
1

Adia: Achieving High Link Utilization with
Coflow-Aware Scheduling in Data Center Networks

Jingjie Jiang, Shiyao Ma, Bo Li, Fellow, IEEE, Baochun Li, Fellow, IEEE

Abstract—Link utilization has received extensive attention since data centers become the most pervasive platform for data-parallel
applications. A specific job of such applications involves communication among multiple machines. The recently proposed coflow abstraction
depicts such communication through a group of parallel flows, and captures application performance through corresponding communication
requirements. Existing techniques to improve link utilization, however, either restrict themselves to achieving work conservation, or merely
focus on flow-level metrics and ignore coflow-level performance. In this paper, we address the coflow-aware scheduling problem with the
objective of maximizing link utilization. Through theoretic analyses, we formulate the coflow-aware scheduling problem as a NP-hard open
shop scheduling problem with heterogeneous concurrency. We design Adia, a hierarchical scheduling framework to conduct both inter- and
intra- link scheduling. The design of Adia leverages priority-based scheduling while guarantees work-conserving and starvation-free
bandwidth allocation at the same time. We also prove Adia’s algorithm is 2-approximate in terms of link utilization. Extensive simulation
results on ns3 further show that Adia outperforms both per-flow mechanisms coflow schemes in terms of link utilization, and achieves similar
coflow performance in comparison with the state-of-art coflow scheduling schemes.

Index Terms—Datacenter Networks, Parallel Computing, Big Data Processing, Resource Utilization.

F

1 INTRODUCTION

Achieving high link utilization has come into the academic
spotlight since data centers become the de facto computing
platform for data-parallel applications [1]. As reported in [2],
network devices in data centers, such as links and switches,
contribute to about 15% of the overall cost. With the expensive
devices already deployed, the average utilization of network
links is unfortunately very low in most data centers. Less than
40% of link bandwidth at the edge layer is utilized on average
[1] [3]. However, edge links still suffer from severe congestions
during peak hours. The high peak-to-average ratio forces the
overs network bandwidth to guarantee the acceptable end-to-
end delay even during the peak hours.

To improve the average link utilization, existing flow
scheduling mechanisms (e.g., D3 [4], PDQ [5] and pFabric [6])
strive to be work-conserving. Work conservation, however,
only tries to improve the utilization of each single link without
considering the global situation. Without proper coordination,
a flow might unnecessarily occupy the bandwidth on a re-
ceiver’s downlink, hindering other flows on the same link.
Consequently, the uplinks of these affected flows are at risks
of underutilization. In this case, the work conservation is not
violated, but the link utilization is suboptimal. Scheduling
mechanisms focusing on work conservation are thus insuffi-
cient to achieve optimal link utilization. To make things worse,
tenants of a data center may hide their true traffic demands and
throttle some of their data transfers on purpose to acquire more
bandwidth on a congested link [7]. The data center operator
would then deem that the network is work conserving since

• Jingjie Jiang, Shiyao Ma and Bo Li are with the Department of Computer
Science and Engineering, Hong Kong University of Science and Technology.
Their email addresses are {jjiangaf, smaad, bli}@cse.ust.hk.

• Baochun Li is with the Department of Electrical and Computer Engineering,
University of Toronto. His email address is bli@ece.toronto.edu.

the tenants have no more data to send, while the actual link
utilization is very low.

Since data-parallel jobs (e.g., [8], [9], [10]) are usually
network-bounded [11], the response times depend on net-
work transfers within each job. Such job-specific communica-
tion usually involves multiple parallel flows to transmit data
among groups of machines in successive computation stages
[11]. The recently proposed coflow abstraction [12] [13] formally
defines a group of concurrent flows that transfer intermediate
results among multiple machines as a coflow. A coflow is not
considered completed until the completion of all its constituent
flows. Since the flows in a coflow may have varying sizes
and transmission rates, their completion times may fluctuate
severely. Given the correlation of flows in a coflow, even if
flow-level scheduling schemes can effectively maximize link
utilization, their ignorance to coflow-level network require-
ments would hurt coflow performance.

In this paper, we try to maximize the utilization of ac-
cess links without sacrificing coflow performance. Specifically,
there are three major challenges to this problem. Firstly, the
utilizations of access links are correlated with each other. The
utilization of the uplink of a flow’s source depends on the state
of the downlink of the same flow’s destination. We need to
properly coordinate the coupled bandwidth among all uplinks
and downlinks to achieve high link utilization. Secondly, high
link utilization must be achieved without sacrificing coflow
performance. As demonstrated in previous coflow scheduling
schemes [12] [13], coflow-level priority scheduling effectively
reduced the average coflow completion time. Nevertheless,
their inter- and intra-coflow scheduling hierarchy may conflict
with our link-oriented scheduling objective. A new schedul-
ing framework is needed to consider both link and coflow
efficiency. Thirdly, coflow-aware scheduling must work in an
online fashion. This excludes traditional scheduling wisdom in
operation research and combinatorics [14], which need com-
plete information of all the coflows in a network.

2

H1

H2

H3

H4

H5

Uplinks Downlinks

Non-blocking
Virtual Switch

P1
I

P2
I

P3
I

P4
E

P5
E

Fig. 1. A logic view of a data center network: machines are inter-connected
through a non-blocking switch; congestions only happen at access links.

We propose to address these three challenges by designing
Adia, a two-level online scheduling framework. The upshot
of this paper revolves around the focus on link utilization
with coflow awareness. Based on an in-depth analysis of this
problem, we prove it is NP-hard by reducing the open shop
scheduling problem to it. Despite the hardness of this problem,
we design a hierarchical scheduling mechanism to conduct both
inter- and intra- link scheduling. At the first level, Adia treats
one uplink as an entity, and conducts priority-based inter-
link scheduling to reduce the makespan of the schedule. At
the second level, Adia zooms in to flows belonging to the
same uplink, and performs intra-link scheduling. To minimize
the average coflow completion time, we prioritize the flows
belonging to a faster coflow on an uplink. As reducing coflow
completion times essentially enables more concurrent coflows
in the network, intra-link scheduling essentially improves net-
work throughput, and henceforth reinforces the performance
of inter-link scheduling. As a result, both the average and tail
completion time of all coflows effectively decrease. We further
prove our algorithm is 2-approximate when all access links are
identical.

In production data centers, however, link capacities are
non-uniform and even dynamic in case of link failures. We
turn to evaluate the performance of Adia using ns3 [15]. The
extensive simulation results verify that Adia also achieves high
link utilization in online scenarios. Meanwhile, the coflow
completion time decreases significantly compared to flow-level
scheduling schemes, and is comparable to Varys [12], the state-
of-art coflow scheduling scheme.

The roadmap of this paper is as follows: we analyze the
coherence and conflict between link utilization and coflow
performance in Sec. 2. We proceed to theoretically analyze and
formulate our problem in Sec. 3 present the design of Adia in
Sec. 4. We evaluate Adia’s performance in Sec. 5. We further
discuss our contribution in the context of related work in Sec. 6
before we conclude this paper in Sec. 7.

