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Abstract— Guaranteeing continuous streaming of multimedia
data from service providers to the users is a challenging task
in wireless ad hoc networks, particularly when node mobility is
considered. The topological dynamics introduced by node mo-
bility are further exacerbated by the natural grouping behavior
of mobile users, which leads to frequent network partitioning.
Network partitioning poses significant challenges to the provi-
sioning of continuous multimedia streaming services in wireless
ad hoc networks, since the partitioning disconnects many mobile
users from the centralized streaming service. In this paper, we
propose NonStop, a collection of novel middleware-based run-
time algorithms that ensures the continuous availability of such
multimedia streaming services, while minimizing the overhead
involved. The network-wide continuous streaming coverage is
achieved by partition prediction and service replication on the
streaming sources, and assisted by distributed selection of stream-
ing sources on regular mobile nodes and users. The proposed
algorithms are validated by extensive results from performance
evaluations.

Index Terms— Multimedia streaming, service replication, wire-
less ad hoc networks.

I. INTRODUCTION

The main appeal of wireless cellular and ad hoc networks is
that they allow both user mobility and untethered connectivity.
However, user mobility poses significant challenges to network
operations such as routing, resource management, and Quality
of Service (QoS) provisioning, especially when it comes to
the QoS provisioning of multimedia services. The problem is
more challenging in wireless ad hoc networks, since the mobile
nodes constitute the communication infrastructure — a node
acts as both a packet router and an end host. Node mobility
leads to frequent disconnections of wireless links and dynamic
changes of the network topology.

To improve network connectivity, many mobility prediction
schemes have been proposed [1], [2], [3] to predict the future
availability of wireless links, for the purpose of building
more stable end-to-end connections at the network layer.
However, there exist fewer studies on the effect of dynamic
network topology on prominent problems at the application
layer. One of such problems is the provisioning of continuous
streaming services of multimedia data in wireless networks,
especially ad hoc networks, such that streaming interruptions
may be avoided or minimized as much as possible in the user
experiences when consuming continuous media. The broad
category of continuous media streaming include video-on-
demand services and complex processing based on multimedia
streaming, such as visual tracking.
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With respect to such continuous streaming services that
are critical to the Quality of Perception of a user working
with a mobile node, we note the following two characteristics
that serve as the baseline of this paper: (1) The continuous
multimedia streaming service is inherently centralized; and (2)
every node in the wireless network may need access to such
a service, and once initiated, such a service should not be
unnecessarily interrupted. Such an ideal situation is in sharp
contrast when compared with the dynamics of wireless ad hoc
networks with mobile users, in which case the network may
partition into several disjoint “islands”, where the “islands”
or partitions are completely disconnected from each other.
For example, when mobile visitors to a museum show wish
to access an audio/video stream (e.g., information about up-
coming events broadcast by the museum guides), the ad hoc
network may become partitioned from time to time due to
user mobility. Such partitioning may be more likely to occur
when visitors tend to move towards different directions (e.g.,
different points of interests), approximately (and naturally) in
groups. When the network partitions, those mobile users that
are not in the same partition as the streaming service will
suffer streaming interruptions or service unavailability until
the partitions eventually merge. Depending on the degree of
node mobility, such streaming interruptions are in the order of
tens of seconds or even minutes.

Naturally, the only countermeasure to such streaming ser-
vice interruptions is to make the service available by replicat-
ing to the separate partitions a priori before the partitioning
occurs. There exist no other ways to solve the problem.
However, such replications will not be performed without
costs of bandwidth, and instant replications are impossible
in the case of multimedia services. For a realistic example,
for a one-minute audio/video streaming service of 100Kbps
to user PDAs, approximately 750K bytes of data needs to
be replicated. Over an end-to-end wireless connection with
a capacity of 200K bytes per second, such replication may
be performed in about four seconds. This requires that the
replication event, as well as the timing of detecting partitions,
needs to be four seconds ahead of the actual partitioning.
In the museum scenario where mobile users move slowly,
and with a timely algorithm to predict partitions well in
advance, replicating the multimedia streaming data is still a
feasible solution. In such solutions, early predictions and high
replication bandwidth are required, the latter is contingent on
the number of wireless hops between the nodes that replication
may occur. With a shorter replicating distance, the available
wireless bandwidth is higher [4]. In the best scenario of single-
hop replications, the maximum bandwidth from the channel
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(e.g., 54 Mbps or 6M bytes per second in the case of IEEE
802.11a) can be utilized for timely replications. Apparently,
the success of replication-based solutions require that the time
between prediction and partition events should be longer than
the time required for replications.

In this paper, we present NonStop, a collection of
middleware-based run-time algorithms that collectively guar-
antee the continuous availability of multimedia streaming
services from the point of view of any mobile users in the
network. Such continuous streaming availability is achieved by
periodic monitoring of the network status, meticulous selection
of replication candidates, as well as timely replications of
the streaming service to the new partition, before network
partitioning (and hence the service interruption) occurs. Such
partition prediction at the global scale is achieved by im-
plementing a prediction model based on the ideal case of
group mobility, where mobile users exhibit correlated mobility
patterns in their movements. Though such a grouping behavior
of the mobile users has been observed in actual field trials of
local area wireless networks [5], we show in simulation results
that, even without such assumptions (with weak or no group
mobility), our prediction model may still operate reasonably
well, but without hard guarantees of continuous streaming.

We observe that network partitioning events (and service in-
terruptions) are caused by group mobility. Consider an ad hoc
network that consists of many mobility groups whose nodes
are initially dispersed and intermixed. The distinct mobility
pattern of each group causes the groups to separate, and the
network eventually partitions. On the other hand, for a fully
connected network to partition into completely disconnected
components, such large-scale and structured topology changes
can only be caused by correlated movements of a group of
nodes, whereas independent movement of individual nodes can
only cause random and sporadic link breakage. This insight
agrees with the simulation results from [6], [7] which have
shown that, the group mobility behavior of mobile users causes
frequent network partitioning, and the resulting partitions are
the separate mobility groups.

The novel contribution of NonStop is that, it captures the
essential characteristics that represent such correlated mobility
patterns, derives information about the changing network
topology, and ultimately predicts future network partitioning
events. With such predictions, the multimedia streaming ser-
vices may be replicated onto the nodes of the anticipated
partitions in advance, in order to ensure the continuous
availability of the streams to existing in-progress nodes. The
highlight of this work is the introduction of two algorithms that
capture the network mobility status using pattern recognition
algorithms in the velocity space of mobile nodes. We support
our theoretical analysis and claims with extensive simulation
results, which show that our algorithms perform effectively
in real-world scenarios (even without the notion of group
mobility), and comparatively better than alternative solutions.
We believe this is a seminal contribution towards achieving
a middleware-based hybrid service model that blends peer-to-
peer communications and continuously available multimedia
streaming services in wireless ad hoc networks.

