
Pipelined Regeneration with Regenerating Codes
for Distributed Storage Systems

Jun Li1, Xin Wang1, Baochun Li2
1School of Computer Science, Fudan University, China

2Department of Electrical and Computer Engineering, University of Toronto, Canada

Abstract—Distributed storage systems store a substantial
amount of data and maintain data integrity by storing re-
dundancy in a large number of storage nodes. When storage
nodes fail, the lost data should be regenerated on replacement
nodes. Regenerating codes minimize the volume of network traffic
brought by the regeneration process. However, regenerating codes
consume less traffic by requiring a larger number of nodes
participating in the regeneration process. In this paper, we
propose a new pipelined regeneration process for regenerating
codes, that enables the system to consume a smaller amount of
network traffic during the regeneration without engaging a large
number of participating nodes. Moreover, the time spent during
the regeneration can be further saved, while the data integrity can
still be maintained no worse than the conventional regeneration
process with regenerating codes.

Keywords—pipelined regeneration, regenerating codes, dis-
tributed storage

I. INTRODUCTION

Distributed storage systems store a substantial amount of
data by utilizing a large number of storage nodes that may fail
to work effectively and cause data loss. As a result, large-scale
distributed storage systems are designed to treat storage node
failures as the rule, rather than the exception. To compensate
data losses incurred by such failures, these systems need to
store redundancy so that a certain number of storage failures
can be tolerated.

To maintain such tolerance, when a node failure occurs, the
redundancy that is lost due to the failure should be regenerated
on a replacement node, called a newcomer. Costing time and
bandwidth, the newcomer needs to fetch data from certain ac-
tive storage nodes, called providers, to regenerate the lost data.
Storing redundancy as MDS codes, which encode the original
file into some coded blocks, can guarantee the property that
any k coded blocks can recover the original file, achieving a
higher data integrity than replication [1]. Dimakis et al. have
proposed a family of MDS codes called regenerating codes
[2] that achieve the optimal trade-off between the storage cost
and the communication cost to regenerate one coded block.
If the size of the original file is M bits, minimum-storage
regenerating codes require the newcomer to receive M

k · d
d−k+1

bits from d providers (d ≥ k), which approximately equal the
size of the coded block (M

k bits) to be regenerated if d is large
enough.

To achieve the traffic consumption that converges to M
k bits,

regenerating codes always require much more than k partic-
ipating nodes during regeneration. In other words, the more

nodes participating, the less network traffic will be consumed
during regeneration. However, in practical distributed storage
systems, it is not favorable to let a large number of nodes
work cooperatively. The resistance to node churns decreases
with the increasing of participating nodes. In addition, since
some systems may let nodes sleep and wake up on demand,
it is not energy-saving to utilize a large number of nodes
simultaneously.

In order to avoid using a large number of participating
nodes, some techniques (e.g., [3], [4]) have been proposed.
However, none of them can maintain the property that any
k coded blocks can recover the original file. In this paper,
we propose a pipelined regeneration process that can drasti-
cally reduce the number of participating nodes required by
regenerating codes without sacrificing data integrity. In other
words, with utilizing the same number of participating nodes,
pipelined regeneration can achieve the same performance of
regenerating codes that would have required for much more
participating nodes. For example, When k = 3, the newcomer
will receive 2

3M bits from 4 providers in the conventional
regeneration process with regenerating codes. However, in
the pipelined regeneration process, with the same number of
participating nodes, only 4

9M bits of data will be transferred,
which would only have been achieved when there were 8
providers in the conventional regeneration process. Therefore,
both the consumption of bandwidth and time can be saved by
the pipelined regeneration.

To achieve this goal, we introduce a new type of nodes
participating in the pipelined regeneration process, called
apprentices. As shown in Fig. 1, if d providers are required

P A...

storage nodes apprentices

A

 1st round of pipelined regeneration

A... ...

2nd round of pipelined regeneration

... ...

failed node fully regenerated apprentice
 new storage node

N

storage nodes

A

P

P P

...

...

apprentices

providers

providers

X

A

A

→

storage
 node N newcomer P provider A apprentice

Fig. 1. Two consecutive rounds of pipelined regeneration.

to regenerate one coded block by using regenerating codes, in
each round of pipelined regeneration, both the newcomer and
apprentices are partially regenerated, such that there are fewer
than d providers. The newcomer becomes an apprentice after
pipelined regeneration. A new apprentice accumulates more
and more data to regenerate a coded block in upcoming rounds
of pipelined regeneration. When it has received sufficient data
to be fully regenerated, it “graduates” to become a new storage
node.