2 MOTIVATION AND BACKGROUND

2.1 System Model
According to the statistics collected in production data centers
[16], core networks seldom experience severe and persistent
congestion, while network edges are often congested. Given
such observations, we suppose congestions only occur at
network edges for simplicity. In other words, the possible
congestion locations are ingress queues at a sender’s NIC
(network interface card) and the egress queues at a receiver’s
ToR (top-of-rack) switch. The whole data center fabric can then

TABLE 1
Notations and Definitions

Notation Definition

M the number of physical machines
P I
i , PE

i the ingress and egress ports of Pi

Bi the total bandwidth of port Pi

BI
i , BE

i the ingress and egress bandwidth of Pi

Ck = {fkij} a coflow consisting of many concurrent flows
fkij a flow from Pi to Pj belonging to Ck

Tk the completion time of coflow Ck

Mk = [skij] the traffic matrix of coflow Ck

Wk = [wk
ij] the amount of transmitted data of flows in Ck

L = maxTk the makespan of a feasible schedule
sij the amount of traffic from Pi to Pj

skij the amount of traffic from Pi to Pj belonging to
Ck

rij the aggregate rates from Pi to Pj

rkij the rate of flow fkij
tkij the completion time of flow fkij

be viewed as a non-blocking switch as shown in Fig. 1. Under
such a network model, the only scarce network resource is
the bandwidth of access links (i.e., uplinks and downlinks).
Therefore, routing strategies that aim at load balancing have
no benefits since the access links cannot be bypassed. Fur-
thermore, the specific network topologies (e.g., Fat-tree [17],
Bcube [18], Dcell [19] and JellyFish [20]) have no influence on
scheduling strategies.

Existing coflow-aware scheduling schemes simply aim to
reduce the average coflow completion time. Intuitively, re-
ducing coflow completion times brings about higher link
utilization. We contend that rather than the average coflow
completion time, the key to maximizing link utilization is when
the last coflow finishes. In other words, the makespan of a
schedule is critical for improving network efficiency.

One may argue that a link can be disabled to save power
when it is idle and thus the idle time should not be considered
when optimizing link utilization. However, a temporary idle
link does not indicate that there is no pending traffic on that
link which needs to be transferred very soon. For instance,
in Fig. 2(a), H2 is idle at time 1 but it needs to transfer
data at time 2. Turning down such links will either at the
risk of harming network availability or incur too frequent on-
offs, which consume even more power. Furthermore, even if
an idle link currently has no pending traffic demand, we do
not know if there will be more coflows to arrive in online
systems since the execution time of a computation job is often
non-deterministic [21]. Without priori information about when
coflows arrive, turning down idle links will harm network
connectivity. Therefore, we contend that idle links have to
remain online as in [1] [22]. Possible energy saving schemes
are beyond the scope of this paper.

2.2 Motivating Example
Reducing average coflow completion times as in existing
coflow-aware scheduling schemes [12] [13] does not necessarily
indicate higher link utilization. We analyze the relationships
among work conservation, link utilization and coflow comple-
tion times through an example shown in Fig. 2.

A coflow Ck is depicted through a traffic matrix Mk = [skij],
where skij equals to the amount of traffic a flow in Ck sent from

3

H2

H3

31 2Time

H4

H5

H1

2 3

C1 C2 C1 C2

(a) The optimal schedule

H2

H3

31 2Time

H4

H5

H1

2 3

C1 & C2 C1 & C2

(b) Per-flow priority (pFabric) [6]

H2

H3

31 2Time

H4

H5

H1

2 3

C1 C2C1 & C2

C1 & C2

(c) Weighted Shuffle Scheduling (WSS) [11]

H2

H3

31 2Time

H4

H5

H1

2 3 44

C2C1 C1 C2

(d) TCP fair sharing

H2

H3

31 2Time

H4

H5

H1

2 3 44

C2C1 C1 C2

(e) Smallest Effective Bottleneck First (SEBF)
[12], Minimum Completion Time First [23]

Fig. 2. A motivating example to discuss the relation among work conservation, link utilization and coflow completion times: the flows of both coflows arrive
at time 0. All the schedules are work-conserving. The per-flow fair sharing and SEBF are suboptimal in terms of link utilization; per-flow sharing, per-flow
priority and WSS are suboptimal in terms of the average coflow completion time. Flows sent to H4 are green and sent to H5 are blue.

the ingress port P Ii to the egress port PEj . The traffic matrices
of the two coflows used in the example are shown below:

M1 =


0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

 , M2 =


0 0 0 2 1
0 0 0 0 0.5
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


Three hosts, H1, H2 and H3, initiate five flows to the two
receivers, H4 and H5, in the network. Suppose each link at
most transmits one unit of data in one time unit. We show
different scheduling outputs under various strategies in Fig. 2.

It is easy to verify that all the five schedules are work-
conserving, but the link utilization and coflow completion
times vary significantly. The per-flow fair sharing strategy
equally shares the bandwidth among all the flows, and
achieves the results in Fig. 2(d): the two coflows finish within
2.5 and 3.25 time units, and the average link utilization is
67.7%. pFabric [6] prioritizes flows with smaller sizes. The best
performance achieved is shown in Fig. 2(b) with completion
times of both coflows equal to 3 time units and the average
link utilization equal to 73.3%. A weighted sharing strategy
proposed in Orchestra [11] aims to reduce coflow completion
times but only achieves the same performance as pFabric. In
contrast, the smallest effective bottleneck first algorithm in
Varys [12] and the minimum completion time first strategy in
Rapier [23] trims the average coflow completion time to 2.5.
Essentially, since no alternate path can bypass the access links,
Rapier is equivalent to Varys under such circumstances. Nev-
ertheless, such a strategy prolongs C2, and thus brings downs
the average link utilization to 55%. The optimal schedule in
Fig. 2(a) achieves the same average coflow completion time
but raises the average link utilization to 73.3%.

We obtain three key observations through this example.
First, the makespan of all coflows, rather than their average
completion time, determines link utilization. Second, achieving
work conservation is necessary yet insufficient to maximize link
utilization. Finally, among all the schedules that can maximize
the link utilization, a schedule that considers coflow semantics
can further improve average coflow performance. Therefore,
we need to consider link utilization and coflow completion

time at the same time to optimize these two important perfor-
mance metrics for data-parallel jobs.