The remainder of the paper is organized as follows. In

Sec. II, we describe our group mobility model. NonStop is
presented in Sec. III and Sec. IV. The performance of our
algorithms are investigated in Sec. V. Sec. VI reviews related
work and puts our work in a comparative perspective. Finally,
we conclude the paper in Sec. VII.

II. SYSTEM MODELS

We begin with the presentation of the group mobility model
that we use throughout the paper. Most existing node mobility
models used for the ad hoc networks are variations of the
random walk model that defines individual node movements.
Very few mobility models reflect group-based movements of
nodes, one of which is the Reference Point Group Mobility
(RPGM) model [6]. In this model, the nodes in the network
are organized into mobility groups. Each mobility group has a
logical group center, the reference point, which defines the
movement of the entire group. The member nodes of the
group are physically distributed in the vicinity of the reference
point. The RPGM model describes the group membership of
a mobile node by its physical displacement from the group’s
reference point. For example, at time t, the location of the ith
node in the jth group is given by:

– Reference center location: Yj(t)
– Local displacement: Zj,i(t)
– Node location: Xj,i(t) = Yj(t) + Zj,i(t)
The RPGM model generates the physical locations of the

mobile nodes1, but it may not be used to accurately identify
mobility groups. As an illustration, Fig. 1(a) shows the snap-
shot of a network topology generated by the RPGM model:
there are three mobility groups with common reference points
(shown by the symbol ◦), and their coverage areas overlap —
the member nodes (marked by their group symbols) are all
intermixed. It is impossible to recognize the mobility groups,
based on the node physical location. Since the nodes exhibit
grouping behavior in their movements, naturally, a more
distinguishing characteristic of nodes within the same mobility
group is the node velocity. In other words, the mobility patterns
are correlated based on the velocity of nodes. When the node
velocities are plotted in the velocity (vx, vy) space as shown
in Fig. 1(b), the mobility groups are most apparent.

0 50 100 150 200 250 300

0

50

100

150

200

250

300

a) Mobile nodes in the x−y plane

x

y

−40 −20 0 20 40 60
−50

−40

−30

−20

−10

0

10

20

30

40

50
b) Mobility clusters in the velocity plane

V
x

V
y

Fig. 1. Mobile nodes represented by their (a) physical locations; and (b)
velocities

Therefore, we extend the RPGM model and propose a
Reference Velocity Group Mobility (RVGM) model [8].

1The RPGM model is used in generating network topologies for ad hoc
network simulations.
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In our model, we represent each mobile node by its velocity
v = (vx, vy)T , where vx and vy are the velocity components in
the x and y directions. Each mobility group has a characteristic
mean group velocity. The velocity of each member node
may be slightly different from the characteristic mean group
velocity. Therefore, the membership of ith node in the jth
group is described by the addition of two velocity vectors:

– Mean group velocity: Wj(t) ∼ Pj,t(w)
– Local velocity deviation: Uj,i(t) ∼ Qj,t(u)
– Node velocity: Vj,i(t) = Wj(t) + Uj,i(t)

We further model the group velocity Wj(t) and the lo-
cal velocity deviation of the member nodes Uj,i(t) as ran-
dom variables each drawn from the distribution Pj,t(w) and
Qj,t(u), respectively. The distributions can be any arbitrary
type, in order to model the various mobility patterns that
may exist for different mobility groups and for the nodes
within a mobility group. As an example, for the suitability
of applying the Kalman Sequential Clustering algorithm for
partition predictions (Sec. III-B), we may model the node
velocity distribution in each mobility group by a Gaussian
distribution parameterized by the mean group velocity:

µ = (µvx
, µvy

)

and the variance:

S =
(

σ2
vx

ρvxvy
σvx

σvy

ρvyvx
σvy

σvx
σ2

vy

)

where σvx
and σvy

represent the amount of variation in the x
and y component of the node velocities of the group, respec-
tively. The correlation coefficients ρvxvy

and ρvyvx
measure

the relation between vx and vy. The vx and vy are often
related due to the contour of the path the node is traveling,
e.g., turning a corner or moving along a curve. The variance
represents the amount of variation that exists in the member
node velocities.

As we have seen in Fig. 1(b), the mobility groups form
clusters in the velocity space where the member node veloci-
ties concentrate around the mean group velocity. We can take
advantage of this cluster pattern to detect the mobility groups
and identify the membership of every mobile node in an ad
hoc network. In addition, using the mean group velocity and
the variance parameters given by our RVGM model, we can
calculate the movements and locations of the mobility groups,
and then estimate the occurrence of network partitioning. The
RVGM model provides the basis for the NonStop algorithms
presented in this paper.

Throughput the paper, we consider wireless ad hoc networks
where each mobile node has a unique identifier and is able to
monitor its position (as a two-dimensional Cartesian coordi-
nate) via GPS devices or through measurements of other signal
sources. With the history of its successive locations, each node
can measure its current velocity, expressed by v = (vx, vy)T .
We further assume that each node is aware of the neighboring
nodes within its transmission range, by means of periodic local
broadcast of beacon signals.

The mobile nodes follow the group-based movements and
their velocities obey the RVGM model2. A mobile node’s
group membership is dynamic, that is, it may switch mobility
group at any time. Furthermore, to model realistic situations,
each node does not know its mobility group nor the group
memberships of other nodes.

With respect to the provisioning of multimedia streaming
services, we consider one or more of these services in the
network. The hosting nodes of such streaming services are
referred to as the service instances, or simply the servers.
Servers may be further replicated or subsequently terminated.
A node becomes a server when it receives a service instance
replication. The regular mobile users (nodes) in the network,
hereafter referred to as clients, need continuous streaming ac-
cess to at least one of the existing servers to obtain multimedia
data. Finally, the clients piggyback their identifier, location,
and velocity information when they initiate streaming requests
with the servers.

III. NONSTOP: PARTITION PREDICTION

We present the core algorithm in NonStop: partition predic-
tion. To guarantee continuous streaming service availability to
all its clients in a partitionable ad hoc network, a server must
replicate the service onto the partitioned nodes before they
completely separate. This is illustrated in Fig. 2.

A single server S is serving two mobility groups (Cj and
Ck) that are moving at different speeds and directions, and
S belongs to group Cj . Initially in Fig. 2(a), the coverage
areas of the two groups overlap, thus server S is accessible to
all nodes. However, after the groups separate in Fig. 2(c), the
nodes in group Ck are without service. Hence, S must replicate
service when it passes the boundary of Ck’s coverage area, as
shown in Fig. 2(b).
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Fig. 2. Server and partitioning in its existing clients

Therefore, the server must predict the partitioning; in par-
ticular, the time of boundary passing for replicating its service.
To make the prediction, S needs to detect the mobility groups
in its clients, and distinguish the mobility group membership
of itself and its clients to know which client node it should
replicate the service to.