In this paper, we show that the pipelined regeneration
process is able to consume a smaller amount of traffic that
would have been achieved by the conventional regeneration
process with a much higher number of participating nodes,
while maintaining the data integrity as well as regenerating
codes and other MDS codes. Meanwhile, the time spent during
regeneration can also be reduced.

The remainder of this paper is organized as follows. We
introduce the preliminaries in Sec. II. We propose the pipelined
regeneration process in Sec. III, describing its transmission
and encoding scheme, and proving that it can maintain the
data integrity as well as regenerating codes. In Sec. IV, we
analyze the performance of pipelined regeneration, showing
its requirement for the amount of redundancy and analyzing
the consumption of network traffic and time. We conclude the
paper in Sec. V.

II. PRELIMINARIES

A. Regenerating codes

Given a file of size M bits, MDS codes encode it into more
than k coded blocks of size M

k bits, such that any k coded
blocks are sufficient to recover the original file. However,
among MDS codes, the efficiency of different codes in the
regeneration process varies, and regenerating codes result in
the optimal amount of traffic needed.

Suppose that d providers (d ≥ k) are required in the regen-
eration process. Minimum-storage regenerating codes divide
the original file into k(d− k + 1) segments and encode them
into coded segments. One coded block will contain d− k + 1
coded segments and their coefficients such that any k coded
blocks can recover the original file. For example in Fig. 2(a),
when k = 2 and d = 3, each storage node stores one coded
blocks containing two coded segments.

Regenerating codes encode data on a finite field GF(2q). In
each segment, every continuous q bits can be regarded as a
symbol on the GF(2q), such that each segment can be regarded
as a vector containing M

kq(d−k+1) symbols on GF(2q). A coded
segments is a linear combination of the original segments
on GF(2q). To recover the original file, k(d − k + 1) coded
segments and corresponding coefficients should be collected
from at least k coded blocks, and then the original file can be
decoded by solving a linear system containing k(d − k + 1)
unknowns and k(d− k + 1) equations.

One storage node stores at most one coded block. When
a storage node fails, to regenerate the lost coded block, a
newcomer needs to contact d providers, each of which sends
a linear combination of its corresponding coded segments

A1

A2

B2

B1

A1+B1

A2+B2

2A1+B1

2A2+B2X B1+B2

A1+2A2+B1+B2

2A1+A2+B1+B2

A1

A2

B1+B2

A1+2A2+B1+B2

2A1+A2+B1+B2

provider 1

provider 2
newcomer

provider 3

A1

A2

B2

B1

A1+B1

A2+B2

2A1+B1

2A2+B2

X X
B2

B1

A2+B2

2A1+B1

A1

A2

A1+B1

2A2+B2

B1

A2+B2

A1

A1+B1

A2+B2
A2

2A2+B2

B1

provider 1 provider 2

newcomer 1

newcomer 2

(a) independent regeneration

(b) cooperative regeneration

Fig. 2. Two examples of independent regeneration and cooperative regener-
ation with regenerating codes [5].

and the corresponding coefficients to the newcomer. Then the
newcomer encodes the received segments into d−k+1 coded
segments and groups them as a coded block. In Fig. 2(a), the
newcomer receives three coded segments from three providers
and then encodes them into two segments. The coded block
that is regenerated still maintains the property that any k coded
blocks can recover the original file [2]. In this paper, we do not
consider the size of coefficients since it is much smaller than
that of coded segments in the distributed storage system. Thus,
a total of M

k(d−k+1) bits will be conveyed during regeneration.
The regeneration that storage nodes are regenerated in a one-

by-one fashion is called independent regeneration, as shown
in Fig. 2(a). However, in some practical distributed storage
systems, such as Total Recall [6], the regeneration process
will not be triggered until the number of failed storage node
has reached a certain threshold, and they can be regenerated
in batches, i.e., there are more than one newcomer in each
round of regeneration. Hu et al. [7] have shown that even
less bandwidth will be consumed if newcomers can cooperate
in the regeneration process called cooperative regeneration,
rather than regenerating lost data in different independent
regeneration processes. Shum [5] and Kermarrec et al. [8] have
independently proposed cooperative regenerating codes that al-
low newcomers to coordinate during cooperative regeneration
to achieve optimal bandwidth consumption. The minimum-
storage cooperative regenerating codes incur only M

k · d−1+r
d−k+r ·r

bits in total in each round of cooperative regeneration, in which
there are d providers and r newcomers. Similar to regenerating
codes in independent regeneration, the bandwidth consumption
to regenerate one storage node converges to M

k bits when d+r
is large enough.

