak data consistency. As
discussed earlier, the validity of transaction submission is deter-
mined by the joint verification of miners. However, if the data
consistency between miners is weak, the verification results will
inevitably be affected. Therefore, a means to enhance the data
consistency is required. To reach system-wide data agreement,
we need two key methods: (1) A fast way to check the dissimilar-
ity of two pieces of data. (2) A deterministic consensus method
between multiple nodes for one piece of data. The first of these is
to provide a basic consistency verification method for the second
point.

First, we need a method to verify the data consistency of two
DAG ledgers. Compared to chain-based ledgers, verifying the
data consistency of DAG ledgers has a tricky problem: it has
many branching paths that need to be verified. A one-by-one
validation approach would be contrary to the original design
intent of the DAG-based blockchain. The approach should be
as efficient and lightweight as possible. Our first thought is to
compress the information of DAG vertices and edges. A simple
idea is that we can organize the vertices without edges pointing
to it at a given moment in a Merkle-tree. But the problem is that
any vertex that does not have an edge pointing to it may have
many paths to the initial vertex of the DAG, so how to specify
the path information in the compressed information? And, un-
like a chain-based ledger, we cannot find a fixed frequency to
encompass all DAG vertices. We note that vertices have one or
two directed edges pointing to other vertices. Based on the idea
of recursion, as long as the information contained in the vertices
pointed by the directed edges of any vertex is consistent, then
we only need to compare the consistency of the current node
to get the consistency of a subset of data in the DAG. We only
need to perform the above verification for all vertices that do not
have edges pointing to them at some point to get the difference
between the two copies of the DAG. This is like an accumulation
of information, where the later submitted vertices continuously

Authorized licensed use limited to: The University of Toronto. Downloaded on February 20,2024 at 23:17:04 UTC from IEEE Xplore. Restrictions apply.

NI et al.: FLUID: TOWARDS EFFICIENT CONTINUOUS TRANSACTION PROCESSING IN DAG-BASED BLOCKCHAINS 12687

Fig. 9. An example of the checksum-based data consistency verification.

contain the information of the previously submitted vertices, and
we call this method a checksum.

Checksum: Note that we define PrevHash in the data struc-
ture of TReq as an array of length two. We distinguish two
members of this array by defining PrevHash[0] as the logical
left node (denoted as LN) and PrevHash[1] as the logical right
node (denoted asRN). This allows us to separate the paths of the
parent transactions clearly. When TACK is committed, the peers
locally compute and maintain the checksum of this transaction
(denoted as TXi):

C(TXi) = H(CR(TXi) + CL(TXi) +H(TXi)) (1)

where CL(TX) and CR(TX) denote the checksum of LN and
RN , respectively.C(TX) denotes the checksum ofTX .H(TX)
denotes the hash of TX

CL(TXi) =

{C(LN) LN �= ∅
0 LN = ∅

CR(TXi) =

{C(RN) RN �= ∅
0 RN = ∅ (2)

For each confirmed transaction, peers need to compute and
maintain the checksums of LN and RN connected to the current
transaction as well as its own checksum. The checksum of the
current transaction represents a summary of the data on its
preorder path.

Example 3: Suppose there is a difference in the DAG data of
two nodes, as shown in Fig. 9 . Transactions TX2 and TX ′

2 in
Fig. 9 and (b) are different for some reasons. The checksum of
TX3 calculated in Fig. 9(a) is

C(TX3) = H(CL(TX3) + CR(TX3) +H(TX3))

= H(C(TX1) + C(TX2) +H(TX3))

while the checksum of TX3 calculated in Fig. 9(b) is

C(TX3) = H(CL(TX3) + CR(TX3) +H(TX3))

= H(C(TX1) + C(TX ′
2) +H(TX3))

Fig. 10. Consistency verification based on checkpoint transactions.

The color in Fig. 9 indicates the range of data inconsistency.
It can be observed that the checksums of transactions directly
or indirectly referencing TX2 on the DAG path are different
between Fig. 9(a) and (b). The checksums on the left or right
side lead to the path’s direction where the data inconsistency
occurs.

Based on the checksum, for each vertex of the DAG ledger,
each peer node has a piece of information about its path. Combin-
ing this with the initial idea of fusing the checksums of vertices
that do not have edges pointing to them at a certain moment,
and comparing this information, one can quickly get whether
the two ledgers agree or not.