Since the client velocities are known to the server through
piggybacking in the service requests, we propose a centralized
online algorithm run by the server to determine these neces-
sary information.

2We will show that the algorithms designed under such an assumption
perform well even when the assumption is invalid.
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A. Basic Sequential Clustering

We first propose to use the sequential clustering (SC)
algorithm from pattern recognition, which exploits the cluster
patterns formed by the mobile nodes to identify mobility
groups [8] [9]. The SC algorithm classifies the mobile nodes
into mobility groups based on the similarity between the
node’s velocity and the mean velocity of each mobility group.

The algorithm sequentially processes each mobile node xi

in three steps: (1) on the (vx, vy) velocity plane, it measures
the Cartesian distance between the velocity of xi and the mean
velocity of each group Cj , (1 ≤ j ≤ m). (2) If xi has the least
distance from group Ck, given by d(xi, Ck), and the distance
is less than a pre-set distance threshold α, then xi is classified
into group Ck; otherwise, a new group is created with node
xi as the first member. (3) Each time a new node is classified
into a existing mobility group, the mean group velocity is
recalculated. The algorithm is summarized in Table I.

TABLE I

SEQUENTIAL CLUSTERING (SC) ALGORITHM

m = 1
Cm = {x1}
for i = 2 to end of data set

Find Ck: d(xi, Ck) = min1≤j≤m d(xi, Cj)
if d(xi, Ck) > α and (m < mmax) then

m = m + 1
Cm = {xi}

else
Ck = Ck ∪ {xi}
recalculate the mean of Ck

end
end

The SC algorithm boot-straps itself by classifying the first
mobile node x1 into the first mobility group C1. The parameter
mmax is the maximum number of groups allowed, which
prevents too many mobility groups to be created. The details
and the performance of the SC algorithm are discussed in [8]
and [9].

The SC algorithm identifies the clusters formed by the mo-
bile nodes in the velocity space as those depicted in Fig. 1(b).
We can obtain: (1) the number of mobility groups from the
number of clusters found; (2) the mean group velocities from
the cluster centers; and (3) the mobility group membership
of every mobile node from which cluster its node velocity
belongs to. Since the algorithm presented in Table I is the
baseline in our studies, it is henceforth referred to as the Basic
Sequential Clustering Algorithm (BSCA).

B. Sequential Clustering based on Kalman Filter Estimation

To reduce the sensitivity to the order of data presentation
and to identify clusters of various shapes, we take an esti-
mation approach in the sequential clustering, where an extra
estimation component using a suboptimal Kalman filter is
added (Fig. 3).

We first describe the general idea of such an estimation-
based sequential clustering. The RVGM model states that,
every client node belongs to a mobility group and the velocities

Estimation

Proximity Measure

Learning

Classification

Fig. 3. Main steps in a Kalman Filter estimation clustering algorithm

of each mobility group follow a Gaussian distribution. Hence,
rather than vectors forming n clusters in the two-dimensional
velocity space, the node velocity data points (xi’s) can be
viewed as the outcomes of trials governed by a mixture of n
Gaussian probability densities:

P (xi) =
n∑

j=1

P (Cj)P (xi|Cj ;µj ,Sj)

where µj and Sj are the mean and the variance-covariance
matrix of the jth Gaussian distribution Cj . For convenience,
we assume all P (Cj)s are equiprobable:

P (xi) =
1
n

n∑
j=1

P (xi|Cj ;µj ,Sj).

For our classification purpose, for each observed data point
xi, the conditional probability P (xi|Cj) can be calculated
for every probability density Cj given its current µj and Sj .
If P (xi|Cq) = maxj=1,...,n P (xi|Cj) is greater than some
threshold α, then xi is assigned to Cq, and the parameters
µq and Sq are updated accordingly. However, the number
of Gaussian distributions and their µ and S are not known
a priori, and must be determined with each classification.
Thus, our cluster identification problem becomes an estimation
problem: given the observations, estimate the mean µ and
covariance S of each Gaussian distribution. In this algorithm,
a suboptimal Kalman filter is used to estimate the parameters
of the Gaussian distribution of each mobility group.

B.1 Dynamic Stochastic Systems

The premise for using a Kalman filter (or a suboptimal
version of the filter) is to model the Gaussian distribution of
each mobility group as a dynamic stochastic system. The de-
tails are presented as follows. Each mobility group’s Gaussian
distribution or each class (using a more familiar clustering
terminology) under estimation has dynamics associated with
it since its state (mean µ) evolves as new elements are
acquired. Each class is a stochastic random variable that has
uncertainty or variance S. Furthermore, each data point used
in the classification may or may not be a member of the class,
thus may provide valid or false inference about the state of
the class.

Hence, we model each class under estimation as a dynamic
stochastic system, and describe the system model using con-
ventional mathematical notations. Specifically, for class Ci, xi

k

is the state of the class which represents µ, the mean of the
Gaussian distribution, at discrete time step k:
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xi
k = xi

k−1 + ui
k−1 (1)

where ui
k models the system noise (variance of the Gaussian

distribution) due to disturbances. It is a white, zero-mean
Gaussian random sequence:

E[ui
k] = 0, E[ui

ku
i
k

T
] = Q, E[ui

ku
i
j

T
] = 0, ∀k �= j.

The expected initial state x̂i
0 and its associated variance Pi

0

are known:

x̂i
0 = E[xi

0], Pi
0 = E[(xi

0 − x̂i
0)(x

i
0 − x̂i

0)
T ].

The data point yk is an imperfect observation of xi
k:

yk = xi
k + wi

k (2)

due to the measurement error wi
k which models the variability

of the observation. The wi
k is also a white, zero-mean Gaus-

sian random sequence:

E[wi
k] = 0, E[wi

kw
i
k

T
] = R, E[wi

kw
i
j

T
] = 0, ∀k �= j.

The system noise and measurement error are uncorrelated

∀k ∀j, E[ui
kw

i
j ] = 0.

Also, Q and R are the variance of the system noise and the
measurement error, respectively.

B.2 Kalman Filter

For a stochastic system, given its system model (Eq. (1) and
(2)) and noise-corrupted measurements (yk), a Kalman filter
can be used to estimate the system state, x̂i

k (∧ indicates it is
an estimate of xi

k) such that the mean-square estimation error
Pi

k is minimized,

Pi
k = E[(xi

k − x̂i
k)(xi

k − x̂i
k)T ].

The Kalman filter is a linear data processing algorithm that
uses all the available information about the system: a) knowl-
edge of the system dynamics model, b) measurements of
all precisions, c) statistical information about system and
measurement noise, and d) initial system state, to generate
an estimated system state with the minimum estimation error.