Suppose that d providers and r newcomers are required in
one round of cooperative regeneration, the original file should

be divided into k(d− k + r) segments and each coded block
should contain d−k+r coded segments. Thus, k coded blocks
can still recover the original file. To regenerate r coded blocks
together, r newcomers first receive a linear combination of
coded segments from each provider, respectively. Then each
newcomer sends r − 1 different linear combinations of its d
received coded segments to all other providers. Finally, each
newcomer encodes all of its received coded segments into
d−k+r coded segments and groups them as one coded block,
which still maintains the property that any k coded blocks can
recover the original file [5], [8]. When k = 2, Fig. 2(b) shows
an example of cooperative regeneration with two providers and
two newcomers (d = r = 2). Kermarrec et al. [8] have shown
that if each coded block contains d−k+r coded segments, both
independent regeneration (r = 1) and cooperative regeneration
(r > 1) with d + r participating nodes can be supported
adaptively. In this paper, we propose pipelined (independent)
regeneration that engages much fewer participating nodes by
dividing one round of cooperative regeneration into several
rounds of pipelined regeneration.

B. System model

In this paper, we assume that any k coded blocks of the
same file can recover the original data. As for one file, each
storage node stores at most one of its coded blocks. All
data stored are produced by randomized regenerating codes,
i.e., all coded segments are random linear combinations of
the original segment. Wu et al. [9] and Wang et al. [10]
have shown that both randomized regenerating codes and
randomized cooperative regenerating codes can both maintain
the property that any k coded blocks can recover the original
file with a very high probability if the size of the finite field
is large enough. Thus, we do not consider the issue of linear
dependence in this paper.

We consider one file with a size of M bits, and each coded
block has a size of M

k bits. Each coded block contains N − k
coded segments, such that N participating nodes are required
by conventional independent or cooperative regeneration pro-
cess [8]. We assume that the available bandwidth between any
pair of two nodes in the system satisfies an independent distri-
bution. Suppose that at most n nodes (n < N) are allowed to
participate during regeneration, which can not be supported
by the conventional regeneration process. We show that a
pipelined regeneration process that allows each coded block
contains N −k coded segments, such that less network traffic
will be incurred during regeneration, while still maintaining
data integrity the same as conventional regeneration process.

III. PIPELINED REGENERATION

A. Transmission

There are three types of nodes in the pipelined regeneration
process: one newcomer, ν providers (P1, . . . , Pν , ν < n− 1),
and α apprentices (A1, . . . , Aα). The newcomer and appren-
tices receive coded segments from providers and some other
apprentices during pipelined regeneration. We define rank(Ai)
as the number of coded segments Ai has received from

other nodes in previous rounds of pipelined regeneration,
i = 1, . . . , α. Without loss of generality, we assume that
0 < rank(A1) < . . . < rank(Aα). Aα is also referred
to as the root. After one round of pipelined regeneration,
the newcomer will become an apprentice. Each apprentice is
partially regenerated since ν < n − 1. α and ν are selected
such that the root becomes fully regenerated after each round
of pipelined regeneration. Therefore, a newcomer will be fully
regenerated after α + 1 rounds of pipelined regeneration.

During pipelined regeneration, all providers send α + 1
coded segments, which are random linear combinations of its
coded segments with distinct coefficients, to α apprentices
and the newcomer. The root then sends α random linear
combinations of its coded segments that have been received
so far to all other apprentices and the newcomer. In this
process, the root will get ν coded segments, and all non-
root apprentices and the newcomer will get ν + 1 coded
segments. If each coded block is supposed to contain N − k
coded segments, the root encodes all of its received coded
segments to N − k segments and groups them as one coded
block. Fig. 3 shows an example of the independent pipelined
regeneration where k = 3 and α = ν = 2. In the conventional
regeneration, at least 2

3M bits will be transferred if there are
at most 4 providers. In pipelined regeneration, however, we
can let N = 9 and thus only 4

9M will be transferred, saving
33.3% of network traffic. We will discuss how to select α and
ν, and investigate the encoding scheme in Sec. III-B.