The remaining question is how to reach deterministic consen-
sus on a single DAG data across multiple nodes. We introduce the
miner selection algorithm in chain-based blockchain as a way
to obtain trusted miners when dealing with potential interme-
diate state conflicts during continuous transaction submission.
Clearly, this miner selection algorithm acts as a plug-in to
FLUID. Moreover, we can still leverage the miner nodes and
consensus algorithms to facilitate the data consistency verifi-
cation process. What they agree on is a blockchain transaction
that incorporates the vertex checksum information, which we
call a checkpoint transaction as shown in Fig. 10(a). We apply
(Practical Byzantine Fault Tolerance) (PBFT) consensus algo-
rithm [40] in FLUID among the set of miners. The submission
and consensus process of a checkpoint transaction is as follows:

Checkpoint transaction submission process: Miners in the
trusted consensus group will periodically initiate checkpoint
transactions as shown in Fig. 10(b). The checkpoint transaction
contains the hash of unverified transactions in the current DAG,
the checksum of those transactions computed by the miner, the
hash of the checkpoint transaction, and the signature of the
miner. When a checkpoint transaction is proposed, the miner
checks the unverified transactions in its DAG view and packs

Authorized licensed use limited to: The University of Toronto. Downloaded on February 20,2024 at 23:17:04 UTC from IEEE Xplore. Restrictions apply.

12688 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023

the hashes of those transactions along with their checksums into
a checkpoint transaction. The miner broadcasts the checkpoint
transaction to other miners and completes a three-stage PBFT
consensus against the checkpoint transaction. Peers compare
the checksums of transactions in the checkpoint with their local
computation to ensure that the DAG data to be determined is
consistent with their local data. If a block containing checkpoint
transactions passes the verification of the consensus algorithm,
all transactions contained in the checkpoint transaction and their
previous transactions are determined.

Discussion 1: security. In checkpoint-based consistency ver-
ification mechanism, whether the checksum is secure or not
is vital to the effectiveness of the mechanism. The design of
FLUID does not change the consensus algorithm underlying the
blockchain system. Therefore, FLUID inherits the security prop-
erties of blockchain. Potential security issues with checksums
can occur in two parts of the process, i.e., checksum generation
and verification.

In the process of checksum generation, the checksum is cal-
culated locally by each node in FLUID based on the transaction
data appended in the DAG ledger. Therefore, the checksum
generation process is tied to the generation process of the DAG
ledger data. According to the design of the tangle protocol, it is
impossible for a malicious node to manipulate the generation of
the DAG ledger as long as it cannot outperform the sum of the
capabilities of other nodes in the network.

In the process of checksum validation, a set of trusted miners
validate against checkpoint transactions. The set of miners and
the miners responsible for initiating the verification proposal at
a given time slot are generated by the DPoS algorithm, which
dynamically maintains a set of miners through voting elections.
The verification of the checksum in the checkpoint is done by
the set of miners running the PBFT consensus algorithm in
the current time period. It is known that checksums in honest
nodes cannot be manipulated by malicious nodes. The security
of the checksum validation process is tied to the DPoS and
PBFT algorithms. As long as the nodes performing consensus
satisfy the security assumptions of the PBFT protocol, i.e., the
number of honest miner nodes is greater than 2/3 of the total
number of miners, the checksum verification process cannot be
manipulated by malicious nodes.

Discussion 2: potential overhead. Referring to the analysis in
tangle [7], the expected value of the number of new unvalidated
transactions tends to zero when a node proposes a transaction,
with the typical value of unvalidated transactions (L0) in the
current system

L0 ≈ λh(L0, N)

ln2
≈ 1.44λh(L0, N) (3)

where λ is the rate of the transaction input stream and h(L0, N)
is the average time required for a node to send a transaction with
a total of N transactions and L0 unverified transactions in the
system. This means that the storage and validation overhead of
checkpoints does not grow indefinitely.

In summary, to ensure the consistency of DAG data, the peers
in FLUID will compute and maintain the checksum of transac-
tions, and complete the verification of checkpoint transactions

based on the checksum, using the deterministic consensus of the
chain-based blockchain system to guarantee the deterministic
view of transaction records.

V. EXPERIMENTAL EVALUATIONS

In this section, we evaluate FLUID through several sets of
experiments to understand its continuous transaction processing
performance and verification latency. We mainly focus on the
following questions.
� How does FLUID perform in terms of throughput and

latency when dealing with workloads that contain a large
number of continuous transactions?