The algorithm of the discrete time Kalman filter3, for the
stochastic system defined by Eq. (1) and (2), is expressed by
the five steps shown in Fig. 4.

B.3 Suboptimal Kalman Filter

Since our classes or Gaussian distributions can be mod-
eled as dynamic stochastic systems, and the node velocity
data points are the observed measurements of the Gaussian
distributions, we attempt to use the Kalman filter to estimate
the Gaussian distribution of each mobility group.

We first examine the requirements for applying the Kalman
filter. Our system model (Eq. 1 and 2) satisfies the required
assumptions of the Kalman filter. For the required initial
variables, x0, P0, Q and R, we have x0 as the first data point

3Detailed and rigorous mathematical explanations of the Kalman filter can
be found in reference [10] and [11].

1. State estimate prediction (propagation)
x̂−

k = x̂k−1

2. Covariance estimate prediction (propagation)
P−

k = Pk−1 + Q
3. Weighted gain calculation

Kk = P−
k

P−
k +R

4. State estimate update
x̂k = x̂−

k + Kk(yk − x̂−
k )

5. Covariance estimate update
Pk = P−

k − KkP−
k

Fig. 4. Equations of the discrete time Kalman Filter

processed and the associated variance P0 can be set to some
reasonable estimate. However, we do not have the variances
of the system and measurement noise, Q and R. Therefore, a
suboptimal Kalman filter is used to estimate the parameters
of each Gaussian distribution.

We initialize Q0 and R0, and estimate the Qk and Rk

simultaneously with the system state xk. Since Qk is the
variance of the system noise, it is estimated as the iterative
mean of incremental difference between successive system
state estimate x̂k,

Q̂k =
1
k

k∑
j=1

qjqT
j , where qj = x̂j − x̂j−1

Similarly, R is the variance of the measurement error, it is
calculated as the iterative mean of the discrepancy between
the measurement yk and the propagated state estimate x̂−

k at
every time instant.

R̂k =
1
k

k∑
j=1

rjrT
j , where rj = yj − x̂−

j

The outline of the suboptimal Kalman filter algorithm is
illustrated in Fig. 5. For clarity, the original 5 steps of the
Kalman filter are labeled in the figure.

At each time step k, with a measurement of the class state
yk, the suboptimal Kalman filter estimates the class state
x̂k, the system and measurement variances Q̂k, and R̂k, and
calculates the estimation error P̂k, and further propagates them
to the next time step.

B.4 Algorithm Outline

The complete outline of the sequential clustering algorithm
using the suboptimal Kalman filter estimation is given in
Table II. It has the similar algorithmic structure as the basic
sequential clustering algorithm (BSCA) shown in Table I, but
with one extra step of the suboptimal Kalman filter added.

Line 1 to 3 bootstrap the clustering algorithm by classifying
the first data point, and set up the initial state variables required
by the suboptimal Kalman filter. For subsequent data points
(yt’s), the algorithm sequentially processes each data point
through the estimation, proximity measure, classification, and
learning steps.
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Fig. 5. Suboptimal Kalman Filter

For data point yt, Line 7 to 9 use the suboptimal Kalman
filter to estimate the Gaussian probability density P (yt|Ci),
for i = 1 to n, where n is the number of classes that currently
exist. The suboptimal Kalman filter balances the uncertainty
about the class state and the possible error introduced by
the data point, hence determines the likelihood the data
point belonging to the class while minimizing the uncertainty
about the class state or the estimation error. The estimated
values of the class state variables are temporarily stored in
(x̂i∗

ki
, P̂i∗

ki
, Q̂i∗

ki
, R̂i∗

ki
)

The proximity measure (Line 11) is calculated from the
Gaussian pdf P (xi|Cj), with the estimated parameter x̂i∗

ki
as

the mean and P̂i∗
ki

as the variance.

The classification rule (Line 13) determines which class
the data point yt belongs to. If the maximum probability of
yt belonging to any of the existing class is less than the
threshold α, a new class is created (Line 14 to 16); otherwise,
yt is classified to the most probable class. With the newly
acquired data point, the class learns its new state by updating
its class state variables to the estimated (x̂i∗

ki
, P̂i∗

ki
, Q̂i∗

ki
, R̂i∗

ki
)

and propagate them to its next classification instant (Line 19).

Compared to BSCA, the computation cost of this algorithm
is higher while still manageable, since the suboptimal Kalman
filter involves a few multiplication and one inversion of the

TABLE II

THE KALMAN SC ALGORITHM

1. n = 1
2. Cn = {y1}, kn = 1, initialize
3. x̂n

kn
= y1, P̂n

kn
= P0, Q̂n

kn
= Q0, R̂n

kn
= R0

4.
5. for t = 2 to end of data set
6.
7. for i = 1 to n

8. (x̂i∗
ki

, P̂i∗
ki

, Q̂i∗
ki

, R̂i∗
ki

) =
suboptimal kalman(yt)

9. end
10.

11. Find Cq: P (yt|Cq; x̂
i∗
kq

, P̂i∗
kq

) =

max1≤i≤n P (yt|Ci; x̂
i∗
ki

, P̂i∗
ki

)
12.
13. if P (yt, Cq) < α and (n < nmax) then
14. n = n + 1
15. Cn = {yt}, kn = 1, initialize
16. x̂n

kn
= yt, P̂n

kn
= P0, Q̂n

kn
= Q0, R̂n

kn
= R0

17. else
18. Cq = Cq ∪ {yt}, kq = kq + 1, commit
19. (x̂i

kq
, P̂i

kq
, Q̂i

kq
, R̂i

kq
) = (x̂i∗

kq
, P̂i∗

kq
, Q̂i∗

kq
, R̂i∗

kq
)

20. end
21.
22. end

2 × 2 matrix4.
For simplicity, in the remainder of this paper, we refer to

the algorithm as sequential clustering based on Kalman filter
estimation (or simply Kalman SC), even though it in fact
uses a suboptimal Kalman filter. We postpone performance
comparisons between the BSCA and Kalman SC to Sec. V.