3 PROBLEM FORMULATION

Given a set of coflows running in data centers, we try to sched-
ule flows belonging to different coflows with the objective
of maximizing link utilization. Suppose there are N coflows
transferring data among M physical servers in a data center
network. We suppose all coflows arrive at the same time for
the ease of analysis, but our conclusions can be easily applied
to coflows with different arrival times. Define a coflow as
Ck = {fkij}, where the flow fkij transfers skij amount of data
from an ingress port P Ii to an egress port PEj . We only consider
single-wave coflows like in existing coflow scheduling schemes
[12], [24], [25], namely, all the flows belonging to the coflows
arrive at the same time. The structure of a coflow Ck can
be depicted through a traffic matrix Mk = [skij]P×P . Since a
coflow is considered completed only when all its constituent
flows finish, the coflow completion time can be represented as

Tk = maxfk
ij∈Ck

skij
rkij
, ∀k (1)

rkij =
1

tkij

∫ tkij

0
rkij(t) dt (2)

rkij is the average rate of a flow through its lifetime and tkij is
the flow duration time. Replacing the variables of rkij with the
expression (2) yields∫ Tk

0
rkij(t) dt = skij , ∀i,∀j (3)

Eq. (3) guarantees that any flow belonging to Ck is able
to transmit all its data within Tk time units. Let L denote the
makespan (or the length) of a schedule. Essentially, L equals to
the maximum completion times of all the coflows:

L = maxk Tk (4)

Eq. (4) indicates that all the coflows have completed transmis-
sion after L time units. Therefore, we can derive that

4

sij =
∑
k

skij =

∫ L

0
rij(t) dt, ∀i, ∀j (5)

where rij(t)=
∑
k

rkij(t) (6)

To find a feasible schedule, any access link should not
be overloaded. In other words, the sum of flow rates on a
given link cannot exceed its capacity. The bandwidth of a port
Pi, denoted as Bi is divided into the ingress bandwidth BIi
and egress bandwidth BEi . The capacity constraints of uplinks
and downlinks are shown in Eq. (8) and (9). Together with
the constraint (3), the problem of maximizing the aggregated
utilization of all access links can be formulated as

max
1

L

∫ L

0

∑
i

∑
j(rij(t) + rji(t))∑
i(B

I
i +BEi)

dt (7)

s.t.
∑

j
rij(t) ≤ BIi , ∀t, ∀i (8)∑

j
rji(t) ≤ BEi , ∀t, ∀i (9)

Since the egress and ingress bandwidths add up to a port’s
total bandwidth, Eq. (7) can be transformed to

1

L

∑
i

∑
j

∫ L
0 (rji(t) + rij(t)) dt∑

iBi
(10)

Replacing the integral term with sij as in Eq. (5) yields

1

L

∑
i

∑
j(sji + sij)∑
iBi

(11)

Since Bi, sij and sji are fixed, minimizing the makespan of
all coflows can maximize the average link utilization. This
coincides with our previous observation. When flows are bot-
tlenecked at the receiver side, some bandwidth of a sender’s
uplink would be left unusable. The effective capacity of an
uplink is thus restricted by the load of the corresponding
downlinks. In other words, the capacities of uplinks and
downlinks are interdependent. By regarding uplinks as jobs to
be scheduled and downlinks as machines with nonuniform
capabilities, we formulate the scheduling problem with the
objective (11) as a variant of open shop scheduling problem [26].
The dependencies among access links can then be transformed
to heterogeneous concurrency constraints (see Appendix A). It is
worth noticing that the uplinks and downlinks are interchange-
able in our problem. Whatever has been proved for uplinks
as jobs and downlink as machines can also be proven for
downlink as machines and uplink as jobs.

Furthermore, the coflow performance is measured through
the average coflow completion time (CCT):

min CCT =
1

n

n∑
k=1

Tk (12)

s.t. (3) (8) (9) hold

We demonstrate that minimizing the makespan or average
coflow completion time with coupled link resources is NP-
hard even when: 1) all coflows start at the same time with full
knowledge of their constituent flows (i.e., offline cases); and
2) ingress and egress ports have the same capacity. We prove
the NP-hardness of our scheduling problem in Appendix A.
As a sketch of proof, the NP-complete open shop scheduling
problem [26] can be reduced to our problem with the objective of

Link
Database

Usage
Estimator

Coflow Info
Collector

Central
Scheduler

Adia

Adia
Daemon

Machine

Storage

Sender

Adia
Daemon

Machine

Storage

Receiver

Sender Receiver

Coflow
Database

Fig. 3. The overview of Adia’s architecture: the central scheduler acquires
up-to-date information about network states through the usage estimator
and the information collector, and communicates with Adia daemons run-
ning on physical machines.

minimizing the makespan; the NP-hard concurrent open shop
scheduling problem [27] can be reduced to our problem with
the objective of minimizing average coflow completion time.
Since the correlation between the average and tail completion
time is unnecessarily positive, it is not always possible to find
an optimal schedule that both minimizes the average comple-
tion time and the makespan. A trade-off between the coflow
performance and link utilization needs to be made when
scheduling. We next prove that Adia’s scheduling algorithm is
2-approximate in terms of link utilization when all access links
have equal bandwidth.

4 DESIGN

In this section, we present the design of Adia, a hierarchical
scheduling scheme to allocate bandwidth to flows of con-
current coflows. Since our primary objective is to maximize
link utilization, we naturally choose to regard an access link
as a scheduling unit when designing the online scheduling
algorithms of Adia.

4.1 Framework Overview
To conduct coflow-aware scheduling, central monitoring is
inevitable since no network devices or machines possess the
information of all coflows. As we mentioned in Sec. 2, con-
gestions only happen at access links. Therefore, Adia does
not involve any functionalities or computations at switches.
A daemon running on each physical machine is responsible
for delivering coflow information and link status to the central
scheduler. When a coflow’s data is ready, the senders’ daemons
report the corresponding coflow information to the coflow info
collector. When receivers are ready, the daemons estimate the
states of the senders’ uplinks and receivers’ downlinks using
existing techniques [28]. The central scheduler then determines
the rate of each flow directly and informs the daemons to en-
force endhost-based rate limiting for each flow. Nevertheless,
such fine-grained scheduling at a single scheduler would be
hard to scale out. As the number of coflows increases, the
maintenance of flow states in each coflow is likely to slow
down the schedule procedure.

To circumvent the overhead of a fully centralized scheduler,
we turn to distribute the burden of fine-grained scheduling
among Adia’s daemons across the network. The central sched-
uler is only responsible for maintaining global link states

5

and coflow information. Each daemon inquires the central
scheduler periodically (or on-demand) to determine the rate of
each flow running through it. Since the number of concurrent
coflows are typically from tens to hundreds [12], the efficiency
of the central scheduler is unlikely to become the performance
bottleneck. Furthermore, the coflow size follows a heavy-tailed
distribution [12]: about 98% of traffic is generated only by 8%
of the coflows. By focusing on the large coflows, the side effect
of the central coordination can be counteracted.

The framework of Adia is shown in Fig. 3. Adia’s daemons
can be implemented in the application layer leveraging a client
library to interact with data-parallel frameworks. We combine
the objective of improving link utilization and coflow perfor-
mance through a two-level hierarchical scheduling framework.
At the first level, we try to maximize link utilization through
reducing the longest completion times of all coflows. For flows
that conflict at a common downlink, we differentiate among
them based the uplink a flow comes from. For flows conflicting
with each other at a common uplink, we further design a intra-
link algorithm to minimize coflow completion times through
priority-based scheduling. We schedule the flows on the same
uplink based on the priority of the coflow it belongs to. The
two algorithms reinforce each other since reducing coflow
completion times essentially enables more concurrent coflows
in the network. As a result, it calls for less time for all the
coflows to finish.