� How does FLUID perform in terms of checkpoint-based
consistency verification?

Implementation: We implement the prototype of FLUID in
Golang, as shown in Fig. 4. We implement a dependency track-
ing structure for continuous transactions, and we employ the
random algorithm for the selection of preorder transactions. We
extend the TCG-based conflict resolution mechanism on top of
EOS [11], which consists of PBFT and DPoS protocols. We
specify the miners in the initial state through a configuration
file, where the leading miner is responsible for block packing
and committing, as well as verifying transactions. We simulate
the requests initiated by NA based on Apache Bench1 scripts,
and automate the transaction process. In the above system, nodes
communicate with each other through a web interface based on
the HTTP protocol.

Baseline: We evaluate the performance of FLUID against
two baselines: EOS [11], which is one of the representative
chain-based blockchain systems and employs a hybrid consen-
sus algorithm (i.e., DPoS + PBFT) to achieve deterministic block
generation time and total order; OHIE [14], a state-of-the-art
DAG-based blockchain, runs multiple Nakamoto consensus in-
stances to enable miners to propose blocks in parallel based
on the PoW algorithm. For fairness, both EOS and OHIE are
implemented using the same program language and libraries,
and they maintain the same transaction data structure as FLUID.
Furthermore, we use the same workloads to evaluate them.

A. Experimental Setup

Testbed and setup: We conduct our experiments on Aliyun
ECS. We use four instances of ecs.s6-c1m2.large2, each of which
contains 2 vCPUs and 4 GB memory, with a network bandwidth
of 0.2 Gbit/s between nodes. For the FLUID and the EOS, we
deploy 6 consensus nodes and 6 storage nodes. In FLUID, each
instance runs two DAG-based model programs in an additional
process. For OHIE, we deploy 12 nodes, who perform block
mining on three chains in parallel.

Workloads: We simulate trading between nodes based on
randomly generated trading requests and responses. The size of
the workload is 10 K transactions, with an average data request
field size of 457 B and an average response field size of 680
B. We use Apache Bench to stress test the system. It simulates

1https://httpd.apache.org/docs/2.4/programs/ab.html
2https://www.alibabacloud.com/help/en/elastic-compute-service

Authorized licensed use limited to: The University of Toronto. Downloaded on February 20,2024 at 23:17:04 UTC from IEEE Xplore. Restrictions apply.

https://httpd.apache.org/docs/2.4/programs/ab.html
https://www.alibabacloud.com/help/en/elastic-compute-service

NI et al.: FLUID: TOWARDS EFFICIENT CONTINUOUS TRANSACTION PROCESSING IN DAG-BASED BLOCKCHAINS 12689

Fig. 11. Overall performance compared to baseline systems.

access nodes NA to launch data trading requests to the system’s
web interface without interruption based on script parameters.
To standardize the test conditions, we utilize the same workloads
to test FLUID and the two baselines. The interactive process of
the workloads: NA submits TReq to the system. NR receives
TReq , signs it and returns TResp. NA verifies the signature and
returns TACK .

Metrics: We evaluate the performance of FLUID and base-
lines by using the following metrics: (i) Throughput. We measure
the average number of continuous transactions that the system
can process per second. (ii) Latency. We measure a) the latency
of TReq from being submitted to being received by nodes,
b) the latency of continuous transaction processing, i.e., the
average latency between TReq and TACK , and c) the latency
of verifying checksums in checkpoint transactions. (iii) Storage
overhead. We evaluate the storage overhead of checkpoint-based
mechanism.

B. Experimental Results

1) Overall Performance: Fig. 11 shows the system through-
put and latency of FLUID and the baselines when processing
continuous transactions. We can see that FLUID is able to
achieve a throughput improvement of more than 1.5x and a
latency reduction of two orders of magnitude compared to the
baselines. However, some of the key design aspects of FLUID
also result in some performance compromises. The performance
of FLUID will be measured and discussed in detail.

2) Transaction Throughput: Fig. 11(a) illustrates the con-
tinuous transaction throughput of FLUID and baselines under
different transaction volumes.

Baselines: In the current experimental configuration, the
throughput of EOS is basically stable at 400 tx/s as the transac-
tion volume increases to 4000. Note that the throughput refers
to the number of continuous transactions, and each transaction
contains a TReq , a TResp and a TACK . When we deploy 12
nodes and let them perform block mining on 3 chains in parallel,
the throughput of OHIE will stabilize at 300-400 tx/s as the
transaction volume grows. We observe that there is no significant
difference between EOS and OHIE in terms of throughput
performance.

