
458 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 30, NO. 2, FEBRUARY 2012

Collaborative Caching in Wireless Video Streaming
Through Resource Auctions

Jie Dai, Student Member, IEEE, Fangming Liu, Member, IEEE, Bo Li, Fellow, IEEE,
Baochun Li, Senior Member, IEEE, and Jiangchuan Liu, Senior Member, IEEE

Abstract—Recent advances in wireless communications and
mobile networking have dramatically increased the popularity
of multimedia services for mobile users, with wireless video
streaming at their fingertips. To facilitate efficient acquisition
of video content, proxy caching has been widely used by wireless
service providers (WSPs), which typically deploy cache servers at
mobile switching centers (MSCs). However, capacity provisioning
of cache servers is challenging, given the dynamic user demands
and the limited cache server resources. With increased densities
of wireless service deployment, it is increasingly common that
mobile users are covered by more than one WSP within an area.
This brings opportunities of a collaborative caching paradigm
among the cache servers deployed at different MSCs. In this
paper, we explore the benefits of collaborative caching in wireless
streaming services, addressing both challenges of incentives and
truthfulness of selfish WSPs. We propose a collaborative mecha-
nism that maximizes the social welfare in the context of Vickrey-
Clarke-Groves (VCG) auctions, in which cache servers cooperate
in the trading of their resources in a self-enforcing manner.
Experimental results demonstrate that superior performance can
be achieved with respect to the quality of video streaming.

Index Terms—Collaborative Caching, VCG Auction, Incentive
Engineering, Truthfulness.

I. INTRODUCTION

The popularity of on-demand video streaming has substan-
tially changed the landscape of wireless multimedia applica-
tions, with an increasing number of content providers, such
as YouTube and Netflix, offering streaming video content to
mobile users. Meanwhile, a diverse range of wireless access
technologies, including HSPA+ cellular access, Femtocells,
and recent advances in 4G deployment such as LTE [1], have
made broadband wireless connections a near-term reality.
Thanks to the availability of last-mile wireless bandwidth,

wireless service providers (WSPs) have increasingly focused
on the quality of wireless video streaming, with proxy caching

Manuscript received 15 February 2011; revised 20 July 2011. The research
was support in part by a grant from Huawei Technologies Co. Ltd. under
the contract HUAW18-15L0181011/PN, by a grant from HKUST under
the contract RPC11EG29, by a grant from The National Natural Science
Foundation of China (NSFC) under grant No.61103176.
J. Dai and B. Li are with the Department of Computer Science and

Engineering, Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong (e-mail: {jdai, bli}@cse.ust.hk).
F. Liu is with the Services Computing Technology and System Lab,

Cluster and Grid Computing Lab in the School of Computer Science and
Technology, Huazhong University of Science and Technology (e-mail: fm-
liu@mail.hust.edu.cn).
B. Li is with the Department of Electrical and Computer Engineering,

University of Toronto (e-mail: bli@eecg.toronto.edu).
J. Liu is with the School of Computing Science, Simon Fraser University

(e-mail: jcliu@cs.sfu.ca).
Digital Object Identifier 10.1109/JSAC.2012.120226

being extensively utilized to improve the streaming quality
[2]. Cache servers have been deployed in Mobile Switching
Centers (MSCs) [3] of WSPs, so as to locate video content
closer to end users. For instance, Verizon has announced its
network optimization deployment [4], in which video caching
is applied to improve the experience of wireless users.

Nevertheless, the inherent dynamics of mobile users have
presented a daunting challenge to resource provisioning at
these cache servers. Mobile users frequently join and leave
streaming sessions in the presence of mobility, and conse-
quently the load on deployed cache servers becomes unpre-
dictable. The intuitive solution of over-provisioning resources
would lead to inevitable but unnecessary waste of resources,
given the bursty nature of aggregated demand.

Considering the fact that mobile users are often covered by
multiple WSPs in the same area, all of which deliver video
content to their own clients, a better way to offload their cache
servers is to incentivize these autonomous and selfish WSPs
to collaborate with one another. The cache servers belonging
to different WSPs may assist one another to stream video
content to end users by using their own bandwidth and storage
resources. Such a collaboration would improve the degree
of multiplexing available resources in WSPs, as well as the
general availability of video content in proxy servers.

