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Abstract

Distributed storage systems have been increasingly de-
ploying erasure codes (such as Reed-Solomon codes) for
fault tolerance. Though Reed-Solomon codes require
much less storage space than replication, a significant
amount of network transfer and disk I/O will be imposed
when fixing unavailable data by reconstruction. Tradi-
tionally, it is expected that unavailable data are fixed sep-
arately. However, since it is observed that failures in the
data center are correlated, fixing unavailable data of mul-
tiple failures is both unavoidable and even common. In
this paper, we show that reconstructing data of multi-
ple failures in batches can cost significantly less network
transfer and disk I/O than fixing them separately. We
present Beehive, a new design of erasure codes, that can
fix unavailable data of multiple failures in batches while
consuming the optimal network transfer with nearly opti-
mal storage overhead. Evaluation results show that Bee-
hive codes can save network transfer by up to 69.4% and
disk I/O by 75% during reconstruction.

1 Introduction

Large-scale distributed storage systems, especially ones
in data centers, store a massive amount of data that are
also increasing rapidly. Running upon commodity hard-
ware, these storage systems are expected to keep data
available, against software and hardware failures that
make data unavailable on a daily basis [12]. Tradition-
ally, replicated data are employed by distributed storage
systems to keep data available. For example, three repli-
cas are stored by default in the Hadoop Distributed File
System (HDFS) [2].

However, storing multiple copies of the original data
brings expensive overhead to the storage system. For ex-
ample, three copies mean that only 33% of the total stor-
age space can be effectively used. Therefore, distributed
storage systems (e.g., [6]) have been replacing replica-

tion with erasure codes, especially for cold or archival
storage. By migrating from replication to erasure codes,
distributed storage systems can enjoy a better capability
to tolerate unavailable data and meanwhile save storage
overhead. Among erasure codes, Reed-Solomon (RS)
codes become the most popular choice as RS codes make
the optimal usage of storage space while providing the
same level of fault tolerance.

To achieve fault tolerance with RS codes, we need to
assume that data are stored in blocks with a fixed size,
a common practice for most distributed storage systems.
With k data blocks, RS codes compute r parity blocks,
such that any k of the total k+ r blocks can recover all
data blocks. The data blocks and their corresponding
parity blocks belong to the same stripe. Therefore, such
RS codes can tolerate at most r failures within the same
stripe. For example, RS codes with k = 4 and r = 2 can
tolerate any two missing blocks with 1.5x storage over-
head, while three-way replication, achieving the same
level of fault tolerance, requires 3x storage overhead.

Once one block becomes unavailable, the missing data
should be fixed through a reconstruction operation and
saved at some other server. Under RS codes, the re-
construction operation requires to download k existing
blocks and then decode the missing block, imposing k
times of the network transfer under replication. It has
been reported from a Facebook’s cluster that reconstruct-
ing unavailable data under RS codes can increase more
than 100 TB of data transfer in just one day [10]. Be-
sides, the same amount of disk I/O will also be imposed
on the servers that store the downloaded blocks.

To save network transfer during reconstruction, there
have been considerable interests in the construction of a
class of erasure codes called minimum-storage regener-
ating (MSR) codes (e.g., [11]). The same as RS codes,
MSR codes also make the optimal usage of storage
space. However, MSR codes can significantly save net-
work transfer during reconstruction. As shown in Fig. 1a,
we assume that the size of each block is 128 MB and
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Figure 1: The network transfer and disk read imposed by
the reconstruction under RS, MSR and Beehive codes,
with k = 3, r = 3, and blocks of size 128 MB.

let k = 3 and r = 3 for both RS codes and MSR codes
here. While RS codes need to download three blocks
to reconstruct one missing block, MSR codes only need
to download a fraction of each block. In this example,
though MSR codes require to download data from one
more block, the total network transfer is still saved by
33.3% as only a half of network transfer is imposed on
each block. Nevertheless, even though only a fraction
of a block is required for the reconstruction, in general
it has to be encoded from the whole block.1 Therefore,
MSR codes do not ease but further increase the overhead
of disk I/O, as the reconstruction requires to download
data from even more blocks than RS codes.

Traditionally, it is assumed that when there are un-
available blocks, distributed storage systems will recon-
struct them separately. However, inside data centers,
data unavailability events can be correlated. For exam-
ple, many disks fail at similar ages [8]. When one disk
fails, it suggests a high probability that some other disks
fail roughly at the same time. Not just limited to disk
failures, correlated data failures can also happen due to
various reasons [5] such as switch failures, power out-
ages, maintenance operations, or software glitches. Tak-
ing advantages of the correlated failures, we investigate
the construction of erasure codes that allows us to recon-
struct multiple missing blocks in batches, to save both
network transfer and disk I/O during reconstruction.