FLUID: FLUID has a significant improvement in throughput
compared to OHIE and EOS when dealing with continuous
transaction workloads. FLUID’s throughput is basically stable
at 600 tx/s when the transaction volume reaches 2000. When
the transaction volume in the system reaches 10000, FLUID’s

Fig. 12. Impact of dependency tracking structure (DTS) and TCG-based
conflict resolution (TCG) on throughput.

Fig. 13. Transaction submission latency compared to baseline systems.

throughput can reach 1.5x and 2x compared with EOS and OHIE
in the same environment, respectively. This is due to the fact that
FLUID eliminates the resource overhead of block packing and
the overhead of multiple rounds of network broadcasts.

Further, we tested the impact of key aspects of FLUID on
system throughput. We tested the system throughput of FLUID
without enabling the dependency tracking structure and TCG-
based conflict resolution mechanism, respectively. Fig. 12 il-
lustrates the impact of these designs on system throughput. It
can be seen that for the same amount of data, the throughput
of FLUID is almost equal to that of the system with only the
dependency tracking structure disabled. This indicates that the
introduction of the dependency tracking structure does not have
a significant impact on the system throughput. This is because
the dependency tracking structure does not change the basic
transaction processing of the DAG blockchain system, but only
imposes constraints on the relationships between transactions. In
addition, the system without TCG-based conflict resolution has a
1.8x throughput improvement compared to FLUID. TCG-based
conflict resolution limits the throughput performance. This is
because transactions need to be validated by a trusted consensus
group when they are submitted. Although the overhead of vali-
dating individual transactions is small, the overall performance
degradation due to congestion is inevitable as the volume of
transactions increases.

3) Transaction Latency: We measured the latency perfor-
mance of FLUID and the baseline when processing continuous
transactions at different transaction volumes.

EOS: As shown in Fig. 13, when 1000 transactions are sub-
mitted per second, the transaction submission latency in EOS
exceeds 5 s, which is 1.7x that of OHIE and 7x that of FLUID.
Moreover, the processing latency of continuous transactions in
EOS appears to increase approximately linearly. As depicted

Authorized licensed use limited to: The University of Toronto. Downloaded on February 20,2024 at 23:17:04 UTC from IEEE Xplore. Restrictions apply.

12690 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023

Fig. 14. Latency of continuous transactions from initiation to execution com-
pletion.

in Fig. 11(b), when the volume of transactions reaches 10,000,
the processing latency of each continuous transaction in EOS
exceeds 30 s, which is 1.9x that of OHIE and 48x that of FLUID.
Although the throughput of EOS is not much worse than FLUID,
its considerable transaction latency is unacceptable.

OHIE: It is worth noting that, when the volume of transac-
tions grows, OHIE yields much lower transaction submission
latency and transaction processing latency than EOS, as shown
in Fig. 13. This is due to the fact that blocks can be packed in
parallel, and fewer transactions are queued for packing under the
same condition. However, parallel packing results in blocks con-
taining duplicate transactions, which in turn affects the system
throughput. As depicted in Fig. 11(b), although the latency of
OHIE is reduced, its continuous transaction processing latency
is still 30x than FLUID at a transaction volume of 10,000, with
an average latency of 18 seconds per continuous transaction,
which is still inefficient.

FLUID: By contrast, FLUID has a huge advantage over EOS
and OHIE in terms of latency performance. When submitting
transactions to the system at a frequency of 1000 transactions
per second, FLUID’s transaction submission latency is only
735.4 ms, which is an order of magnitude lower than EOS
and OHIE. The continuous transaction processing latency ad-
vantage is more significant, as shown in Fig. 11(b), when the
transaction volume reaches 10,000, FLUID is two orders of
magnitude lower compared to EOS and OHIE. This is due to
the transaction-based granularity of transaction processing in
the FLUID model. Combining the latency overhead of FLUID
transactions from submission to execution completion, as shown
in the Fig. 14, we find that the transaction submission phase
accounts for more than 75% of the latency overhead. This is
because the TCG-based conflict resolution mechanism needs
to go through the validation and network transmission of the
transaction, which introduces additional overhead. However,
this is necessary to ensure the reliable execution of continuous
transactions.