4.2 Algorithms of Adia

In production data centers, coflows arrive to the system suc-
cessively and we cannot predict the information of incoming
coflows in advance. Therefore, the complicated combinatorial
algorithms that work well in offline cases cannot be directly
applied to schedule coflows in online cases. Instead, Adia
only accounts for the currently active coflows, and is invoked
whenever a new coflow arrives in, or an old coflow departs
from the network.

As we have pointed out previously, minimizing the
makespan is the key to maximize link utilization. Without vir-
tual machine migration, the optimal makespan of any schedule
equals to the net processing time of the heaviest loaded link
[29]. It is worth noticing that the net processing time of a link
is the time needed to send or receive data without any idle
bandwidth. In other words, its value equals to the aggregated
amount of traffic through a link divided by its bandwidth.
Nevertheless, flows on the busiest link might be congested
at the coupled links. Consequently, they cannot use up all
the available bandwidth of the link, prolonging the makespan
and reducing link utilization. Therefore, the key to minimizing
the schedule makespan is to guarantee that the heaviest link
experiences the least waiting time.

We achieve this design principle through the largest load first
heuristic algorithm. The dynamic load of a link is defined as its
net processing time as below

lIi ←
∑
j(d

k
ij − wkij)
BIi

, lEi ←
∑
j(d

k
ji − wkji)
BEi

(13)

wkij indicates the amount of data fkij has transmitted. The high-
level scheduling then prioritizes uplinks with heavier loads
when flows compete for downlink bandwidth. For flows on
the same uplink, they may belong to different coflows. We try
to minimize coflow completion times leveraging the smallest

Algorithm 1 Online Scheduling Algorithm
1: procedure LARGESTLOADFIRST(Mk,Wk)
2: for i = 1 : M do
3: lIi ← 1

BI
i

∑
j

∑
k(dkij − wkij) . current load on P Ii

4: π = Sort({lIi })
. Sort uplinks in the decreasing order of their loads

5: return π . the permutation schedule of uplinks
6: procedure SMALLESTTIMEFIRST(BR, i)
7: Initiate: C = {Ck : ∃ dkij > 0}, Ω← C

. the set of coflows on a given uplink
8: for Ck ∈ Ω do

9: Tk ← max(max
i

∑
j s
k
ij − wkij
BIi

,max
j

∑
i s
k
ij − wkij
BEj

)

10: for p = 1 : |C| do
11: π(p)← arg minCk∈Ω Tk . the shortest coflow
12: Ω← Ω \ {Cπ(p)}
13: for p = π(1) : π(|C|) do
14: for j = 1 : m do

15: rpij = min(
BR(P Ii)

npi
,
BR(PEj)

npj
)

16: Update remaining bandwidth on P Ii and PEj
17: return {rkij(t) : Ck ∈ C} . rates of flows on lIi
18: procedure MAIN
19: Initiate: BR ← {Bi},Wk = {0}
20: Π = LARGESTLOADFIRST(Mk,Wk)
21: for i = Π(1) : Π(M) do
22: {rkij(t)}= SMALLESTTIMEFIRST(BR, i)

23: BACKFILLING(BR, {rkij})
24: Update bandwidth BR and transmitted data Wk

remaining time first algorithm. The completion time of a coflow
is determined by its bottleneck flow that lags behind other
flows in the same coflow. We estimate the completion time of
each coflow if it exclusively occupies the network in line 9 of
Algorithm 1, and use this value as its priority number. The low-
level scheduling then conducts strict priority-based scheduling
for flows belonging to different coflows on the same uplink.
Flows belonging to the same coflow on a given uplink equally
share the available bandwidth as in line 15. npi and npj are the
number of flows on P Ii and PEj that belongs to Cp respectively.
The whole algorithm is shown in Algorithm 1 , which achieves
the optimal schedule shown in Fig. 2(a) for our motivating
example. Although Adia cannot guarantee the optimality under
all circumstances, we show in Sec. 5 that its performance is
much improved compared to existing schemes.

Algorithm 2 Backfilling Step

1: procedure BACKFILLING(BR, {rkij})
2: for i = 1 : m do
3: while BR(P Ii) > 0 do
4: for all k, j do
5: δ = min(BR(P Ii), BR(PEj))
6: rkij(t) = rkij(t) + δ
7: Update flow rates and idle bandwidth

6

4.3 Properties of Adia
We next demonstrate the scheduling algorithms in Adia achieve
two important properties as stated below.

1) Work conserving: Through priority-based scheduling,
bandwidth is first allocated to flows belonging to the fastest
coflow on the busiest uplink. Other flows then utilize the
remaining bandwidth according to their priorities. The rate
allocating procedure finishes when all the links are saturated or
no flow is suspended. We further integrate backfilling to make
sure that all the available bandwidth is fully utilized by active
coflows. In this way, we ensure the scheduling algorithm is
work conserving.

2) Starvation free: Priority-based scheduling, however,
usually suffers from starvation problem. Flows with lower
priority may have to persistently wait for flows from higher
priority classes to release bandwidth resources. Adia achieves
starvation freedom by prioritizing links with larger loads and
coflows with smaller completion times dynamically. At the
high level, loads on low priority links will increase gradually,
while loads on high priority links are likely to decrease. As
a result, the priority of a link would increase relatively if its
transmission has been throttled for a long time. Essentially,
we adopt the aging mechanism to avoid starvation. At the
low level, each uplink softly reserves a portion of bandwidth
(denoted as α) for flows belonging to low priority coflows to
proceed. Flows belonging to high priority coflows can only
use at most (1 − α) of uplink bandwidth if some flows on the
same link are pending. The pending flows then fairly share the
reserved bandwidth. By combine aging and multiplexing, we
ensure no flow or coflow is perpetually suspended, and thus
the scheduling mechanism is starvation free.

4.4 Analysis of Link Utilization
Scheduling jobs on a single machine is simple in terms of both
link utilization and coflow performance since the resources are
decoupled. We can maximize link utilization by keeping the
machine working until all jobs complete, while we can achieve
the optimal coflow performance by prioritizing the smallest
coflows. It is NP-hard, however, to derive an optimal schedule
across multiple access links [6] for either scheduling objective.
The problem to maximize link utilization can be re-formulated
as an open shop problem to minimize the makespan if all
access links have the same capacity (see Appendix A). We
regard an uplink as a job to be scheduled, and a downlink
as a working machine. The flows on a given uplink then
correspond to constituent operations of the job, to be scheduled
onto different machines. In this way, the interdependency of
uplink and downlink capacities is transformed to the concur-
rency constraints in the open shop scheduling problem. We
next prove that our largest load first algorithm for inter-link
scheduling is 2-approximate for offline cases.