Existing works in the literature have not demonstrated how
these independent cache resources owned by WSPs can be
organized in a collaborative way, so as to achieve more
efficient multiplexing of resources. The main challenge is the
inherently selfish nature of autonomousWSPs, often belonging
to different for-profit corporations. Though WSPs are rational
in their strategic behavior, they will not cooperate with others
if their gains do not outweigh their costs.

In this paper, we focus on engineering the incentives to
promote and encourage the cache servers owned by different
WSPs to truthfully cooperate with one another. Inspired by
the theory of Vickrey-Clarke-Groves (VCG) auctions [5], we
design and analyze a new collaborative caching mechanism
that can be employed by co-locating WSPs. VCG auctions are
known as non-cooperative games, in which any decision about
cooperation is “self-enforced.” We treat server bandwidth as
commodities in these auctions, with different valuations based
on the dynamics of the streaming systems. Virtual payments
associated with the valuation of bandwidth resources ensure
that the contribution of cache servers is acknowledged by other
participants. Truthfulness is also guaranteed which enables
cache servers to faithfully reveal their true valuation when

0733-8716/12/$25.00 c© 2012 IEEE

DAI et al.: COLLABORATIVE CACHING IN WIRELESS VIDEO STREAMING THROUGH RESOURCE AUCTIONS 459

“bids” are submitted. Our bidding strategy is far simpler
than conventional cooperative networking mechanisms that
require sophisticated strategies to coordinate the behavior
across participants. Our simulation results further show that
the performance of streaming systems can be noticeably
improved by maximizing the social welfare in the auctions,
in which the bandwidth units are used to serve more valuable
demands.
The remainder of the paper is organized as follows. In

Sec. II, we discuss our contribution in the context of related
works. In Sec. III, we formulate the basic model of resource
auctions in collaborative caching. In Sec. IV, we present
the design of VCG-based bandwidth resource trading mecha-
nisms. Sec. V discusses how storage resources are utilized
in our proposed mechanisms. Sec. VI proceeds to present
an extensive simulation study to evaluate the effectiveness
of collaborative caching. Finally, we conclude the paper in
Sec. VII.

II. RELATED WORK

Proxy caching has long been utilized in wireless stream-
ing to improve its performance. Zhang et al. [2] present a
cost-based cache replacement algorithm for a single cache
server and a server selection algorithm for multiple cache
servers in wireless multimedia proxy caching. They further
analyze the Quality of Service (QoS) requirement in wireless
streaming while introducing the corresponding QoS-adaptive
proxy caching mechanisms [6]. Tan et al. [7] introduce a
smart caching design that duplicates detected video content
at access points, to effectively reduce any redundant traffic
in the WLAN while improving the response delay of video
streaming. Our work differs from these studies by imple-
menting a collaboration mechanism among cache servers. Our
collaborative caching encourages the cache servers to actively
deliver content across different domains, while both fairness
and truthfulness are guaranteed.
The potential benefit of collaborative caching in video

streaming systems has been discussed in our previous work [8]
and several other related works [9] [10]. Chen et al. [9]
consider a collaborative caching mechanism in an Internet
Protocol Television (IPTV) system with a hierarchical archi-
tecture. They suggest that central offices with limited storage
space should cooperatively exchange video content that is
temporarily unavailable. Borst et al. [10] develop distributed
caching algorithms that aim to maximize the traffic volume
served from a cache, while minimizing bandwidth costs. Their
target application scenario is a video-on-demand (VoD) system
with tree topologies. These existing studies generally assume
a single authority that owns all of the existing resources; the
cache servers could then spontaneously cooperate with one
another under certain sophisticated and enforced regulations.
In contrast, we consider the more practical scenario where
cache servers are distributed over multiple domains. They
may be arbitrarily connected and exhibit selfish behavior
to maximize their own benefits, which presents significant
challenges to the design of efficient and truthful cooperation.
Game theoretic models have also been applied in video

streaming systems to provide incentives among cache servers.

1

a b

MSC

MSC

MSC

c

Mobile User

Base Stationa WSP Domain

User Dynamic

Fig. 1. An illustrative example of collaborative caching.

Ip et al. [11] propose an incentive scheme to motivate cache
servers to share their caches. The revenue is rewarded based on
the amount of cache spaces provided and on a price function.
In contrast, rather than solely considering byte hit rates and
storage costs [11] that are more suitable for traditional file
caching systems, our collaborative caching design focuses on
improving the quality of wireless streaming quality, with a
particular emphasis on bandwidth provisioning.

III. RESOURCE AUCTIONS IN COLLABORATIVE CACHING

We start with an illustrative example to describe basic
principles in our collaborative caching mechanisms for WSPs,
in order to achieve better social efficiency.