4) Verification Latency: In this series of experiments, we
evaluate the latency of nodes to validate checkpoint transac-
tions under different access pressures. According to the analysis
results in Section IV-C, the number of unvalidated transactions
in the DAG will reach a relatively stable state when the data flow
rate is stable. In FLUID, to ensure the consistency of DAG data,
we need to submit checkpoint transactions periodically, which
requires nodes to pack the unvalidated transactions in the DAG at

Fig. 15. Checkpoint verification latency under varying access pressures.

Fig. 16. Checksum and checkpoint transaction storage overheads.

the current moment and verify their checksums. If the capacity
of unvalidated transactions in the DAG is uncontrollable, the
checkpoint validation overhead will be unaffordable. As shown
in Fig. 15, we submit access requests to FLUID at a rate of 200 to
800 transactions per second (TXs/s). We observe that the latency
becomes relatively stable after a certain time, and the size of this
stable value is related to the transaction rate.

To further observe the stable state of the checkpoint verifica-
tion latency, we reduce the transaction rate to 200 TXs/s when the
stabilization is reached at different transaction rates. As shown
in Fig. 15, it can be observed that the latency gradually decreases
and eventually reaches the same steady state as in the case of
maintaining a rate of 200 TXs/s. In summary, the checkpoint
verification latency tends to stabilize at different transaction
rates, hence, such a performance is within an acceptable range
and does not affect the overall system performance in processing
continuous transactions.

5) Storage Overhead: While a checkpoint-based data con-
sistency verification mechanism can address the weak con-
sistency of DAG-based blockchain data, the system sacrifices
more storage space due to the introduction of checksums and

Authorized licensed use limited to: The University of Toronto. Downloaded on February 20,2024 at 23:17:04 UTC from IEEE Xplore. Restrictions apply.

NI et al.: FLUID: TOWARDS EFFICIENT CONTINUOUS TRANSACTION PROCESSING IN DAG-BASED BLOCKCHAINS 12691

checkpoint transactions. We evaluated the storage overhead of
the checkpoint-based data consistency validation mechanism.

First, we tested the storage overhead of the checksum mech-
anism. We tested the storage space occupied by the checksum
when there are 103 to 106 transactions are completed in FLUID.
The experimental results show that the checksum mechanism
for 106 transactions will occupy about 24 MB of storage space.
This includes, in addition to the checksum data, the indexes we
set up during the experiment for fast retrieval.

In addition, we evaluated the overhead of checkpoint transac-
tions. We set FLUID to perform a checkpoint synchronization
every 1 minute and submit requests to the system at a rate of 200
to 800 TXs/s, respectively. We test the storage space occupied
by the checkpoint-based mechanism every 24 hours under the
above operation state, and the experimental results are shown
in Fig. 16(b). Even with a transaction rate of 800 TXs/s and a
synchronization frequency of once per minute, the additional
overhead generated per day is only 8.8 MB, which is almost
negligible compared to the transaction data generated.

VI. CONCLUSION

In this paper, we design FLUID, a DAG-based blockchain
system capable of handling continuous transactions efficiently.
Specifically, it builds a transaction dependency tracking struc-
ture on top of an efficient DAG-based blockchain storage model,
allowing continuous transactions in complex applications to be
processed sequentially based on dependencies interactively. To
prevent intermediate states of continuous transactions from af-
fecting the atomicity of transactions, we design a conflict resolu-
tion mechanism with the help of a trusted miners group. To com-
pensate for the weak consistency of the DAG-based blockchain,
we design a checkpoint-based consistency verification method
to enhance the data consistency guarantee among nodes. Our
extensive experiments have demonstrated that FLUID improves
the throughput by 66% over the state-of-the-art, with lower
latencies by two orders of magnitude.

REFERENCES

[1] H. Jin and J. Xiao, “Towards trustworthy blockchain systems in the era
of “internet of value”: Development, challenges, and future trends,” Sci.
China Inf. Sci., vol. 65, no. 5, pp. 1–11, 2022.

[2] F. Chen, J. Wang, C. Jiang, T. Xiang, and Y. Yang, “Blockchain based
non-repudiable IoT data trading: Simpler, faster, and cheaper,” in Proc.
IEEE 41st Conf. Comput. Commun., 2022, pp. 1958–1967.

[3] Q. Lin et al., “Demonstration of dealer: An end-to-end model marketplace
with differential privacy,” in Proc. Int. Conf. Very Large Data Bases, 2021,
pp. 2747–2750.

[4] M. J. Amiri, D. Agrawal, and A. E. Abbadi, “Caper: A cross-application
permissioned blockchain,” in Proc. Int. Conf. Very Large Data Bases, 2019,
pp. 1385–1398.