C. Service Replication

With the mobility groups accurately identified, the server S
can calculate the time of service replication. S determines the
two groups Cj and Ck are moving at the velocities of Wj

and Wk, and itself belongs to group Cj , while its velocity is
VS . Then, the effective velocity, VS↔Ck

, at which group Ck

is separating from S is:

VS↔Ck = VS + (−Wk), VS↔Ck = (Vx,S↔Ck , Vy,S↔Ck)

Fig. 6 illustrates a geometric view of S and the mobile nodes
in Ck. The server can determine this view from the client’s
location information piggybacked on the service requests. The
goal is for S to replicate its multimedia streaming service to
a node in the departing group Ck, and to start the replication
process as soon as possible. Therefore, the node closest from
S in the direction of VS↔Ck

should be selected. To find
the closest node, let vector Lx,S denotes the distance vector
between S and a node x, and θx,S is the angle between
vectors Lx,S and VS↔Ck

. Only the nodes “ahead” of S in the
direction of VS↔Ck

, with |θx,S | < 1/2π should be considered
(shown as the shaded nodes in Fig. 6). Projecting the distance

4A more efficient form of the Kalman filter where the inverse matrix is
propagated can be found in [10].
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vector Lx,S of each node x onto VS↔Ck
, the closest node

from S has the smallest projection proj(Lx,S). In Fig. 6, it is
node x6. Thus, the server selects

XCk
= the node in Ck with min(proj(Lx,S))

as the target node in group Ck for service replication. The
corresponding time of service replication is

TS,Ck
=

proj(LXCk
,S)√

V 2
x,S↔Ck

+ V 2
y,S↔Ck

.

x,Sθ

VS<−>Ck

Ck

S
proj( Lx,S )

Lx,S

x xx

x

x

x

x

x

x2

13

4

5

6

7

8

Fig. 6. Timing and node selection in service replication

Once TS,Ck
is computed, we may use it as an estimate of

the duration between the timing of prediction and partitioning
events. If this estimate is larger than the time required to
replicate the streaming service (assuming known sizes of the
media streams), we initiate the replication process. Otherwise,
the replication may fail to complete before partitioning occurs,
and we abort the replication attempt. If a replication should be
initiated, the server first checks if the target node is reachable,
since the node may have changed its movement path. Second,
the server verifies the target node is still a client, because the
node can switch to a better server (discussed in Sec. IV) after
the replication is scheduled. If both conditions hold, the server
initiates a replication to the target node. After the replication,
the target node is referred to as the child server, corresponding
to its parent server S.

IV. NONSTOP: SERVER SELECTION

In the previous section, we have addressed the problem of
streaming service continuity during network partitioning from
the point of view of the streaming services. On the other
hand, from the point of view of the client nodes (users), a
streaming server that was previously connected may become
unreachable when the network partitions. Hence, it is essential
for the clients to discover and select a reliable streaming
service instance with a stable connectivity that is unlikely to
be disconnected.

According to the RVGM mobility model, nodes of the same
mobility group have similar velocities, and hence maintain a
relatively steady distance from each other. Naturally, a node
has stable connectivity with other nodes of its own mobility
group. In addition, the mobility group is unlikely to be divided

during the partitioning, and the server side service replication
algorithm ensures that a service instance is always available
in a disconnected partition. Therefore, the search for nodes of
stable connectivity may be reduced to the problem of finding
nodes of same group.

However, in a spontaneously deployed ad hoc network with
no pre-configurations, the mobile node has no prior knowledge
about the mobility groups, let alone its and other nodes’ group
memberships. To further complicate the case, the mobility
group membership of a node can change dynamically, as the
mobile host may decide to change its course of movement.
Although the SC algorithms (either BSCA or Kalman SC)
can identify mobility groups at run-time, it is centralized in
nature and hence impractical for every client to run, because
of the prohibitive communication cost of collecting velocities
globally from the other nodes. We need a fully distributed
algorithm for the individual client to find nodes of its mobility
group at run-time, which only requires local information.

A. Stable Group

Before introducing the algorithm, we first define stable
connectivity between mobile nodes and the term stable group
[12].

Through periodic beaconing, a mobile node can estimate
its distance (e.g. extrapolate from signal strength of received
beacons) to each neighboring node5. Assuming symmetric
transmissions, the nodes A and B are neighbors if the distance
between them ‖AB‖ ≤ r, where r is the transmission range.
‖AB‖ varies since both A and B are mobile. However, if A
and B are of the same mobility group, ‖AB‖ is less variable
and relatively steady. To formally define stable connectivity in
terms of the distance ‖AB‖, we define the following terms:

Definition 1: Nodes A and B form an Adjacent Group
Pair (AGP), denoted by A

0∼ B, if ‖AB‖ obeys a normal
distribution with a mean µ ≤ r, and a standard deviation σ <
σmax.

Definition 2: Nodes A and B form a k-related Adjacent
Group Pair (k-AGP), denoted by A

k∼ B, k ≥ 1, if there exist
k intermediate nodes C1, C2, . . . , Ck, such that A

0∼ C1, C1
0∼

C2, . . . , Ci
0∼ Ci+1, . . . , Ck

0∼ B.
Definition 1 captures the fact that if two adjacent nodes

are in the same group, the distance between them stabilizes
around a mean value µ with small variations, while µ < r so
that they are connected. Although they may be out of range
from each other (‖AB‖ > r) intermittently, the probability
is low based on its probability density function. The standard
deviation σ represents the degree of variations; nodes with
correlated mobility pattern have small σ. Two nodes forming
an AGP have stable connectivity, and Definition 2 extends the
stable connectivity relation to non-neighboring nodes. Fig. 7
gives an example of AGP and k-related AGP.

We now formally define the relation between a group of
nodes with stable inter-nodal distance.

5One may argue that it is non-trivial to estimate such distances accurately.
In fact, the effectiveness of our algorithm does not rely on accurate estimates,
since it derives properties from distance variations over time.
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(a) Two nodes as
Adjacent Group Pair

(b) k-related AGP

Fig. 7. Adjacent Group Pair and k-related AGP

Definition 3: Nodes A and B form a group pair, denoted
by A ∼ B, if either A

0∼ B or A
k∼ B, k ≥ 1.

Definition 4: A1, A2, . . . , An are in one stable group Gs,
denoted by Ai ∈ Gs, if Ai ∼ Aj ,∀i, j, 1 ≤ i, j ≤ n.

The definition of a stable group identifies the nodes with
stable connectivity in terms of relative stability in distance
(or correlated mobility patterns) over time, rather than close
geographic proximity at any given time instant. It excludes
any mobile nodes that briefly connect but soon separate due
to different movement patterns (belonging to different mobility
group). The definition of a stable group coincides with that of
a mobility group in the RVGM model, but it is based on the
local distance between neighboring nodes.

B. Distributed Grouping Algorithm

We propose a fully distributed grouping algorithm for a node
to identify its stable group — the group of nodes it has reliable
connectivity with — at run-time, using only local observations.

On each mobile node Ai, the following local states are
maintained for running the distributed grouping algorithm:

– Profile of measurements [P (Ai)]: a two-dimensional pro-
file in which each row represents one of the neighbors,
and each column represents distances to all neighbors
obtained from one round of measurements. After l mea-
surements, l samples of distances are obtained from Ai

to each neighbor.
– The set of AGP nodes [AGP (Ai)]: the set of neighbors

that has been identified to have AGP property, using
P (Ai).

– The set of nodes in the same stable group [Gs(Ai)]:
updated regularly by exchanging information with AGP
neighboring nodes. During boot-strapping, Gs in a node
Ai is initialized to {Ai, AGP (Ai)}.