In this paper, we propose a new family of erasure
codes, called Beehive, that reconstruct multiple blocks
at the same time. An instant benefit this brings is that
each block will only be read once to reconstruct multiple
blocks. As illustrated in Fig. 1b, the total amount of disk
read is saved by 50% when we reconstruct two blocks to-
gether at the same time, while we can even further save
network transfer as well. In fact, Beehive codes achieve
the optimal network transfer per block in the reconstruc-
tion operation. The construction of Beehive codes is built
on top of MSR codes. We implement Beehive codes in
C++ and evaluate the performance of Beehive on Ama-

1There exist some constructions [9, 14] of erasure codes that sup-
port to obtain a fraction of block without any encoding operations.
However, typically MSR codes do not optimize for disk I/O.
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Figure 2: Illustration of notations: hierarchy of stripe,
generation, block, and segment, where block 1 to k are
data blocks and block k+1 to n are parity blocks.

zon EC2. The experiment results show that compared to
MSR codes, Beehive codes can save up to 42.9% of net-
work traffic (with more savings under RS codes) and up
to 75% of disk I/O during reconstruction. Though Bee-
hive codes store less actual data than RS or MSR codes
with the same storage space, we show that this overhead
is marginal.

2 Background

Suppose that given k data blocks, we will have r parity
blocks under some erasure code. If any k of all the k+ r
blocks can decode the original data, such erasure codes
make the optimal usage of storage space, e.g., RS codes.
A block contains a certain number of symbols. Typically,
a symbol is simply a single byte. The encoding, decod-
ing and reconstruction operations of the erasure code are
performed on such symbols with the arithmetic of the so-
called finite field. In this paper, however, we do not rely
on any direct knowledge of the finite field and readers
can simply consider its arithmetic as usual arithmetic.

Given the original data, we can divide them into gen-
erations such that each generation contains k blocks ( fi,
i = 1, . . . ,k) with the same size. For simplicity, we only
consider one generation in this paper, as all generations
will be encoded in the same way. Depending on the era-
sure codes, a block may consist of one or multiple seg-
ments, where each segment is a row vector of w sym-
bols. For simplicity, we assume that one symbol is a byte
in this paper. In other words, each segment contains w
bytes. Assuming that each block contains α segments,
each block has αw bytes, and we regard fi as an α ×w
matrix. Let n = k+ r. Given the k original blocks, era-
sure codes use an nα× kα generating matrix G to com-
pute all blocks in a stripe, i.e., G ·

[
f T
1 · · · f T

k

]T , where
f T
i denotes the transpose of fi. We can divide G into n

submatrices of size α× kα such that G =
[
gT

1 · · · gT
n
]T .

Therefore, the n blocks generated by G can be repre-
sented as giF (or block i, for simplicity), i = 1, . . . ,n,
where F =

[
f T
1 · · · f T

k

]T . The n blocks computed from
the same generation belong to the same stripe. We illus-
trate in brief the notations described above in Fig. 2.

If the first kα rows of G form an identity matrix,

2



giF is identical to fi, i = 1, . . . ,k. In this way, we can
term g1F, . . . ,gkF as data blocks and the rest as parity
blocks. Erasure codes described in this paper are system-
atic codes. Typically, there is only one segment in each
block under RS codes, i.e., α = 1. We can construct RS
codes by letting the rest of G be a Cauchy matrix. Given
any k blocks in the same stripe, we can have their cor-
responding submatrix of the generating matrix and then
decode the original data by multiplying the inverse of this
submatrix with these k blocks.

Under MSR codes, on the other hand, a block con-
tains d− k+1 segments (i.e., α = d− k+1), where d is
the number of available blocks required to reconstruct a
missing one, d > k. During reconstruction, we call these
d blocks as helpers and the one being reconstructed as a
newcomer. To reconstruct any newcomer, we do not need
to decode it like under RS codes, but reconstruct it with
fractions of d helpers in the same stripe. For example,
to reconstruct giF , we will compute one segment vT

i g jF ,
from block g jF where vi is a column vector of size α

symbols. With the d segments obtained from helpers, we
can reconstruct giF by multiplying an α×d matrix with
these d segments.