Since all links are identical, we suppose the bandwidth
of all links is one unit without loss of generality. A feasible
schedule S can be depicted as

S = {[bij , eij);∀i, j, k} (14)

where bij and eij are the beginning and ending times of
the transmissions from uplink i to down link j. We further
introduce two functions as in [30]:

Machine idle: Rj(t) =

{
1, t /∈

⋃M
i=1[bij , eij)

0, t ∈
⋃M
i=1[bij , eij)

(15)

Job in-progress: Qi(t) =

{
1, t ∈

⋃M
j−1[bij , eij)

0, t /∈
⋃M
j=1[bij , eij)

(16)

S is called dense if and only if Rj(t) = 1 implies Qi(t) = 1
for all i such that bij > t. We now prove that the our scheduling
algorithm derives an open-shop dense schedule.

As uplinks and downlinks all have unit capacity, the trans-
mission from an uplink to a downlink is either at unit rate or
suspended. According to the inter-link scheduling algorithm,
we select uplinks to start transmission in the decreasing or-
der of their pending loads. Uplinks with low priorities then
select from transmission to downlinks that have not been
occupied by high priority uplinks (i.e., selecting downlinks
with Rj(t) = 0). After all uplinks have scheduled to start
transmission, a job (uplink) is suspended only when all the
machines corresponding to its unscheduled transmissions are
busy. Consequently, we have Qi(t) = 0 implies Rj(t) = 0
for ∀ j ∈ {j : bij > t}. Correspondingly, Rj(t) = 1 implies
Qi(t) = 1 for ∀ i ∈ {i : bij > t}. This completes the proof
that our algorithm achieves a dense scheduling in offline cases.
Since the worst-case makespan of any dense scheduling is
no more than twice of the optimal makespan [30], our high
level scheduling algorithm is 2-approximate in terms of link
utilization.

4.5 Analysis of Coflow Completion Time
The shortest remaining time first algorithm optimize coflow
performance if all coflows are on a single link [27]. As for
the concurrent open shop scheduling problem, a primal-dual
2-approximate algorithm is proposed by Mastrolilli et al. in
[14]. This offline algorithm cannot be directly applied to our
online scenario. As analyzed in Sec. 3, the scheduling problem
to improve coflow performance is a variant of concurrent
open shop scheduling problem. Even if all access links have
equal capacities, machines (uplinks and downlinks) are still
interdependent. Therefore, it is theoretically difficult to find a
scheduling algorithm with performance bound.

We try to improve the coflow performance by approximat-
ing the shortest remaining time first strategy at the low level of
Adia. Through prioritizing flows belonging to faster coflows,
we improve coflow performance in comparison with flow-
level scheduling schemes. In practical data center networks,
access links are heterogeneous: the capacities of uplinks and
downlinks vary significantly across the network. It is hard to
theoretically analyze the performance of Adia due to the cou-
pled resources of uplinks and downlinks. We turn to evaluate
Adia in practical networks through extensive simulations.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of Adia through
extensive packet-level simulations in the ns3 [15] simulator.
The implementation can be found at this link. We compare
Adia with existing flow-level and coflow-level schemes in terms
of both link utilization and average coflow completion time
(CCT), and examine their performance under varying network
loads. We further evaluate the influence of limited multiplexing
by varying the fraction of reserved bandwidth.

5.1 Simulation Methodology
5.1.1 Benchmark workloads
We use empirical workloads to reflect coflow patterns ob-
served in production data centers [12]. All access links have

http://home.cse.ust.hk/~jjiangaf

7

0 10 20 30 40 50 60 70
Number of flows

15

30
Coflow width

0 50 100 150 200 250 300 350 400
Total Megabytes

15

30

N
um

be
r o

f c
of
lo
w
s

Coflow size

Fig. 4. The histograms of coflow sizes and widths: the figure on the top
illustrates that about 80% of coflows consist of less than 40 flows; the figure
on the bottom shows that coflow sizes follows a long-tail distribution with
less than 20% of coflows contribute to more than 80% of network traffic.

1 Gbps bandwidth. We capture the characteristics of a coflow
through its width (the number of constituent flows) and size
(the overall amount of data). Practical traces have shown that
coflow sizes follow a long-tail distribution: only about 18%
of coflows contribute to more than 80% of network traffic. In
addition, about 78% of coflows have less than 40 flows. The
histograms of coflow sizes and widths are shown in Fig. 4.
Coflows arrive to the network according to a Poisson process
with rate λ ∈ [0.2, 0.8] to reflect varying network loads. Since
we focus on bandwidth allocation on access links, how to place
senders and receivers is irrelevant. We evenly place senders
and receivers across machines in a round-robin fashion. The
ratio between the number of senders and receivers varies
across different coflows. But the number of senders is larger
than the number of receivers in about 80% coflows.

5.1.2 Schemes compared
We analyze the performance of Adia by comparing it with the
following scheduling mechanisms.

Per-flow fairness: Per-flow fairness strategy is widely
adopted in state-of-the-art transport protocols, such as TCP
and its data center variant, DCTCP [31]. When flows con-
tend for bandwidth on a congested link, they equally share
the bandwidth on that link to achieve the max-min fairness.
DCTCP focuses on minimizing queuing delay at switches
through ECN-based congestion control algorithms. For large
flows which tend to be the slowest in a coflow, the queuing
delay only accounts for a negligible fraction of completion
time [16]. We expect the coflow-level performance of TCP and
DCTCP is similar and only make comparisons with TCP.

Per-flow priority: Since fair sharing strategies hurt flow
performance as demonstrated in [5], [6], recent flow scheduling
schemes propose to adopt priority-based scheduling. Such a
strategy embraces preemptive scheduling and assign each flow
a single priority number based on different information, such
as the remaining size in pFabric [6] and the remaining time to
its deadline in PDQ [5]. We compare Adia with pFabric and
omit the comparison with PDQ due to its different objective.
Since the core networks are congestion-free, the scheduling
algorithm can get rid of the network inefficiencies caused by
packet drops, load imbalance and queuing delay. Essentially,
we implement the ideal algorithm proposed in pFabric, whose
performance is better than pFabric.

Coflow scheduling: The essence of coflow scheduling lies
in the per-coflow priority based scheduling strategy, such as
the smallest bottleneck first strategy used in Varys [12] and
the least attained service first strategy used in Aalo [24]. Since
Aalo achieves similar performance with Varys, we use Varys as
the representative since it also utilizes the prior information as
Adia does. The dynamic routing used in Rapier [23] is irrelevant
since the core network is congestion-free.