To guarantee the property that any k coded blocks can
recover the original file, in α + 1 consecutive rounds of
pipelined regeneration, it is required that one storage node
should be used as a provider once at most. Specifically, if
an apprentice that has accomplished τ rounds of pipelined
regeneration (1 ≤ τ < α+1) fails, during the next (1+α−τ)th

pipelined regeneration when this apprentice would have acted
as a root if it had not failed, one additional provider should
be selected to replace this failed apprentice as the root. The
number of participating nodes thus remains the same and
the newcomer and apprentices can still obtain ν + 1 coded
segments after this round of pipelined regeneration. Moreover,
the provider selected to replace the failed apprentice just

newcomer

2 5 7

apprentice 2 (root)

provider 1

provider 2

1

1
2

3

4

4

5

6

7

8

3 6 8

apprentice 1

Fig. 3. An example of pipelined regeneration (k = 3, N = 9, α = ν = 2).
We omit linear coefficients of each segment and use indices to represent
different coded segments. Each arrow represents one connection between two
participating nodes that conveys one coded segment. Coded segments that
have been received before in apprentices are indicated with dashed lines.

receives, encodes and sends out data, but does not store
received data or update its own coded block, since its block has
already been fully regenerated before. This provider should not
be used again in recent α+1 rounds of pipelined regeneration
as other providers as well.

We show that if ν and α are large enough, we can guarantee
that the root can always be fully regenerated after each round
of pipelined regeneration, and the coded block regenerated can
maintain the property that any k coded blocks can recover the
original file.

Theorem 1: If (α + 1)(ν + 1) ≥ N and (α + 1)ν ≥ k,
all roots can be fully regenerated after pipelined regeneration
processes, and coded blocks they store can maintain the
property that any k coded blocks can recover the original file.

Proof: A newcomer can be fully regenerated after at least
α + 1 rounds of pipelined regeneration. Thus, we prove this
theorem by mapping α + 1 consecutive rounds of pipelined
regeneration to one round of conventional cooperative regen-
eration with (α + 1)ν providers and α + 1 newcomers.

Given one root, denoted as A in one round of pipelined
regeneration, we consider this round and the previous α rounds
of pipelined regeneration. We map all roots in these α + 1
rounds of pipelined regeneration to α + 1 newcomers in con-
ventional cooperative regeneration. In particular, the newcomer
mapped from A is referred to as A′. All (α + 1)ν providers
that the A received data from are mapped as providers in
cooperative regeneration, denoted as P ′

1, . . . , P
′
(α+1)ν .

In the cooperative regeneration process, a newcomer should
receive one coded segment from (α + 1)ν providers and
other α newcomers, respectively. A′ does so in the mapped
cooperative regeneration process. However, the mapped new-
comers other than A′ may receive data from other providers
that are not mapped in the pipelined regeneration process.
Assume that one of these newcomers receives coded segments
from P ′′

1 , . . . , P ′′
(α+1)ν in its α + 1 rounds of pipelined re-

generation. Since (α + 1)ν ≥ k, coded segments stored in
these providers can all be represented as linear combinations
of coded segments stored in {P ′

1, . . . , P
′
(α+1)ν}. Because all

coded segments a newcomer receives are random linear com-
binations of coded segments of providers, it is equivalent with
that these segments are random linear combinations of coded
segments in {P ′

1, . . . , P
′
(α+1)ν}. Therefore, the coded block in

A is regenerated equivalently with the block regenerated in a
cooperative regeneration with (α + 1)ν providers and α + 1
newcomers. Since there are no less than k providers and no
less than N participating nodes in the mapped cooperative
regeneration process, the coded block regenerated at A′ can
maintain the property that any k coded blocks can recover the
original file [5], [8]. Therefore, A can be fully regenerated and
its coded block still maintains this property as well.

B. Encoding

Theorem 1 shows the condition of α and ν that the root
can be fully regenerated after pipelined regeneration. Now
we discuss the choices of α and ν to achieve the minimum
bandwidth consumption in the pipelined regeneration process.

Theorem 2: To regenerate a coded block containing N − k
coded segments, the minimum number of participating nodes
is 2

√
N − 1, while α = ν =

√
N − 1.