There have been several constructions of MSR codes
(e.g., [11]). In this paper, we will construct our Beehive
codes based on one particular product-matrix construc-
tion proposed by Rashmi et al. [11], because 1) the MSR
codes constructed are systematic; and 2) unlike other
constructions that impose constraints on specific values
of d or k, the construction proposed in [11] is much more
general by only requiring d ≥ 2k−2.2

We construct Beehive on top of the product-matrix
MSR codes, and we exploit an important property of
this construction in Beehive. In the construction of MSR
codes with given k,r,d, we can explicitly obtain a con-
stant vector (λ1 . . . λn), and an n× (k− 1) matrix A in
which every k−1 rows are linearly independent. We re-
fer to the i-th row of A as Ai = (ai,1 . . . ai,k−1). Besides,
in A the first k− 1 rows, i.e., Ai, . . . ,Ak−1, are standard
bases. When i, j ≥ k, to reconstruct a newcomer g jF ,
there exists a column vector v̂i, j of size α such that the
segment vT

j giF satisfies the following equation:

(λi−λ j)
−1vT

j giF =
k−1

∑
l=1

ai,l · (λl −λ j)
−1vT

j glF + v̂T
i, jg jF,

(1)

where v̂i, j is a vector of size α symbols that is linearly
independent with any other α − 1 of such vectors with
different values of i and the same value of j.3

2It is proved in [13] that there exists no construction of such MSR
codes if d < 2k−3.

3This property can be directly derived from Lemma 11 and its proof
in [11].

3 Beehive Codes

3.1 Code Construction
Under Beehive, we assume that t newcomers are recon-
structed simultaneously, t > 1. Unlike traditional erasure
codes like RS or MSR codes, we divide one generation
of the original data into two parts that contains k and
k− 1 blocks, respectively. In the first part, each block
contains d− k + 1 segments, and t − 1 segments in the
second part. We denote the k blocks in the first part as
F = [ f T

1 · · · f T
k ]T and the k−1 ones in the second part as

C = [cT
1 · · · cT

k−1]
T . We illustrate this process in Fig. 3.
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Figure 3: The construction of Beehive codes.

As described in Sec. 2, given k,r,d where d ≥ 2k−2,
we can construct a generating matrix G of the product-
matrix MSR code. Then we encode the first part F with
such G and get giF , i = 1, . . . ,n. Along with the product-
matrix MSR code, we can also obtain the corresponding
matrix A, and then we encode data in the second part as
∑

k−1
l=1 ai,lcl , i = 1, . . . ,n.
From the original data, Beehive computes n blocks.

Each block contains the d−k+1 segments from giF and
the t − 1 segments from ∑

k−1
l=1 ai,lcl . Therefore, in the

first k− 1 blocks we can find C directly, since the first
k−1 rows of A are standard bases. Since the MSR code
we use in the first part is systematic, we can also find F
directly from the first k blocks. Therefore, Beehive codes
are systematic.

On the other hand, there are d−k+ t segments in each
block under Beehive codes. If each segment contains w
symbols, the original data should be grouped into gener-
ations of [k(d−k+t)−(t−1)]w symbols. With the same
block size, this will lead to a reduction of (t−1)w sym-
bols in each generation under Beehive codes, compared
to the theoretical optimum [15] (we omit the proof due to
the page limit). Considering the total amount of data in a
generation, this loss of storage efficiency is insignificant.

3.2 Decoding and Reconstruction
To decode the original data from any k blocks in a stripe,
both F and C must be decoded. Apparently F can be
decoded from any k blocks by MSR codes. On the other
hand, given k blocks, we have k linear combinations of
ci, i = 1, . . . ,k−1. Since any k−1 rows in A are linearly
independent, ci can be recovered from any k−1 blocks.
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Now we consider the reconstruction operation. With-
out loss of generality, we only show the case of t = 2. Let
N be the set of newcomers and H be the set of helpers,
where |N|= t, |H|= d, and N∩H = /0.

For any i ∈ H, the helper i computes (λi −
λ j)
−1vT

j giF + uT
j ∑

k−1
l=1 ai,lcl , i = 1, . . . ,n, and sends it to

newcomer j , where u j is a vector of size t−1 symbols.
Any t−1 vectors in {u j| j ∈ {1, . . . ,n}} must be linearly
independent.

At the side of newcomers, we divide their operation
into two stages. Taking newcomer j for example, where
j ≥ k (we also omit the proof for j < k due to the page
limit), in the first stage, it will receive d segments from
helpers in H. By (1), each segment can be written as

(λi−λ j)
−1vT

j giF +uT
j

k−1

∑
l=1

ai,lcl

=
k−1

∑
l=1

ai,l((λl −λ j)
−1vT

j glF +uT
j cl)+ v̂T

i, jg jF.

In this way, ai,l((λl − λ j)
−1vT

j glF + uT
j cl) is of rank 1,

l = 1, . . . ,k− 1, and v̂T
i, jg jF is of rank d− k+ 1, i ∈ H.