– The set of servers in the stable group [Ns(Ai)]: for each
server Si, its id and last-known velocity are stored as a
tuple 〈id(Si),V(Si)〉 in Ns(Ai).

The distributed grouping algorithm allows the mobile nodes
to find their AGP neighbors and construct their stable group
Gs in a fully distributed fashion. It has the following steps:

1) Measurements: Ai measures the distance between itself
and each neighbor for l times. The measurements are
collected in the profile P (Ai).

2) Updates: For each neighbor, the l distance measure-
ments are used to obtain the mean distance µ, and the
standard deviation σ around the mean. If µ and σ satisfy
Definition 1, then the neighbor and Ai are added to each
other’s AGP (·) and Gs(·) set. Otherwise, if the neighbor
is an existing AGP node, it is removed from AGP (Ai)

and Gs(Ai), and likewise Ai is removed from the AGP
and Gs set of the neighbor. If Ai is a server, its tuple
〈id(Ai),V(Ai)〉 is stored in Ns(Ai), and its V(Ai) is
updated. If the service was terminated on Ai, its tuple
is removed.

3) Exchanges: Ai exchanges its Gs(Ai) and Ns(Ai) with
the neighbors that are in AGP (Ai). It sends the fol-
lowing information to all nodes in AGP (Ai): (1) its
identifier; (2) its Gs(Ai); and (3) its Ns(Ai). Upon
receiving information from other nodes, it constructs its
local copy of Gs and Ns with the algorithm shown in
Table III:

TABLE III

FORMATION OF Gs(Ai) AND Ns(Ai) ON NODE Ai

Gs(Ai) initialized to {Ai, AGP (Ai)}, Ns(Ai) = φ;
Let Gp

s(Aj) and Np
s (Aj) be the previously received

Gs(Aj) and Ns(Aj), respectively, from Aj ;

On receiving Gs(Aj) and Ns(Aj) from Aj :

foreach Ak in Gs(Aj)
if Ak /∈ Gs(Ai) then

Gs(Ai) = Gs(Ai) + Ak

end
foreach Ak

s.t. Ak ∈ Gp
s(Aj), Ak ∈ Gs(Ai) and Ak /∈ Gs(Aj)

Gs(Ai) = Gs(Ai) − Ak

end
Identical processing applies to Ns(Ai);
Remove all tuples 〈id(S),V(S)〉 from Ns(Ai)
if S /∈ Gs(Ai).

Such exchange of Gs between the AGP nodes ensures
that the local copy of Gs on all nodes of the same stable
group eventually converge to an accurate group snapshot
that includes all current members. This holds when new
nodes are discovered and added to the stable group, or when
existing members disconnect from the group and are subject
to removal. The communication overhead and complexity
of such exchanges are dependent on the size of the stable
group, which is often much smaller than the total size of
a partitionable ad hoc network. The local computation on
each node only involves the calculation of mean and standard
deviations, as well as set operations. They are, therefore, very
computationally efficient algorithms.

C. Selection of Streaming Service

The mobile nodes, both clients and streaming servers,
run the distributed grouping algorithm at a regular service
discovery interval. After each run of the algorithm, the node
constructs its stable group Gs and discovers a set of servers
Ns.

The client selects its streaming server among the discov-
ered servers. If there are several, the client selects the best
server through velocity comparison. Since the nodes of the
same mobility group can maintain longer lasting connections
during network partitioning, the client selects the best as the
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server with the most similar velocity. The act of periodically
discovering servers and selecting the best server allows the
clients to actively pursue the more stable server, as a mean
of adapting to the frequently changing network topology and
network partitioning events.

D. Optimizing Service Efficiency

In addition to guaranteeing continuous availability of the
streaming services, our second objective is to minimize the
service cost — the number of streaming service instances
deployed in the network, while maintaining the network-wide
service coverage.

Because the stable connectivity among the nodes of the
same mobility group, we use the mobility group as the basic
unit of service coverage. At time t, Nk(t) denotes the number
of mobility groups that have access to a service instance, and
Ns(t) denotes the number of service instances deployed. We
quantify the service efficiency as

Sefficiency(t) =
Ns(t)
Nk(t)

Since the nodes in a Gs group have stable connectivity,
only one server is required to provide the service to the entire
group, and other servers are redundant and can be turned off.
The server also runs the distributed grouping algorithm at
service discovery intervals to discover a set of stable servers
Ns. By doing so, the servers in the same stable group monitor
each other’s presence. As an arbitration, the server with the
highest id continues its service, and the others with lower ids
automatically terminate their service instances.

The following condition must be checked before a server
terminates its service. The server cannot be the parent or
the child of the highest ided server from a recent service
replication. This prevents the parent and child servers, when
they are in close vicinity shortly after the replication, from
terminating each other, since each is intended for a different
mobility group that will soon partition.

V. SIMULATION AND ANALYSIS

To evaluate the validity and the collective performance of
NonStop, we perform extensive simulations using a large-scale
mobile ad hoc network, with 130 mobile nodes moving in
a square area of 750 × 750m2. Nodes that move beyond an
edge of the simulation area bounce back in their reflective
directions6 The transmission range of nodes is 60 meters.
We configure 6 mobility groups, with their initial locations,
movement paths and coverage areas shown in Fig. 87.

In addition, we simulate each mobility group’s node veloc-
ities with a unique Gaussian distribution as in the Reference
Velocity Group Mobility (RVGM) model. We also simulate
the dynamic group memberships by introducing the notion of
a mobility epoch. The mobility epoch is a time period during
which the movement stays the same. Both mobile nodes and

6We have also implemented wrap-around border behavior so that nodes
re-emerge at the opposite side, the simulation results do not change.

7The coverage areas of groups 1-3 and 4-5 are initially fully overlapped.
The illustration is different for the sake of clarity.

S

S

1 2

34

5

6

S

Fig. 8. Simulation of a mobile ad hoc network: initial scenario

the mobility groups have their mobility epochs, the lengths
of which are exponentially distributed, with the mean 1/λn

(90 time units in the simulations) and 1/λg (30 time units),
respectively. At the end of one mobility epoch, the mobile
node has a 0.3 probability of changing its group membership
to another mobility group by following their neighbors, i.e.,
switching only to the mobility groups of its neighboring node.
For the mobility group, at the end of its epoch, it randomly
selects a new speed and direction.

Three streaming service instances are placed strategically
at each concentration of mobile groups, so that initially all
mobile nodes can access a service instance. However, the
mobility groups are configured to partition and merge as soon
as they start moving. We evaluate the performance of our
algorithms under these dynamic network topology changes.
All simulations are run for 1000 time units, t. The performance
metrics we use to evaluate our algorithms are: (1) service
coverage, in terms of the total number of nodes that can
access a streaming service, normalized over the total number
of nodes; and (2) service cost, in terms of the total number of
streaming service instances in the network, normalized over
the total number of mobility groups (which effectively reflects
the service efficiency as defined in Sec. IV-D). Note that the
normalized service cost may be less than 1 when one server
is serving two or more temporarily merged mobility groups.