5.1.3 Performance metrics

Average link utilization: Unlike the offline case we have
discussed in Sec. 3, the coflows do not arrive in the network at
the same time in our online simulations. Therefore, some ports
may not have any traffic demand in the beginning and thus
remain idle regardless of the scheduling schemes. Therefore,
we record the utilization of each link throughout its own active
time, which is defined as the period from the time point it starts
transmitting data till all the data on that link are sent. This is
different from the definition of in the offline case, but we are
able to analyze fine-grained link utilization states and locate
the bottlenecks in the network.
Average CCT: We also collect the information of each coflow’s
completion time to evaluate the average coflow completion
time, which is the most commonly used metric to evaluate
coflow-level performance [12], [24].

5.2 Adia’s Performance

From the results in Fig. 5, we can see that Adia significantly im-
proves the average link utilization: compared to Varys, pFabric
and TCP, Adia improves the average link utilization by about
19.04%, 16.82% and 22.95% (λ = 0.2). It is worth noticing
that Varys shows no advantage over per-flow schemes in terms
of link utilization since it only guarantees work conservation
without considering better utilization. As for the coflow per-
formance (Fig. 6), due to embracing coflow semantics, Adia is
able to speed up coflows by about 2×, which is comparable
with Varys.

Since network loads significantly influence link utilization,
we evaluate the reaction to different network loads through
varying the intensity (λ) of coflows’ arrival process. Under
a low network load, the interval of coflow arrivals is large,
and thus the number of concurrent coflows in the network is
small. Links might be left underutilized or even idle. When
the network is heavily loaded, the links are more likely to be
saturated. As for the coflow completion time, the competition
intensity is severer when more concurrent coflows run simul-
taneously. As a result, coflows get less bandwidth to transmit
data, and their completion times would increase accordingly.

We vary coflows’ arrival rate, λ, from 0.2 to 0.8 to examine
the performance under different network loads. In Fig. 5(a)
and Fig. 6(a), the link utilizations and the coflow completion
times of the four schemes increase as the network becomes
busier. Adia significantly outperforms other schemes under
different network loads. pFabric achieves higher utilization
than traditional TCP as it can effectively reduce the average
flow completion time and improve network efficiency. Simi-
larly, Varys achieves similar link utilization with pFabric since
it make all the flows inside a coflow finish at the same time
to admit more coflows into the network. With respect coflow
performance, Varys and Adia significantly outperform per-
flow mechanisms. Furthermore, Adia further reduces coflow

8

0.2 0.5 0.8
Network Load

25

50

75

100
Av

er
ag
e
Li
nk

 U
til
iz
at
io
n
(%

)

37.5

67.2
74.2

31.9

50.9
58.7

32.1

49.7

59.1

30.5

43.8 45.6

Adia
Varys
pFabric
TCP

(a)

0.1 0.2 0.4
Extent of Multiplex

25

50

75

100

Av
er
ag
e
Li
nk

 U
til
iz
at
io
n
(%

)

67.2
72.6 73.3

50.9 50.9 50.949.7 49.7 49.7
43.8 43.8 43.8

Adia
Varys
pFabric
TCP

(b)

Fig. 5. The link utilizations of four schemes under varying network loads ((a) α = 0.1.) and varying extents of multiplexing ((b) λ = 0.5).

0.2 0.5 0.8
Network Load

0

2

4

6

8

10

Av
er
ag
e
C
C
T
(s
)

1.37

3.12

5.47

1.44

3.05

5.51

3.56

6.01

8.68

3.95

6.27

8.92Adia
Varys
pFabric
TCP

(a)

0.1 0.2 0.4
Extent of Multiplex

0

2

4

6

8

10

Av
er
ag

e
C
C
T
(s
)

3.12 3.32 3.78
3.05 3.05 3.05

6.01 6.01 6.016.27 6.27 6.27

Adia
Varys
pFabric
TCP

(b)

Fig. 6. The coflow completion times of four schemes under varying network loads ((a) α = 0.1.) and varying extents of multiplexing ((b) λ = 0.5).

completion times when network load is high due to its ability
in fully utilizing link bandwidth.

To avoid starvation, Adia has introduced limited multiplex-
ing to let low priority coflows share the reserved bandwidth.
It is clear that the extent of multiplexing influences both link
utilization and coflow performance. We change the portion of
reserved bandwidth (α) in the group of experiments shown in
Fig. 5(b) and 6(b). As the network load and other parameters
remain the same, the performance benchmark schemes is not
influenced. In contrast, the link utilization under Adia increases
with the increase of reserved bandwidth.

However, with more bandwidth reserved for multiplexed
coflows, it is more likely for flows to fairly share the reserved
bandwidth. In the extreme case, Adia would fall back to the per-
flow fairness scheme. As a result, the coflow completion times
are prolonged. It is also worth noticing that the increase of
link utilization decreases with a larger extent of multiplexing.
In our simulations, we observe that the link utilization would
start to decrease when α is larger than 0.4. For the best practice,
we could find the extend of multiplexing that achieves the
highest link utilization. The best value of α depends on the
actual workloads and should be tuned dynamically. In gen-
eral, we suggest to choose a small α to guarantee the coflow
performance.

6 RELATED WORK

Researchers have made continuously efforts to maximize net-
work throughput and improve link utilization. McKeown in
[32] proposes iSLIP, a scheduling algorithm for input queues of
crossbar switches to achieve 100% throughput when the traffic

is uniform. Recent flow-level scheduling algorithms (e.g., [6],
[4], [5]) struggle to achieve work conservation. As we have
argued previously, work conservation is insufficient to achieve
the optimal link efficiency. SWAN [1] and B4 [22] further pro-
pose to leverage software-defined networking to maximize the
utilization of inter-datacenter links. By dividing the traffic into
coarse-grained classes, the scheduler distinguishes flows with
different urgencies. Although the two mechanisms effectively
improve network utilization, but similar to other flow-level
schemes, neither of them considers coflow performance. As
a result, bandwidth might be wasted to flows that already
finish ahead of the bottleneck of the coflow. This potentially
slows down the bottleneck flow and the overall coflow per-
formance. We contend that maximizing link utilization should
take coflow performance into account at the same time.

Existing coflow scheduling schemes, however, have merely
focused on the average completion times of coflows. Chowd-
hury et al. in [11] propose to centrally determine the maximum
number of TCP connections a coflow can set up, and approxi-
mate both inter- and intra- coflow weighted fair sharing. Such
a pure multiplex strategy cannot improve coflow performance
as pointed out in recent proposals [13], [12], which turn to
leverage priority-based scheduling strategies.

Baraat [13] adopts FIFO with limited multiplexing to reduce
the average coflow completion time. In contrast, we conduct
two-level scheduling to minimize the makespan and coflow
completion time at the same time. Varys [12] provides an
intent-driven API for data-parallel coflows to convey their
information to a central scheduler, which performs the small-
est bottleneck first heuristic to minimize average completion
times. Aalo [24] further simplifies the coflow scheduling with-

9

out the need to acquire coflow information in advance. Qiu
et al. in [33] theoretically analyze the problem of minimizing
the weighted coflow completion times and propose algorithms
that have approximation bounds. Since the schemes mentioned
above all center on the coflow completion time, and struggle to
guarantee work conservation, the essence of achieving high
link utilization has not been fully explored. Another recent
work, HUG [25], achieves high link utilization and considers
the correlated demands of applications (coflows) at the same
time. However, it sacrifices utilization for strategy proofness in
public clouds.