A. An Example and Basic Features

In wireless video streaming, cache servers are deployed
by WSPs to improve the overall system performance. Each
cache server utilizes its constrained bandwidth and storage
capacity to serve video content requests from mobile users,
which consequently results in better streaming quality for
a group of video programs, also referred to as channels.
In conventional caching deployed by each individual WSP,
these resources are always allocated to local users within its
own domain. We refer to this as independent caching in this
paper. Our proposed collaborative caching mechanism further
explores the cooperation among cache servers across different
administrative domains to improve the streaming quality.
We present a scenario in Fig. 1 to describe how such a

collaboration can be achieved. WSP a and WSP b deploy
cache servers at their own MSCs which are connected to base
stations. A server in domain b only has a limited storage
capacity. With independent caching, requests to unavailable
content in b have to be relayed to remote servers. However,
this problem can be alleviated through collaboration across
different domains. For instance, after receiving content re-
quests as indicated by arrow 1, the cache server with available
content in domain a can allocate certain bandwidth to fulfill
requests from mobile users belonging to domain b. Intuitively,
such collaboration helps alleviate the sudden request surge in a
domain often encountered when there is a popular channel. As
such, the dynamics of the overall video streaming system can
be smoothly dispersed across multiple WSPs. The efficient

460 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 30, NO. 2, FEBRUARY 2012

utilization of bandwidth resources across cache servers is
critical in dealing with the dynamics of the system.
Despite the potential benefits, there is a lack of a systematic

and practical coordination mechanism among cache servers
deployed by different WSPs. Given the autonomous nature
of WSPs, one distinctive feature is the selfishness among
deployed cache servers. This implies that, (1) cache servers
within one WSP are primarily concerned with the poten-
tial benefits through collaborations. Thus, there needs to be
a proper incentive mechanism for them to collaborate. (2)
selfish WSPs may not faithfully conform to regulations of
the collaboration if “dishonest” behavior can benefit them.
Therefore, the truthfulness that forces WSPs to reveal their
true information is also crucial in the design. (3) given the
distributed nature of the content distribution, a fully decen-
tralized coordination is required. Our primary objective is to
design such a collaborative caching mechanism that improves
the social welfare, while guaranteeing both incentives and
truthfulness.

B. Model Formulation

We consider a WSP set I = {1, 2, ..., Ni} in collaborative
caching with a total of Ni WSPs that provide streaming
services in the same region. We integrate the servers belonging
to the same WSP into one cache server for the sake of
simplicity. The notation i ∈ I can be used interchangeably
to represent WSP i or the cache server of WSP i. Let the set
of video channels be denoted by K = {1, 2, ..., Nk}, where
Nk denotes the total number of channels that are available
over multiple domains. The bandwidth and storage capacity
at server i are denoted by Wi and Si.
The VCG auction from game theory fits the need to design

our collaboration mechanism such that, (1) each buyer has
to pay after each trade, which serves as the incentive to
contribute. (2) the payment method of the VCG auction
ensures truthfulness, in which buyers are willing to truthfully
reveal their bidding information in the auction. (3) auctions
can be organized in a fully decentralized fashion. We now
present the basic model and mechanism design inspired by the
VCG auction theory, in order to achieve efficient allocations
that benefit users of different WSPs.
When auction is applied in the context of collaborative

caching, auction participants become cache servers, with band-
width resources being commodities. Each cache server acts as
both a seller or bidder that trades resources in multiple rounds.
When acting as a seller, cache server i provides bandwidthW r

i

to remote bidders. We define the bandwidth unit w as the basic
unit to be traded in VCG auctions. Therefore, W r

i has been
divided into W r

i /w homogeneous bandwidth units. Note that
this forms a multi-unit auction with the VCG mechanism [12].
The assigned bandwidth can be implemented as an external
source residing in a remote MSC, which adaptively adjusts its
uplink capacity. The following equation then holds, in which
W k

i denotes the local bandwidth assignment to channel k ∈ K:

W r
i = Wi −

∑
k∈K

W k
i (1)