[5] P. Ruan, G. Chen, T. T. A. Dinh, Q. Lin, B. C. Ooi, and M. Zhang, “Fine-
grained, secure and efficient data provenance on blockchain systems,” in
Proc. Int. Conf. Very Large Data Bases, 2019, pp. 975–988.

[6] Y. Hu, S. Kumar, and R. A. Popa, “Ghostor: Toward a secure data-sharing
system from decentralized trust,” in Proc. 17th USENIX Symp. Netw. Syst.
Des. Implementation, 2020, pp. 851–877.

[7] S. Popov, “The tangle,” 2018. [Online]. Available: http://cryptoverze.
s3.us-east-2.amazonaws.com/wp-content/uploads/2018/11/10012054/
IOTA-MIOTA-Whitepaper.pdf

[8] A. Churyumov, “Byteball: A decentralized system for storage and transfer
of value,” 2016. [Online]. Available: https://byteball.org/Byteball.pdf

[9] C. LeMahieu, “Nano: A feeless distributed cryptocurrency network,” 2018.
[Online]. Available: https://nano.org/en/whitepaper

[10] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[Online]. Available: http://bitcoin.org/bitcoin.pdf

[11] I. Grigg, “EOS - an introduction,” 2017. [Online]. Available: https:
//whitepaperdatabase.com/eos-whitepaper

[12] J. Wang and H. Wang, “Monoxide: Scale out blockchains with asyn-
chronous consensus zones,” in Proc. 16th USENIX Symp. Netw. Syst. Des.
Implementation, 2019, pp. 95–112.

[13] C. Li et al., “A decentralized blockchain with high throughput and fast
confirmation,” in Proc. USENIX Annu. Tech. Conf., 2020, pp. 515–528.

[14] H. Yu, I. Nikolić, R. Hou, and P. Saxena, “OHIE: Blockchain scaling made
simple,” in Proc. IEEE Symp. Secur. Privacy, 2020, pp. 90–105.

[15] J. Xu, Y. Cheng, C. Wang, and X. Jia, “Occam: A secure and adaptive
scaling scheme for permissionless blockchain,” in Proc. IEEE 41st Int.
Conf. Distrib. Comput. Syst., 2021, pp. 618–628.

[16] Z. Du, H.-F. Qian, and X. Pang, “Partitionchain: A scalable and reliable
data storage strategy for permissioned blockchain,” IEEE Trans. Knowl.
Data Eng., vol. 35, no. 4, pp. 4124–4136, 2023.

[17] G. Bu, T. S. L. Nguyen, M. P. Butucaru, and K. L. Thai, “HyperPub-
Sub: Blockchain based publish/subscribe,” in Proc. IEEE 38th Int. Symp.
Reliable Distrib. Syst., 2019, pp. 366–3662.

[18] J. Pei, “A survey on data pricing: From economics to data science,” IEEE
Trans. Knowl. Data Eng., vol. 34, no. 10, pp. 4586–4608, Oct. 2022.

[19] B. An, M. Xiao, A. Liu, Y. Xu, X. Zhang, and Q. Li, “Secure crowdsensed
data trading based on blockchain,” IEEE Trans. Mobile Comput., vol. 22,
no. 3, pp. 1763–1778, Mar. 2023.

[20] M. Yan, J. Xu, T. G. Marbach, H. Li, G. Wang, and X. Liu, “Audinet: A
decentralized auditing system for cloud storage,” in Proc. IEEE 39th Int.
Symp. Reliable Distrib. Syst., 2020, pp. 215–224.

[21] H. Shafagh, L. Burkhalter, S. Ratnasamy, and A. Hithnawi, “Droplet: De-
centralized authorization and access control for encrypted data streams,”
in Proc. 29th USENIX Secur. Symp., 2020, pp. 2469–2486.

[22] S. Han, Z. Xu, Y. Zeng, and L. Chen, “Fluid: A blockchain based
framework for crowdsourcing,” in Proc. Int. Conf. Manage. Data, 2019,
pp. 1921–1924.

[23] Y. Shi, Y. Tong, Y. Zeng, Z. Zhou, B. Ding, and L. Chen, “Efficient
approximate range aggregation over large-scale spatial data federation,”
IEEE Trans. Knowl. Data Eng., vol. 35, no. 1, pp. 418–430, Jan. 2021.