Apart from bandwidth allocation and scheduling, Alizadeh
et al. propose Conga [34], a in-network load balancing mech-
anism, to detect global congestion information and distribute
network loads in a balanced manner. The network throughput
and thus link utilization can be effectively improved. Conga,
however, requires upgrade of existing switches in data centers
and is unaware of coflow performance. In contrast, Adia is
a hypervisor-based scheme and can be built upon their im-
proved hardware silicons to further improves link utilization
and coflow performance at the same time. Zhao et al. in [23]
try to reduce the completion time of a coflow by combine
coflow scheduling and dynamic routing via Rapier. Leveraging
OpenFlow-enabled switches, flows are routed to a centrally
computed path, rather than following the default ECMP rout-
ing. Nevertheless, leveraging dynamic routing restricts their
method to software-defined data centers. In addition, the con-
trol overhead for a central controller to deploy routing rules
potentially harms coflow performance.

7 CONCLUSION

In this paper, we have proposed and studied the problem
of maximizing link utilization with coflow-aware scheduling,
which is NP-hard in offline scenarios. We have designed
and implemented a hierarchical online scheduling mechanism,
Adia, to conduct both inter- and intra- link scheduling. Specif-
ically, for inter-link scheduling, we compute the load of each
uplink, and prioritize flows on an uplink with larger processing
time; for intra-link scheduling, we try to minimize coflow
completion times leveraging the shortest remaining time first
strategy. Adia is both work-conserving and starvation-free,
making it practical for online application. Through theoretic
analyses, we prove the simple yet effective heuristic algorithm
in Adia is 2-approximate when access links are homogeneous.
We demonstrate that Adia is able to maximize link utilization
without loss of coflow performance through extensive realistic
simulations.

APPENDIX A
COMPLEXITY ANALYSIS

The NP-hardness of minimizing CCT is proved in [12] by
means of reducing the NP-hard concurrent open shop schedul-
ing problem [27] to it. We next prove the hardness of the coflow
scheduling problem to maximize link utilization as below.

Theorem 1. Optimizing L in the offline case is NP-hard for all
m > 2 even when all access links have uniform capacities.

Proof. Given an open shop scheduling instance with m inde-
pendent machines and n jobs, we construct a coflow schedul-
ing instance where each downlink corresponds to a machine,

and each uplink corresponds to a job. All the downlinks and
uplinks have unit (indivisible) capacity . The problem to sched-
ule jobs on multiple machines is then transformed to schedule
flows on each uplink to multiple downlinks with the objective
of minimizing the schedule makespan.

Each job in the open shop scheduling instance consists of
multiple operations, each of which needs to be processed on a
specific machine for a given period of time. Accordingly, each
uplink in our coflow scheduling instance consists of multiple
flows, each of which needs to send a corresponding amount of
data to multiple downlinks. The concurrency restrictions in the
open shop instance require that: each job can be processed only
at one machine at a time, and each machine can process at most
one job at a time. The first part of the requirements transform
to the capacity constraints in Eq. (8), which require each uplink
(job) can at most send data to one downlink (machine) at unit
rate. The second part of the requirements transform to the
capacity constraints in Eq. (9), which require each downlink
(machine) can at most receive data from one uplink (job) at
unit rate. Therefore, we successfully reduce an arbitrary open
shop scheduling instance to a coflow scheduling problem in a
network where all uplinks and downlinks have unit capacity.

Since the open shop scheduling problem with the objective
of minimizing the schedule makespan is NP-hard [26], our
scheduling problem formulated in Eq. (7)-Eq. (9) is NP-hard
as well.

When link capacities are non-uniform, the concurrency
constraints need to be generalized. For an ingress port P Ii ,
denote the set of egress ports it can simultaneously transmit
data to as Gi. The capacities of egress ports in Gi satisfy:∑

PE
j ∈Gi

BEj ≤ BIi

The same rule also applies to any egress port. It is clear to see
that the level of concurrency (|Gi|) actually depends on the
destinations of flows that currently run through P Ii . In other
words, the concurrency constraints dynamically change over
the time and are heterogeneous across the network. Therefore,
our scheduling problem is much more complicated than the
open shop scheduling problem in practice.

REFERENCES

[1] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
WAN,” in Proc. ACM SIGCOMM, 2013.

[2] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: Research problems in data center networks,” ACM SIGCOMM
Comput. Commun. Rev., vol. 39, no. 1, pp. 68–73, 2008.

[3] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. ACM SIGCOMM conference on
Internet measurement (IMC), 2010, pp. 267–280.

[4] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never
than late: Meeting deadlines in datacenter networks,” ACM SIG-
COMM Comput. Commun. Rev., vol. 41, no. 4, pp. 50–61, 2011.

[5] C.-Y. Hong, M. Caesar, and P. Godfrey, “Finishing flows quickly with
preemptive scheduling,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 42, no. 4, pp. 127–138, 2012.

[6] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pFabric: Minimal near-optimal datacenter trans-
port,” in Proc. ACM SIGCOMM, 2013.

[7] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,
and I. Stoica, “Faircloud: sharing the network in cloud computing,”
in Proc ACM SIGCOMM, 2012.

[8] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” in Proc. USENIX OSDI, 2004.

10

[9] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: dis-
tributed data-parallel programs from sequential building blocks,”
ACM SIGOPS Operating Systems Review, vol. 41, no. 3, pp. 59–72, 2007.

[10] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a system for large-scale graph
processing,” in Proc. ACM SIGMOD, 2010.

[11] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica,
“Managing data transfers in computer clusters with orchestra,” ACM
SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp. 98–109, 2011.

[12] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient Coflow Scheduling
with Varys,” in Proc. ACM SIGCOMM, 2014, pp. 443–454.

[13] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decentral-
ized task-aware scheduling for data center networks,” in Proc. ACM
SIGCOMM, 2014.

[14] M. Mastrolilli, M. Queyranne, A. S. Schulz, O. Svensson, and N. A.
Uhan, “Minimizing the sum of weighted completion times in a
concurrent open shop,” Operations Research Letters, vol. 38, no. 5, pp.
390–395, 2010.

[15] “The Network Simulator NS-3.” http://www.nsnam.org/.
[16] V. Jeyakumar, M. Alizadeh, D. Mazieres, B. Prabhakar, C. Kim, and

A. Greenberg, “EyeQ: Practical network performance isolation at the
edge,” in Proc. USENIX NSDI, 2013.

[17] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” ACM SIGCOMM Comput. Commun.
Rev., vol. 38, no. 4, pp. 63–74, 2008.

[18] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “Bcube: a high performance, server-centric network architecture
for modular data centers,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 39, no. 4, pp. 63–74, 2009.