Proof: Let r = 1 + α. By Theorem 1, N ≤ (1 + α)(1 +
ν) = (1 + ν)r. Therefore, ν ≥ N

r − 1, and the total number
of participating nodes in the pipelined regeneration process is
α+1+ν = ν +r ≥ N

r +r−1 ≥ 2
√

N−1. The equations are
achieved when r =

√
N and ν = N

r −1, i.e., α = ν =
√

N−1.

When at most n nodes are allowed to participate in the re-
generation process, by Theorem 2 we can let α = ν = bn−1

2 c,
such that α+ ν +1 ≤ n. Thus, the maximum number of N is
Nmax = (α + 1)2 = (bn−1

2 c+ 1)2 = (bn+1
2 c)2. The more N

is, the less traffic will be incurred. Thus, the minimum traffic is
achieved when N = (bn+1

2 c)2. Therefore, even though Nmax

is very large, which can achieve the bandwidth consumption
converging very closely to M

k bits, a much smaller number of
nodes are required to participate during pipelined regeneration.
For example, only 17 participating nodes are required to
support the encoding scheme that N = 100. This property is
very useful for some systems that wake up nodes on demand
(e.g., archival file system) or have a high node churn (e.g.,
P2P file system).

IV. PERFORMANCE ANALYSIS AND EVALUATION

A. The minimum amount of redundancy

If the encoding scheme of regenerating codes in the dis-
tributed storage system has been determined, we can also
determine the minimum amount of redundancy that should be
stored to compensate at least one node failure. In the conven-
tional regeneration process, if a coded block is composed of
N − k coded segments, a newcomer needs to contact at least
N − 1 providers. Therefore, each file stored in the system
requires at least N storage nodes to compensate at least one
node failure. Thus, the minimum amount of redundancy of
conventional regeneration is N

k times of the original file.
As for pipelined regeneration, however, though it requires

fewer providers, the minimum amount of redundancy is more
than that required by conventional regeneration, due to the
constraint that a storage node can act as a provider at most
once in α + 1 consecutive rounds of pipelined regeneration.

Theorem 3: The minimum amount of redundancy required
by the pipelined regeneration is N+α

k times of the original file.
Proof: Though there are only ν providers during pipelined

regeneration, the newcomer still needs to receive coded seg-
ments from at least N − 1 providers within 1 + α rounds
of pipelined regeneration. Thus, the amount of redundancy is
enough if and only if we can always find ν providers that do
not appear in previous α rounds of pipelined regeneration.

If the failed node is a storage node that has been used during
the recent α rounds of pipelined regeneration, the required
number of available storage nodes is ν.

If the failed node is an available storage node, there should
be at least ν + 1 storage nodes available before this failure.

We last consider the case that the failed node is an appren-
tice. If the apprentice should have been the root during the next

A...

x available storage nodes α apprentices

A

during 1st round of pipelined regeneration

A...

x-(ν+1) available storage nodes α apprentices

after 1st round of pipelined regeneration

... ... A

...

x-α(ν+1)
available storage nodes α apprentices

after αth round of pipelined regeneration

... A A...

failed node

storage nodes that
have been used as providers

fully regenerated
 apprentice

α failed nodes

storage nodes that
have been used as providers

in recent α rounds of pipelined regeneration

α fully
regenerated apprentices

N storage
 node

N

newcomer

P
provider

A

apprentice
X

X X

P P

A

A

X

X

X

Fig. 4. The required number of available storage nodes in 1+α consecutive
rounds of pipelined regeneration, when failed nodes are available storage
nodes.

round of pipelined regeneration, the regeneration will require
ν+1 providers to compensate for this loss. On the other hand,
if the apprentice has just accomplished τ rounds of pipelined
regeneration (1 ≤ τ < 1+α), the required number of available
storage nodes in the next round of pipelined regeneration is ν,
but in the next (1 + α− τ)th round of pipelined regeneration,
ν + 2 available storage nodes will be required. Therefore,
the total number of required available storage nodes remains
within α + 1 consecutive rounds of pipelined regeneration.

Since within α+1 consecutive rounds of pipelined regener-
ation, the average number of required available storage nodes
is at most ν + 1, without loss of generality, we assume that
each regeneration is triggered by the failure of an available
storage node. As shown in Fig. 4, ν+1 available storage nodes
become unavailable to the double-circled apprentice after the
first round of pipelined regeneration. The fully regenerated
apprentice can not be regarded as available because the double-
circled apprentice can only produce its fully regenerated block
after this round of pipelined regeneration. Assume that there
are x storage nodes available to the double-circled newcomer
before its first round of pipelined regeneration. After α rounds
of pipelined regeneration, there are x − α(ν + 1) nodes still
available. The required number of available storage nodes
before the (α + 1)th round of pipelined regeneration is ν + 1.
Thus, x− α(ν + 1) ≥ ν + 1.