Auctions are conducted when bidders need a certain amount
of bandwidth from sellers to fulfill content requests for

locally unavailable contents or to alleviate the pressure on
heavily loaded channels. For the buyer server i, the number
of bandwidth units required for channel k from server j
is denoted as nk

ij . Buyer i will submit bids that include
nk

ij and the corresponding valuation information to seller
j. After collecting all bids from the cache servers in other
WSPs, the winner determination process at the seller side
can decide the bandwidth allocation scheme. Consequently,
buyers have to pay by virtual payments that can later be
used for bandwidth resource demands, which serves as an
incentive for contributions. The truthfulness will be guaranteed
by the payment method with any bids deviating from the true
valuation not benefiting in the VCG auction.
Besides the bandwidth allocation scheme derived from

the above auctions, storage resources on cache servers also
require periodic updates to keep valuable content that benefit
their own payoffs and social welfare. We show that storage
updates in collaborative caching help achieve a desirable level
of performance with a comparatively lower overhead, given
different settings of caching mechanisms.

IV. VCG-BASED BANDWIDTH TRADING

In this section, we describe the VCG-based bandwidth
trading mechanism employed by cache servers. We introduce
the concept of virtual bidder bk

i which submits bids to request
nk

ij bandwidth units on behalf of users on channel k in
domain i. bk

i has a privately known valuation function: vk
i :

{0, 1, ..., nk
ij} → �, ∀i ∈ I, k ∈ K, in which vk

i (n) denotes
the valuation of the benefit of receiving n bandwidth units. bk

i

then submits bids bk
i = {(0, 0), (1, vk

i (1)), ..., (nk
i , vk

i (nk
ij))}

to seller j since submitting one’s true valuation is the dominant
strategy in VCG auctions.
We now define the valuation function in VCG auctions.

When we consider a video streaming system, the user stream-
ing quality can be used to reveal the actual benefit of receiving
a certain amount of bandwidth units. We also consider im-
portant observations inside real-world peer-assisted streaming
systems through extensive measurements [13] [14]. According
to [13], there exists a positive correlation between the per-user
server bandwidth provisioned and the proportion of users that
experience a smooth playback. In the context of independent
caching, the streaming quality can therefore be defined as:

qk
i = γ(

W k
i

rk · xk
i

)α (2)

In this definition, γ is an adjustable scaling parameter. The
channel with streaming rate rk has xk

i concurrent users. The
value of α satisfies the constraint 0 < α < 1 [14], which
indicates that the streaming quality could be improved when
the provisioned bandwidth increases, but with a decreasing
marginal gain. This formulation is also consistent with ob-
servations in [13], in which the streaming quality negatively
correlates to channel populations.
Definition 1: Valuation Function. Based on the formulation

of the streaming quality under independent caching, we then
propose the valuation function in collaborative caching as:

vk
i (nk

ij) = γ(xk
i)1−α((

W k
i + eij · w · nk

ij

rk
)α − (

W k
i

rk
)α) (3)

DAI et al.: COLLABORATIVE CACHING IN WIRELESS VIDEO STREAMING THROUGH RESOURCE AUCTIONS 461

The valuation function reflects the streaming quality im-
provement over channel k by receiving nk

ij units of bandwidth
from server j. The notation eij (0 < eij ≤ 1) represents the
degradation of benefits due to the differentiation of coverage
areas among different domains of server i and j.
Definition 2: Winner Determination. Each cache server j

needs to determine the allocation of W r
j after receiving bids

from other servers. The winner determination is considered to
be an efficient allocation if it maximizes the social welfare as
the following:

Maximize
∑
k∈K

∑
i∈I

vk
i (ñk

ij)

Subject to:
∑
k∈K

∑
i∈I

ñk
ij ≤

W r
j

w

0 ≤ ñk
ij ≤ nk

ij ∀i ∈ I, k ∈ K

(4)

ñk
ij is the optimization variable in the formulation. Since

the valuation function is privately known, the receiving bids
only include discrete values for each possible number of ac-
knowledged units. Therefore, this problem becomes an integer
programming problem, which is in general NP-hard. It has
been further shown that truthfulness is no longer guaranteed
in a VCG auction if approximation algorithms are applied [5].
Fortunately, we show in Sec. IV-A that an optimal solution
can be achieved here by exploring the unique structure of the
valuation function.
Definition 3: VCG Payments. The VCG-based auction

mechanism results in a payment for bidder bk
i as:

pk
i = vk

i (ñk
ij

∗
) + max

bk
i
=

{(0,0)}

∑
k∈K

∑
i∈I

vk
i (ñk

ij)−
∑
k∈K

∑
i∈I

vk
i (ñk

ij

∗
)

(5)
The notation ñk

ij

∗
denotes the optimal solution to the

winner determination problem (4). The implications of virtual
payment are two-fold. First, it acts as an incentive to resource
contributors which incur costs in delivering content. Second,
the truthfulness of collaborative caching is also guaranteed
which is proven in Sec. IV-A.
Definition 4: The utility gained by virtual bidders in a VCG

auction is uk
i = vk

i (ñk
ij

∗
)− pk

i .