[19] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: a
scalable and fault-tolerant network structure for data centers,” ACM
SIGCOMM Comput. Commun. Rev., vol. 38, no. 4, pp. 75–86, 2008.

[20] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Network-
ing data centers randomly.” in Proc. USENIX NSDI, 2012.

[21] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica, and J. Zhou,
“Re-optimizing data-parallel computing,” in Proc. USENIX NSDI,
2012.

[22] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a
globally-deployed software defined WAN,” in Proc. ACM SIGCOMM,
2013.

[23] Y. Zhao, K. Chen, W. Bai, M. Y. USC, C. Tian, Y. Geng, Y. Zhang,
D. Li, and S. Wang, “Rapier: Integrating routing and scheduling for
coflow-aware data center networks,” in Proc. IEEE INFOCOM, 2015.

[24] M. Chowdhury and I. Stoica, “Efficient coflow scheduling without
prior knowledge,” in Proc. ACM SIGCOMM, 2015, pp. 393–406.

[25] M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica, “HUG:
Multi-resource fairness for correlated and elastic demands,” in
Proc. USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI), 2016, pp. 407–424.

[26] D. Bai and L. Tang, “Open shop scheduling problem to minimize
makespan with release dates,” Applied Mathematical Modelling, vol. 37,
no. 4, pp. 2008 – 2015, 2013.

[27] T. A. Roemer, “A note on the complexity of the concurrent open shop
problem,” Journal of scheduling, vol. 9, no. 4, pp. 389–396, 2006.

[28] M. Chowdhury, S. Kandula, and I. Stoica, “Leveraging endpoint
flexibility in data-intensive clusters,” in ACM SIGCOMM Comput.
Commun. Rev., vol. 43, no. 4, 2013, pp. 231–242.

[29] T. Gonzalez and S. Sahni, “Open shop scheduling to minimize finish
time,” Journal of the ACM (JACM), vol. 23, no. 4, pp. 665–679, 1976.

[30] R. Chen, W. Huang, Z. Men, and G. Tang, “Open-shop dense sched-
ules: properties and worst-case performance ratio,” Journal of Schedul-
ing, vol. 15, no. 1, pp. 3–11, 2012.

[31] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center TCP (DCTCP),”
ACM SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp. 63–74, 2011.

[32] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand,
“Achieving 100% throughput in an input-queued switch,” IEEE
Trans. Communications, vol. 47, no. 8, pp. 1260–1267, 1999.

[33] Z. Qiu, C. Stein, and Y. Zhong, “Minimizing the total weighted com-
pletion time of coflows in datacenter networks,” in Proc. ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA). ACM,
2015, pp. 294–303.

[34] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, F. Matus, R. Pan, N. Yadav, G. Varghese et al., “Conga:
Distributed congestion-aware load balancing for datacenters,” in
Proc. ACM SIGCOMM, 2014, pp. 503–514.

Jingjie Jiang received the B.Eng. degree from
the Department of Automation, Tsinghua University,
China, in 2012. Since 2012, she has been with the
Department of Computer Science and Engineering
at the Hong Kong University of Science and Tech-
nology, where she is currently a PhD candidate.
She visited the Department of Electrical and Com-
puter Engineering at the University of Toronto during
March to August in 2015. She is a member of IEEE.
Her current research interests include: datacenter
networking, resource allocation and job scheduling.

Shiyao Ma received his B.Eng. degree in the Com-
puter Science, Tsinghua University, Beijing, in 2013.
Since then, he has been with the Department of
Computer Science and Engineering at the Hong
Kong University of Science and Technology, where
he is currently a PhD candidate. He was a vis-
iting student in the Department of Electrical and
Computer Engineering at the University of Toronto
from March 2016 to August 2016. His current re-
search interests include datacenter networking and
job scheduling.

Bo Li is a professor in the Department of Com-
puter Science and Engineering, Hong Kong Univer-
sity of Science and Technology. He is a Fellow of
IEEE. He was the Chief Technical Advisor for Chi-
naCache Corp.(NASDAQ CCIH), the largest CDN
operator in China. He was a Cheung Kong Visiting
Chair Professor in Shanghai Jiao Tong University
(2010-2013) and an adjunct researcher in Microsoft
Research Asia (1999-2007) and in Microsoft Ad-
vance Technology Center (2007-2009). His current
research interests include: multimedia communica-

tions, the Internet content distribution, datacenter networking, cloud com-
puting, and wireless sensor networks.

He made pioneering contributions in the Internet video broadcast with
the system, Coolstreaming, which was credited as the world first large-
scale Peer-to-Peer live video streaming system. The work appeared in IEEE
INFOCOM (2005) received the IEEE INFOCOM 2015 Test-of-Time Award.
He has been an editor or a guest editor for over a dozen of IEEE journals
and magazines. He was the Co-TPC Chair for IEEE INFOCOM 2004.

He received five Best Paper Awards from IEEE. He received the Young
Investigator Award from Natural Science Foundation of China (NFSC) in
2005, the State Natural Science Award (2nd Class) from China in 2011. He
received his B. Eng. in the Computer Science from Tsinghua University,
Beijing, and his PhD in the Electrical and Computer Engineering from
University of Massachusetts at Amherst.

Baochun Li received the B.Engr. degree from the
Department of Computer Science and Technol-
ogy, Tsinghua University, China, in 1995 and the
M.S. and Ph.D. degrees from the Department of
Computer Science, University of Illinois at Urbana-
Champaign, Urbana, in 1997 and 2000.

Since 2000, he has been with the Department of
Electrical and Computer Engineering at the Univer-
sity of Toronto, where he is currently a Professor. He
holds the Nortel Networks Junior Chair in Network
Architecture and Services from October 2003 to

June 2005, and the Bell Canada Endowed Chair in Computer Engineering
since August 2005. His research interests include large-scale distributed
systems, cloud computing, peer-to-peer networks, applications of network
coding, and wireless networks.

Dr. Li has co-authored more than 290 research papers, with a total of
over 13000 citations, an H-index of 59 and an i10-index of 189, according
to Google Scholar Citations. He was the recipient of the IEEE Communica-
tions Society Leonard G. Abraham Award in the Field of Communications
Systems in 2000. In 2009, he was a recipient of the Multimedia Commu-
nications Best Paper Award from the IEEE Communications Society, and
a recipient of the University of Toronto McLean Award. He is a member of
ACM and a Fellow of IEEE.

http://www.nsnam.org/

	Introduction
	Motivation and Background
	System Model
	Motivating Example

	Problem Formulation
	Design
	Framework Overview
	Algorithms of Adia
	Properties of Adia
	Analysis of Link Utilization
	Analysis of Coflow Completion Time

	Experimental Evaluation
	Simulation Methodology
	Benchmark workloads
	Schemes compared
	Performance metrics

	Adia's Performance

	Related Work
	Conclusion
	Appendix A: Complexity Analysis
	References
	Biographies
	Jingjie Jiang
	Shiyao Ma
	Bo Li
	Baochun Li