[24] Y. Tong et al., “Hu-Fu: Efficient and secure spatial queries over data fed-
eration,” in Proc. Int. Conf. Very Large Data Bases, 2022, pp. 1159–1172.

[25] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proc. 26th ACM
Symp. Operating Syst. Princ., 2017, pp. 51–68.

[26] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “Bitcoin-NG: A
scalable blockchain protocol,” in Proc. 13th USENIX Symp. Netw. Syst.
Des. Implementation, 2016, pp. 45–59.

[27] Z. Xu, S. Han, and L. Chen, “PAS: Enable partial consensus in the
blockchain,” in Proc. 26th Database Syst. Adv. Appl., Springer, 2021,
pp. 375–392.

[28] C. Xu, C. Zhang, J. Xu, and J. Pei, “SlimChain: Scaling blockchain
transactions through off-chain storage and parallel processing,” in Proc.
Int. Conf. Very Large Data Bases, 2021, pp. 2314–2326.

[29] Z. Xu, S. Han, and L. Chen, “CUB, a consensus unit-based storage scheme
for blockchain system,” in Proc. IEEE 34th Int. Conf. Data Eng., 2018,
pp. 173–184.

[30] X. Qi, Z. Zhang, C. Jin, and A. Zhou, “A reliable storage partition for
permissioned blockchain,” IEEE Trans. Knowl. Data Eng., vol. 33, no. 1,
pp. 14–27, Jan. 2021.

[31] M. El-Hindi, C. Binnig, A. Arasu, D. Kossmann, and R. Ramamurthy,
“BlockchainDB: A shared database on blockchains,” in Proc. Int. Conf.
Very Large Data Bases, 2019, pp. 1597–1609.

[32] T. Dickerson, P. Gazzillo, M. Herlihy, and E. Koskinen, “Adding concur-
rency to smart contracts,” in Proc. ACM Symp. Princ. Distrib. Comput.,
2017, pp. 303–312.

[33] Y. Chen et al., “Forerunner: Constraint-based speculative transaction exe-
cution for ethereum,” in Proc. 28th ACM Symp. Oper. Syst. Princ., 2021,
pp. 570–587.

[34] Y. Li et al., “FASTBLOCK: Accelerating blockchains via hardware trans-
actional memory,” in Proc. IEEE 41st Int. Conf. Distrib. Comput. Syst.,
2021, pp. 250–260.

[35] P. Garamvölgyi, Y. Liu, D. Zhou, F. Long, and M. Wu, “Utilizing
parallelism in smart contracts on decentralized blockchains by taming
application-inherent conflicts,” in Proc. 44th Int. Conf. Softw. Eng., 2022,
pp. 2315–2326.

Authorized licensed use limited to: The University of Toronto. Downloaded on February 20,2024 at 23:17:04 UTC from IEEE Xplore. Restrictions apply.

http://cryptoverze.s3.us-east-2.amazonaws.com/wp-content/uploads/2018/11/10012054/IOTA-MIOTA-Whitepaper.pdf
http://cryptoverze.s3.us-east-2.amazonaws.com/wp-content/uploads/2018/11/10012054/IOTA-MIOTA-Whitepaper.pdf
http://cryptoverze.s3.us-east-2.amazonaws.com/wp-content/uploads/2018/11/10012054/IOTA-MIOTA-Whitepaper.pdf
https://byteball.org/Byteball.pdf
https://nano.org/en/whitepaper
http://bitcoin.org/bitcoin.pdf
https://whitepaperdatabase.com/eos-whitepaper
https://whitepaperdatabase.com/eos-whitepaper

12692 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023

[36] C. Jin, S. Pang, X. Qi, Z. Zhang, and A. Zhou, “A high performance
concurrency protocol for smart contracts of permissioned blockchain,”
IEEE Trans. Knowl. Data Eng., vol. 34, no. 11, pp. 5070–5083, Nov. 2022.

[37] I. Keidar, E. Kokoris-Kogias, O. Naor, and A. Spiegelman, “All you need
is DAG,” in Proc. ACM Symp. Princ. Distrib. Comput., 2021, pp. 165–175.

[38] J. Xiao, S. Zhang, Z. Zhang, B. Li, X. Dai, and H. Jin, “Nezha: Exploiting
concurrency for transaction processing in dag-based blockchains,” in Proc.
IEEE 42nd Int. Conf. Distrib. Comput. Syst., 2022, pp. 269–279.