The minimum required number of nodes is x+α, since there
are α partially regenerated apprentices between two rounds of
pipelined regeneration. By Theorem 1, x + α ≥ (1 + α)(1 +
ν) + α ≥ N + α. The equations can be achieved when α =
ν =

√
N − 1. Therefore, the minimum required amount of

redundancy is N+α
k .

Theorem 3 shows that only the storage space for additional

apprentices is required in the distributed storage system to
support pipelined regeneration. As shown by Fig. 5, even
though a small number of nodes participate during regener-
ation, pipelined regeneration is able to support a very high
value of Nmax, with only a small fraction of additional storage
space (13.9% when n = 9).

B. Network traffic

Now we analyze the network traffic transferred in the
pipelined regeneration process. Since there are ν providers and
α apprentices during pipelined regeneration, there are (α+1)ν
connections from providers to apprentices or the newcomer,
and α connections from the root to other apprentices or the
newcomer. Thus, there are totally (1+α)(1+ν)−1 = Nmax−1
connections. Since one coded segment is conveyed in each
connection, the total amount of traffic is M(Nmax−1)

k(Nmax−k) . On the
other hand, if n nodes are allowed to participate, conventional
regeneration will cost M(n−1)

k(n−k) when n ≥ k+1. Thus, with the
same number of participating nodes pipelined regeneration can
save bandwidth consumption by (Nmax−n)(k−1)

(n−1)(Nmax−k) . Fig. 6 com-
pares the bandwidth consumption of pipelined regeneration
and conventional regeneration when k = 3. We can see that
up to 60% of the network traffic can be saved by pipelined
regeneration (n = 6), and a smaller n can save more network
traffic. Notice that n can even be smaller than k + 1 as long
as (α+1)ν ≥ k, by Theorem 1. Thus, it is very promising for
the distributed storage system that can use a limited number
of participating nodes simultaneously.

C. Regeneration time

We analyze the regeneration time from the perspective of
bottleneck bandwidth — the bandwidth available over the
bottleneck connection during regeneration. In the pipelined
regeneration process, we use a fine-grained pipelined trans-
mission at a symbol level. Notice that each coded segment can
be regarded as a series of symbols on a finite field. When the
root has received the first symbols of coded segments from all
providers, it has got all the first symbols of coded segments
that make it fully regenerated. Then it can produce all the
first symbols of coded segments in its coded blocks. At the

5 10 15 20 25 30
0

50

100

150

200

250

participating nodes (n)

no

de
s

re
qu

ire
d

nodes participating during
pipelined regeneration (n)
minimum redundancy of
conventional regeneration (N

max
)

minimum redundancy of
pipelined regeneration (N

max
+α)

Fig. 5. The minimum number of storage nodes required by conventional
regeneration and pipelined regeneration.

10 15 20 25 30

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

participating nodes (n)

ba
nd

w
id

th
 c

on
su

m
pt

io
n

(r
at

io
 to

 th
e

or
ig

in
al

 fi
le

)

pipelined regeneration
conventional regeneration

Fig. 6. Bandwidth consumption of pipelined regeneration and conventional
regeneration (k = 3).

same time, it produces the first symbols of coded segments
to be sent to other apprentices and the newcomer, and send
them immediately. After that, the root does the same thing
of the second symbols, and so on. Since the block size in
the distributed storage system is usually very large, we do
not consider the initial delay of first symbols, and thus the
regeneration time can be regarded as inversely proportional to
the bottleneck bandwidth.

Since there are Nmax − 1 connections during pipelined
regeneration, the probability density function of the min-
imum bandwidth available over Nmax − 1 connection is
f(Nmax−1)(x) = (Nmax − 1)[1 − F (x)](Nmax−2)f(x) [11],
where f(x) and F (x) are the probability density function and
the cumulative distribution function of the bandwidth distri-
bution, respectively. Thus, the expected value of bottleneck
bandwidth of pipelined regeneration and conventional regen-
eration is E[f(Nmax−1)(x)] and E[f(n−1)(x)], respectively.