A. Optimal Bandwidth Allocation Strategies

The conventional winner determination in the form of
integer programming results in a high computational com-
plexity [5]. However, the valuation function in our proposed
mechanisms satisfies a downward sloping property [12], which
leads to a polynomial-time optimal allocation.
Theorem 1: The valuation function given in (3) satisfies the

downward sloping property.
Proof: The first order derivative of (3) is given as:

∂vk
i

∂nk
ij

=
γ · α · eij · w(xk

i)1−α

rk
α(W k

i + eij · w · nk
ij)1−α

> 0 (6)

This ensures that the valuation monotonically increases with
a growing number of provisioned bandwidth units. The second
order derivative of the valuation function is given as:

Algorithm 1 A Collaborative Caching Framework through
VCG Resource Auctions

1: nr
j ← �W r

j

w 	
2: if nr

j ≥
∑

k∈K
∑

i∈I nk
ij then

3: ñk
ij

∗ ← nk
ij , ∀i ∈ I, k ∈ K

4: else
5: ñk

ij

∗ ← 0, ∀i ∈ I, k ∈ K
6: for nr

j > 0 do

7: {i, k} = argmax
i∈I,k∈K

vk
i (ñk

ij

∗
+ 1)− vk

i (ñk
ij

∗
)

8: ñk
ij

∗ ← ñk
ij

∗
+ 1

9: nr
j ← nr

j − 1
10: end for
11: end if

∂2vk
i

∂nk
ij

2 =
γ(α2 − α)(eij · w)2(xk

i)1−α

rk
α(W k

i + eij · w · nk
ij)2−α

< 0 (7)

The second derivative is constantly smaller than 0, which
indicates that the valuation function given in (3) satisfies the
downward sloping property.

Thus, the seller can then achieve the optimal solution
to problem (4) in polynomial time without obtaining any
details of the valuation function. The procedure to determine
the winner is given in Algorithm 1 with a computational
complexity of O(|I||K|nr

j) for each auction.
Theorem 2: Utility uk

i gained by virtual bidder bk
i is a non-

negative value.

Proof: Suppose ñk
ij

∗
is determined in the winner de-

termination process. The resulting payment is pk
i given

by Eq. (5). In the optimal solution to the problem of
max

∑
k∈K

∑
i∈I vk

i (ñk
ij) in case of b

k
i = {(0, 0)}, ñk

ij =
0 ≤ nk

ij . Therefore, this solution also satisfies the con-
straints in Problem (4) if remaining bids are not changed.
Therefore, its social welfare is smaller than or equal to∑

k∈K
∑

i∈I vk
i (ñk

ij

∗
). Then pk

i − vk
i (ñk

ij

∗
) ≤ 0, uk

i ≥ 0.

Theorem 3: Bidding on one’s true valuation vk
i (ñk

ij

∗
) max-

imizes the utility obtained by virtual bidders.
Proof: The utility gained from the true valuation is uk

i =∑
k∈K

∑
i∈I vk

i (ñk
ij

∗
) − maxbk

i ={(0,0)}
∑

k∈K
∑

i∈I vk
i (ñk

ij).

Consider that bk
i submits a false valuation such that v

′k
i (ñk

ij) �=
vk

i (ñk
ij). In this case, the utility gained from the false val-

uation is u′k
i = max

∑
k∈K

∑
i∈I v′ki (ñk

ij) − v′ki (˜n′k
ij

∗
) −

maxbk
i ={(0,0)}

∑
k∈K

∑
i∈I vk

i (ñk
ij) + vk

i (˜n′k
ij

∗
), where ˜n′k

ij

∗

is the optimal allocation to max
∑

k∈K
∑

i∈I v′ki (ñk
ij). The

utility differentiation between two scenarios is denoted

as uk
i − u′k

i = (
∑

k∈K
∑

i∈I vk
i (ñk

ij

∗
) − vk

i (˜n′k
ij

∗
)) −

(max
∑

k∈K
∑

i∈I v′ki (ñk
ij) − v′ki (˜n′k

ij

∗
)). Since ñk

ij

∗
is an

efficient allocation to problem (4) in the context of true
valuations, the authenticity of remaining bids ensures that
uk

i − u′k
i ≥ 0. Therefore, we have uk

i ≥ u′k
i .