[39] S. Zhang and J.-H. Lee, “Analysis of the main consensus protocols of
blockchain,” ICT Exp., vol. 6, no. 2, pp. 93–97, 2020.

[40] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in Proc.
USENIX Symp. Operating Syst. Des. Implementation, 1999, pp. 173–186.

Junpei Ni (Student Member, IEEE) received the
bachelor’s degree from the Huazhong University of
Science and Technology (HUST), Wuhan, China, in
2020. He is currently working toward the master’s
degree supervised by prof. Jiang Xiao. His research
interests mainly include blockchain and distributed
systems.

Jiang Xiao (Member, IEEE) received the BSc and
PhD degrees from the Hong Kong University of
Science and Technology, in 2009 and 2014, respec-
tively. She is currently a professor with the School of
Computer Science and Technology, Huazhong Uni-
versity of Science and Technology (HUST), Wuhan,
China. Her research interests include blockchain,
and distributed computing. Her awards include
CCF-Intel Young Faculty Research Program 2017,
Hubei Downlight Program 2018, ACM Wuhan Ris-
ing Star Award 2019, Knowledge Innovation Pro-

gram of Wuhan-Shuguang 2022, and Best Paper Awards from IEEE IC-
PADS/GLOBECOM/GPC/BLOCKCHAIN.

Shijie Zhang (Student Member, IEEE) received
the MS degree from the Department of Software,
Sangmyung University, Republic of Korea, in 2019.
He is currently working toward the PhD degree with
the School of Computer Science and Technology,
Huazhong University of Science and Technology
(HUST), supervised by prof. Jiang Xiao. His current
research mainly interests include blockchain and dis-
tributed systems.

Bo Li (Fellow, IEEE) received the BEng (summa
cum laude) degree in computer science from Ts-
inghua University, Beijing, China, and the PhD degree
from ECE Department, University of Massachusetts,
Amherst. He is a chair professor with the Depart-
ment of Computer Science and Engineering, Hong
Kong University of Science and Technology. He was
a Cheung Kong Scholar visiting chair professor in
Shanghai Jiao Tong University (2010-2016), and was
the chief technical advisor for ChinaCache Corp.
(NASDAQ:CCIH), a leading CDN provider. He made

pioneering contributions in multimedia communications and the Internet video
broadcast, which attracted significant investment from industry and received the
Test-of-Time Best Paper Award from IEEE INFOCOM (2015). He received 6
Best Paper Awards from IEEE including INFOCOM (2021). He was the Co-TPC
chair for IEEE INFOCOM (2004).

Baochun Li (Fellow, IEEE) received the BEngr de-
gree from the Department of Computer Science and
Technology, Tsinghua University, China, in 1995, and
the MS and PhD degrees from the Department of
Computer Science, University of Illinois at Urbana-
Champaign, Urbana, in 1997 and 2000, respectively.
Since 2000, he has been with the Department of
Electrical and Computer Engineering, University of
Toronto, where he is currently a professor. He holds
the Bell Canada Endowed chair in computer engineer-
ing since August 2005. His research interests include

cloud computing, distributed systems, datacenter networking, and wireless
systems. He has co-authored more than 420 research papers, with a total of
more than 22000 citations, an H-index of 84 and an i10-index of 286, according
to Google Scholar Citations. He was the recipient of the IEEE Communications
Society Leonard G. Abraham Award in the Field of Communications Systems,
in 2000. In 2009, he was a recipient of the Multimedia Communications Best
Paper Award from the IEEE Communications Society, and a recipient of the
University of Toronto McLean Award. He is a member of ACM.

Hai Jin (Fellow, IEEE) received the PhD degree in
computer engineering from the Huazhong University
of Science and Technology, in 1994. He is a chair
professor of computer science and engineering with
the Huazhong University of Science and Technology
(HUST), China. In 1996, he was awarded a German
Academic Exchange Service fellowship to visit the
Technical University of Chemnitz in Germany. He
worked with the University of Hong Kong between
1998 and 2000, and as a visiting scholar with the
University of Southern California between 1999 and

2000. He was awarded Excellent Youth Award from the National Science
Foundation of China, in 2001. He is a fellow of CCF, and a life member of
the ACM. He has co-authored more than 20 books and published more than 900
research papers. His research interests include computer architecture, parallel
and distributed computing, Big Data processing, data storage, and system
security.

Authorized licensed use limited to: The University of Toronto. Downloaded on February 20,2024 at 23:17:04 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