Since the size of a coded segment is different between
pipelined regeneration and conventional regeneration with
the same number of participating nodes, we compare the
virtual bottleneck bandwidth that equals the number of coded
segments in a coded block times the bottleneck bandwidth,
such that the regeneration time can be regarded as the ratio
of the size of a coded block to the virtual bottleneck band-
width. We assume the bandwidth distribution satisfy a uniform
distribution U [10 Mbps, 1024 Mbps] and k = 5. Even though
pipelined regeneration incurs more connections, we can see
from Fig. 7 that it still can improve the expected value of
virtual bottleneck bandwidth since the coded segment con-
veyed in each connection is much smaller than conventional
regeneration, leading to less regeneration time.

V. CONCLUSION

In this paper, we propose a pipelined regeneration process
for regenerating codes that enables the system to achieve the
performance with a limited number of participating nodes
during regeneration that can only be achieved by conventional
regeneration with a much larger number of participating
nodes. Preserving the data integrity as well as conventional
regeneration, pipelined regeneration can reduce the bandwidth

10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

participating nodes (n)

ex
pe

ct
ed

 v
al

ue
 o

f
vi

rt
ua

l b
ot

tle
ne

ck
 b

an
dw

id
th

 (
M

bp
s)

pipelined regeneration
conventional regeneration

Fig. 7. Virtual bottleneck bandwidth of pipelined regeneration and conven-
tional regeneration (k = 3).

consumption without increasing the number of participating
nodes. Meanwhile, it can save the time spent during re-
generation as well. We will discuss pipelined cooperative
regeneration for regenerating codes in our future work.

ACKNOWLEDGMENT

This work is supported in part by 863 program of China
under Grant No. 2009AA01A348, National Key S&T Project
under Grant 2010ZX03003-003-03, and Shanghai Municipal
R&D Foundation under Grant No. 09511501200. Xin Wang
(Email: xinw@fudan.edu.cn) is the corresponding author.

REFERENCES

[1] R. Rodrigues and B. Liskov, “High Availability in DHTs: Erasure
Coding vs. Replication,” in Proc. 4th International Workshop on Peer-
to-Peer Systems (IPTPS), 2005.

[2] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K. Ramchan-
dran, “Network Coding for Distributed Storage Systems,” IEEE Tran.
Inform. Theory, vol. 56, no. 9, Sept. 2010.

[3] A. Duminuco and E. Biersack, “Hierarchical Codes: How to Make
Erasure Codes Attractive for Peer-to-Peer Storage Systems,” in Proc. 8th
International Conference on Peer-to-Peer Computing, 2008, pp. 89–98.

[4] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Enabling Node Repair in
Any Erasure Code for Distributed Storage,” arXiv: 1101.0133v1, Dec.
2010. [Online]. Available: http://arxiv.org/pdf/1101.0133v1

[5] K. W. Shum, “Cooperative Regenerating Codes for Distributed Storage
Systems,” to appear in Proc. IEEE International Conference on Com-
munications (ICC), 2011.

[6] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M. Voelker, “Total
Recall: System Support for Automated Availability Management,” in
Proc. USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2004, p. 25.

[7] Y. Hu, Y. Xu, X. Wang, C. Zhan, and P. Li, “Cooperative Recovery of
Distributed Storage from Multiple Losses with Network Coding,” IEEE
Journal on Selected Areas in Communications, vol. 28, no. 2, pp. 268–
276, Feb. 2010.

[8] A.-M. Kermarrec, N. Le Scouarnec, and G. Straub, “Repairing
Multiple Failures with Coordinated and Adaptive Regenerating Codes,”
INRIA, Research Report RR-7375, Sept. 2010. [Online]. Available:
http://hal.inria.fr/inria-00516647/PDF/RR-7375.pdf

[9] Y. Wu, A. Dimakis, and K. Ramchandran, “Deterministic Regenerating
Codes for Distributed Storage,” in Proc. 45th Annual Allerton Confer-
ence on Communication, Control, and Computing, 2007.

[10] X. Wang, Y. Xu, Y. Hu, and K. Ou, “MFR: Multi-Loss Flexible Recovery
in Distributed Storage Systems,” in Proc. IEEE International Conference
on Communications (ICC), 2010.

[11] H. A. David and H. N. Nagaraja, Order Statistics, 3rd ed. Wiley, Aug.
2003.