A. Comparison with Alternative Approaches

We compare the NonStop algorithms with three alternative
approaches. (1) No replications: The baseline approach where
the three servers move with their own mobility groups, and
take no actions to ensure service coverage. Only the client
nodes run the the distributed grouping algorithm to discover
and select servers. (2) Fixed Servers: This is similar to the
approach above, except four servers are fixed at specific points
uniformly spaced in the 750 × 750m2 simulation region,
analogous to the cellular base stations. The servers do not
replicate services. (3) Probe for Replications: Similar to the
first approach where the three servers are mobile, and the
clients run the distributed grouping algorithm to discover
servers. However, if no servers are found in its stable group
(i.e., during a streaming interruption), the client regularly
probes reachable neighbors for a service instance that it can
replicate. Also, the redundant service instances in the same
stable group are terminated. This is the approach proposed
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Fig. 9. Comparison of Different Approaches

in [12] for improving service accessibility during network
partitioning, which this work is based upon.

The normalized service coverage and service cost of the
three alternative approaches and our prediction-and-replication
approach are plotted in Fig. 9. We also tabulate their mean
values8 in Table IV.

TABLE IV

SERVICE COVERAGE AND SERVICE COST COMPARISON
Mean service Mean service

Approaches coverage cost
no replications 0.823 0.500 (const.)
fixed (4) servers 0.707 0.666 (const.)
probe for replications 0.912 0.535
prediction & replications 0.996 0.962

The first two approaches — no replication and fixed servers
— have no service replications, and consequently have the
lowest service coverage and constant service cost. The server’s
mobility affects the service coverage. When the servers are
moving with the mobility groups (in the no-replication ap-
proach), the service coverage changes whenever the groups
separate (network partitions) or recombine (network merges).
When the servers are fixed (in the fixed-servers approach), the
coverage decreases and increases as the mobile nodes move
in and out of the transmission range of the fixed servers.
Therefore, Fig. 9(c) shows more periodic and frequent rises
and drops in service coverage than Fig. 9(a).

8The mean values are also marked within the figures in all illustrations.

The third approach, probe for replications, shown in
Fig. 9(e)(f), greatly improves the service coverage to 91.2%
because service instance can replicated onto disconnected
nodes. However, the service coverage is still interrupted when
the network partitions, and the service replication occurs by
chance — only when a probing client encounters a server.
In comparison, our NonStop approach using partition pre-
diction by the server achieves full service coverage, shown
in Fig. 9(g)(h), because the service is always replicated well
before the partitioning, and the redundant service instances are
terminated only after a period of careful monitoring. Naturally,
our approach incurs a higher mean service cost of 0.962,
which means on average 5.77 service instances are deployed.
However, this is still less than the total number of mobility
groups, indicating that our service efficiency algorithms effec-
tively reduces the redundant servers. Comparing to 16 fixed
servers, our approach achieve full service coverage with only
1/3 of the service cost.

From the comparisons, we may conclude that the NonStop
algorithm is effective in providing continuous service cover-
age, since the replications is decided at run-time based on the
changing network topology.

B. BSCA, Kalman SC and Perfect Group Identification

We compare the performance of the basic sequential cluster-
ing algorithm (BSCA) with that of the Kalman filter estimation
sequential clustering algorithm (Kalman SC), and further
compare both algorithms with the performance of a perfect
group identification.

Recall that the performance of both BSCA and Kalman
SC are sensitive to the order in which the data points are
presented, and to the shape of the clusters formed by the data
points. In our simulation, the client velocities are collected
by the server whenever the client sends a service request and
piggybacks its velocity information. We model each client’s
service request rate as a Poisson process which is independent
of other nodes. Therefore, the client velocities collected by
the servers are random and are not ordered by their mobility
groups. In addition, to vary the shape of the clusters in the
velocity space, we adjust the variance S of the Gaussian
distribution that generates the node velocities of each mobility
group. We have two setups: in setup 1 (Fig. 10(a)), the mobility
group velocities form well-separated and compact clusters, and
in Setup 2 (Fig. 10(b)), they form scattered and elongated
clusters. In Fig. 10(a), the mean group velocity (vx, vy) of
every mobility group is labeled corresponding to the physical
layout shown in Fig. 8. Based on such setups, the initial
parameters of both BSCA and Kalman SC are shown in Table
V.

The simulation results of Setup 1 are shown in Fig. 11. In
(a) the service coverage is initially 0 as all mobile nodes begin
without any service, but increases as the nodes discover service
nodes by running the distributed grouping and server selec-
tion algorithms. Because there are large separations between
the node velocity clusters, it is found that both BSCA and
Kalman SC correctly identify all necessary mobility groups,
and initiate the server to replicate at the appropriate time.
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TABLE V

BSCA AND KALMAN SC INITIAL PARAMETER VALUES

α nmax P0 Q0 R0

BSCA 2 4 — — —

Kalman SC 0.10 4
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Fig. 10. Simulation Mobility Group Velocities Setup 1 and 2

Thus both sequential clustering based algorithms achieve full
service coverage, identical to the perfect identification based
algorithm, illustrated in Fig. 11(a).
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Fig. 11. Setup 1: Comparison of perfect mobility identification, BSCA, and
Kalman SC

However, in Fig. 11(b), both the BSCA and Kalman SC
algorithms incur higher service cost, as the sequential clus-
tering algorithms tend to identify extra mobility groups and
trigger more service replications. This is due to the algorithm’s
occasional misclassification, and also the clustering parameter
nmax (the maximum allowed number of clusters) set to a
larger value (4) to prevent a under-detection of mobility
groups. Fortunately, the redundant service replications are
quickly rectified by the service termination algorithm, shown
as the high narrow spikes. Overall, both sequential clustering
algorithms are able to achieve normalized service costs9 of
0.93 and 0.94, which are less than 1.