Thus we can use d segments received from the d helpers
to solve g jF , ∀ j ∈ N. Meanwhile, (λl − λ j)

−1vT
j glF +

uT
j cl can be solved as well, l = 1, . . . ,k−1.
In the second stage, the newcomer j will send

k−1

∑
l=1

a j′,l((λl −λ j)
−1vT

j glF +uT
j cl)+ v̂T

j′, jg jF

=(λ j′ −λ j)
−1vT

j g j′F +uT
j

k−1

∑
l=1

a j′,lcl (from (1))

to another newcomer j′, and it will receive t−1 segments
from other newcomers as well. Then the newcomer
j′ can cancel out (λ j′ − λ j)

−1vT
j g j′F as it has already

solved g j′F . Then we can get uT
j ∑

k−1
l=1 a j′,lcl , j∈N\{ j′},

and solve ∑
k−1
l=1 a j′,lcl as well, from the t − 1 segments

received from other newcomers. Therefore, it is recom-
mended that the matrix composed by {u j| j ∈ {1, . . . ,n}}
contains an identity submatrix, such that this operation
can be simplified. In this way, we can reconstruct both
g j′F and ∑

k−1
l=1 a j′,lcl . During reconstruction, each new-

comer will receive d + t−1 segments, achieving the op-
timal network transfer [15] to reconstruct t blocks.

4 Preliminary Results

We implement Beehive in C++, using the Intel storage
acceleration library (ISA-L) [1] for the finite field arith-
metic. We also implement RS codes and MSR codes
with ISA-L, for comparison purposes.

We let k = 6 and r = 6 and set the block size to be
60 MB. We first compare the speed of different oper-
ations of RS, MSR (d = 10), and Beehive codes (d =

10, t = 2) in Fig. 4, running on Amazon EC2 instances
of type c4.2xlarge. We observe that the encoding and
decoding operations of MSR codes and Beehive codes
are quite close to each other. The encoding operation of
Beehive codes is a bit slower than MSR codes as Bee-
hive codes are built on top of MSR codes. Neverthe-
less, we do not observe that the speed of decoding or re-
construction operation is significantly different between
MSR codes and Beehive codes. The first stage of the
reconstruction at the side of newcomers under MSCR
codes has lower throughput. However, since only one
segment is produced in this stage, the real processing
time is much faster than the second stage. This is more
important to distributed storage systems as data will be
encoded only once but decoded or reconstructed many
times. RS codes, on the other hand, can enjoy a higher
throughput as there is only one segment in each block
under RS codes.

With each block of size 60 MB, a generation under RS
or MSR codes is 360 MB, but a generation under Bee-
hive codes is 10 MB less. In fact, with the same storage
overhead (i.e., the same k and r), Beehive codes store
less actual data. In other words, with the same amount of
original data, we may have more generations under Bee-
hive codes. However, this additional storage overhead is
marginal. It is just 2.8% in this case.

We compare the disk read and network transfer during
reconstruction for RS, MSR, and Beehive codes in Fig. 5.
In particular, when t = 1, Beehive codes will be the same
as MSR codes. When t > 1, RS codes and MSR codes
reconstruct t blocks separately. In other words, there
will be data read during each reconstruction. Hence, as
shown in Fig. 5a, Beehive codes achieve much less disk
read during reconstruction, which does not change with
t, but only depends on the number of helpers. Compared
with MSR codes, Beehive codes can save up to 75% of
disk read. With regards to network transfer, we observe
in Fig. 5b that RS codes always impose the most network
transfer. Both MSR codes and Beehive codes require
less network transfer with an increasing of d. Beehive
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Figure 4: Comparison of the speed of encoding, decod-
ing and reconstruction operations for RS, MSR, and Bee-
hive codes.
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Figure 5: Comparison of disk I/O and network transfer
during reconstruction with k = 6 and r = 6, for RS, MSR,
and Beehive codes.

codes, however, can further save network transfer by up
to 42.9% against MSR codes and by 69.4% against RS
codes. The reduction of network transfer becomes even
more significant with an increasing of t.

5 Related Work

In order to optimize network transfer during reconstruc-
tion without loss of fault tolerance, Dimakis et al. [4] ex-
plored the theoretical lower bound of network transfer of
the single-block reconstruction, and there are a lot of lit-
eratures that present constructions of such erasure codes
(called regenerating codes) [3]. Among these codes, the
minimum-storage regenerating (MSR) codes achieve the
optimal storage overhead [11]. Network transfer can be
further saved when there are multiple blocks to recon-
struct at the same time [15]. However, there has been no
construction of erasure codes that can achieve this lower
bound with general values of parameters and the optimal
storage overhead. Shum [15] and Li et al. [7] have pro-
posed a construction of such erasure codes that achieve
the optimal network transfer with d = k and t = 2, re-
spectively. In this paper, we propose a construction that
achieves the optimal network transfer with near-optimal
storage overhead and a wide range of parameters.

6 Conclusions

In this paper, we propose Beehive, a new family of
erasure codes that reconstruct multiple blocks simulta-
neously and achieve the optimal network transfer with
near optimal storage overhead. Through experiments on
Amazon EC2, we show that compared to existing erasure
codes like RS and MSR codes, Beehive codes can both
save network transfer and disk I/O significantly.
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