Fig. 12 shows the simulation results of all three algorithms
for Setup 2. In general, the complete service coverage is not
constantly maintained, since the large variance in velocity
distribution generates nodes with more sporadic velocity, that
often stray from their mobility group and are disconnected
from service, which explains the many narrow dips in the
service coverage. The Kalman SC algorithm, when initialized

9For all illustrations, the mean values are marked within the figures.
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Fig. 12. Setup 2: Comparison of perfect mobility identification, BSCA, and
Kalman SC

with suitable parameters (P0, Q0, and R0) as shown in Table
V, can correctly identify the clusters of various shape and
orientations, and attain the same level of service coverage
(0.99) and at even slightly lower service cost (0.85) than the
perfect mobility identification algorithm. In comparison, the
BSCA algorithm does not recognize cluster orientation and
hence is unable to distinguish neighboring velocity clusters
oriented at different directions (such as those formed by group
2 and 5, and group 4 and 6 in Setup 2 shown in Fig. 10(b))
as separate clusters. Hence, BSCA under-detects the number
of mobility group, and leads to failure of the server to predict
partitioning and replicate service. This is reflected in its service
coverage dropping almost 20% for a period of time and a lower
service cost 0.75 compared to Kalman SC and the perfect
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group identification. Compared with BSCA, the advantages
of Kalman SC are brought forth by the added computational
complexity of applying the Kalman Filter, which may add
to the computation load on the streaming servers. That said,
in our simulations with Pentium-grade processors, we do not
detect any noticeable extra computation time with Kalman SC
compared with BSCA.

For later simulation results in order to evaluate the perfor-
mance of other aspects of our algorithms, all simulations are
run with the mobility group velocity Setup 1, to eliminate
the presence of stray mobile nodes with sporadic velocity that
causes drops in service coverage. In addition, since both BSCA
and Kalman SC perform equally well for the compact clusters
in Setup 1, for simplicity, we use the BSCA algorithm for
mobility group identification in the simulations, and refer to
BSCA simply as the sequential clustering (SC) algorithm.

C. Group vs. Random Walk Mobility Model

Our algorithms utilize the assumption of correlated mobility
patterns of mobile nodes to predict partitioning, the results
of which are used to replicate service and to achieve service
availability. To test the robustness of our algorithms, we
examine their performance when the assumption of group
mobility no longer holds.

In this simulation, the mobile nodes move according to
either RVGM or the random walk mobility model. For random
walk movement, the mobile node’s speed is selected uniformly
between 0 and a maximum speed of 10 m/t, and a direction
chosen uniformly between 0 and 2π. At the end of a mobility
epoch, the nodes randomly select a new speed and direction.
The random walk nodes are evenly distributed throughout the
simulated network area. We define the degree of group mobility
in the network as the percentage of network nodes that follow
the RVGM model. We simulate four cases: 100%, 75%, 25%
group mobility and 100% random walk.
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Fig. 13. Comparison between group and random walk node mobility

As expected, in Fig. 13, the service coverage is lower when
there are random walk nodes in the network, compared to
100% in 100% group mobility, it drops to between 80%
and 90%. However, the service coverage of 80% to 90% is
unexpectedly high, and interestingly, it does not vary much
for the different degree of random walk in the network.
This is due to two balancing factors. First, higher percentage
of random walk nodes gives rise to fewer occurrences of
network partitioning, as the nodes are uniformly distributed

throughout the network. Second, higher percentage of RVGM
nodes allows the SC to better capture the movement pattern,
predict partitioning and replicate service. Both factors afford
continuous service coverage to the mobile nodes.

The accuracy of the SC mobility group identification de-
creases when the node velocities are random and uncorrelated,
the SC identifies the maximum number of mobility groups
allowed, triggering more replications, and hence, higher ser-
vice cost. However, at 100% randomness, there are no clear
distinctions between the node velocities, the SC algorithm tend
to classify nodes into a single mobility group, this explains the
drop in service cost.

VI. RELATED WORK

In addition to the alternative approaches which we compared
and discussed in Section V-A, other recent research works have
also addressed the problem of service availability in frequently
partitioned ad hoc networks, although with slightly different
focuses. Here, we present a comparison between our work and
the recent contributions.

Karumanchi et al. [13] has assumed that there are many des-
ignated servers throughout the network. However, the servers
are pre-determined and fixed, so during network topology
changes and network partitioning, their reachability changes.
Hence, the work has developed run-time heuristics for clients
to select servers with the highest likelihood of being accessi-
ble, in order to maximize the chances of successful service
requests. In comparison, rather than relying only on client
side heuristics, our approach aggressively ensures service
accessibility to the clients by dynamically creating and placing
servers based on the changing network topology. The service
accessibility is further improved by client side selections of
reliable servers.

The work by Hara [14] focuses on data accessibility in ad
hoc networks. It assumes that all mobile nodes can store some
data replicas. Hence the work is concerned with the optimal
placement of data replicas around the network that achieves
high data accessibility in the event of network partitioning,
by considering data access frequencies of mobile nodes. Our
approach is similar in replicating data or service instances;
however, we consider topology changes and connection stabil-
ity to replicate only when necessary and to strategically place
the replicas. Further, redundant service replicas are eliminated
through service efficiency algorithms. Thus, our approach
achieves network wide data or service accessibility with much
lower replica costs.

Liang and Haas in [15] have proposed the virtual service
backbone. Similar to our approach, the servers are dynamically
created and terminated as the network topology changes to
ensure network wide service availability. Further, it is service
efficient by having only one server serving a well-connected
group of nodes, in this case a r-hop network zone, and
redundant servers are merged. However, in their approach,
when servers fail due to network partitioning, a new server
is regenerated. This has two drawbacks. First it relies on the
nature of the service being regenerable, which is unlikely for
general network services. Without the service being regener-
able, the service is lost in the partitioned network. Second,
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during the period of server failure detection and regeneration,
the service is interrupted for the mobile nodes. Our approach
averts these drawbacks by creating a new server through
replication before the partitioning occurs.

The major difference between these schemes and our work
is that they cannot guarantee service availability when the
network is partitioned. This is because they treat the event
of network partitioning as non-deterministic: [13] and [14]
populate the network with redundant data replicas or servers
to mitigate the impact of partitioning, and [15] regenerates
servers after the failure. Our solution utilizes observed node
mobility patterns to predict the occurrence of partitioning, and
takes the necessary actions in advance to efficiently provide
continuous service availability when the network partitions.

VII. CONCLUSIONS

In this paper, we have proposed NonStop, a collection of
middleware-based on-line algorithms to address the problem
of provisioning continuous streaming service of multimedia
data in wireless ad hoc networks. We take the approach of
exploiting correlated mobility patterns exhibited by mobile
users. On the streaming servers, we present two variants of
sequential clustering algorithms that can identify correlated
mobility patterns, which is used to predict the time and
location of network partitioning. On the clients, we show a
fully distributed grouping algorithm that discovers mobility
group membership based on the stability with respect to dis-
tances to neighboring nodes. Our simulations show that, under
frequent network partitioning, our algorithms achieve contin-
uous and network-wide streaming coverage with efficiency,
whereas other alternative approaches only mitigate the effect
of partitioning but cannot prevent streaming interruptions.
However, NonStop does bring the overhead of replicating
services, which we believe is inevitable when we demand
continuous streaming services in a fundamentally disruptive
network. In addition, we note that NonStop does not apply
to the case where a high degree of user mobility and a large
media stream co-exist, in which case the replication may not be
accomplished between the time of prediction and partitioning.
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