462 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 30, NO. 2, FEBRUARY 2012

All bids submitted by virtual bidders are therefore truthful
according to Theorem 2 and 3. Meanwhile, the demands with
higher valuations are satisfied with higher priorities, which
optimize the social welfare. The bidding strategy is simplified,
which benefits the practical deployment of the mechanisms.

B. Implementation Issues

First, local resource allocation. In each trading round,
a fraction of β (0 ≤ β ≤ 1) of the total bandwidth
capacity is used for the local content dissemination such that∑

k∈K W k
i = βWi. Since the status of local channels is

always known to the respective WSP, the decision of W k
i

is also based on the valuation function (3) to optimize the
performance.
Second, the determination of nk

ij . The decision of nk
ij is

determined by the remaining budget in auctions. The cache
server formulates an optimization problem that minimizes the
number of requested units

∑
k∈K nk

ij , where the constraint is
given as the total valuation of requested units

∑
k∈K v(nk

ij)
being greater than the remaining budget. Demands with higher
valuations can be found through a local search in polynomial
time, and requests are therefore issued.
Third, server selection for issuing requests. This decision is

made based on the external bandwidth availability and the con-
tent availability, which can be acquired through information
exchange. Those cache servers with more available bandwidth
W r

j are preferred to be selected.
Fourth, the frequency of trading. If the trade is performed

in each time slot, the resource allocation is achieved with finer
granularity but excessive computational overhead. To mitigate
such overhead, the trading result can be potentially used for
a longer period of time. The effect of changing the trading
frequency is evaluated in Sec. VI.

V. COLLABORATIVE CACHING STORAGE

One of the main benefits of applying collaborative caching
in wireless video streaming is the ability of requesting locally
unavailable contents which improves the storage utilization
through resource multiplexing. Given bandwidth resource auc-
tions introduced in Sec. IV, the limited cache storage should
also be carefully utilized. Without loss of generality, cache
servers are required to keep full copies of video channels.
The storage decision of cache server i can then be denoted
as ak

i = {0, 1}, ∀i ∈ I, k ∈ K. In this section, we analyze
the effect of different cache storage strategies under both
independent and collaborative caching mechanisms.

A. Performance Metric

The bandwidth resource of cache servers cannot be assumed
to be abundant. Even if a video is cached, there is no guarantee
that the currently available bandwidth is sufficient to satisfy
all the content requests. Therefore, the video request can be
counted as a cache hit only when the video is cached and
served with allocated bandwidth. Accordingly, we define the
performance metric of achieved cache hit ratio as:

R =
∑

k∈K φ · xk
i∑

k∈K xk
i

∀i ∈ I (8)

in which φ represents a binary value such that:

φ =

{
1, If (W k

i

w +
∑

j∈I ñk
ij

∗
) > 0,

0, Otherwise.
(9)

The achieved cache hit ratio defined in Eq. (8) is the
proportion of online users whose content requests are served
either by a local WSP through local resource allocation, or
external WSPs through resource auctions.

B. Storage Update Strategies

Under both independent and collaborative caching mech-
anisms, the periodical storage update aims to improve the
overall streaming quality in the system. It can be observed
from Eq. (3) that it is more beneficial to assign bandwidth
resource to popular channels. Therefore, conventional inde-
pendent caching prefers to cache highly popular videos as:

Maximize
∑
k∈K

ak
i xk

i

Subject to:
∑
k∈K

ak
i fk ≤ Si

ak
i = {0, 1} 1 ≤ k ≤ Nk

(10)

Here fk denotes the file size of video k and Si represents the
storage capacity of the cache server i. In practice, the statistical
result of video popularity over the last storage update interval
is used for the update decision.
The storage update decision needs to further coordinate

with resource auctions with the proposed collaborative caching
mechanism. Cache servers update their contents based on
the local requests and the demands in the current market,
as both the locally and socially valuable content should be
stored. The local demands are reflected by the local resource
allocation W k

i and the content requests nk
ij . The prediction

of market demands is to take historical trading information
into consideration. Thus, the socially valuable content can be
represented by the number of bandwidth units satisfied to other
WSPs ñk

ji

∗
. The basic utility maximization formulation is then

given as:

Maximize
∑
k∈K

(λak
i (

W k
i

w
+

∑
j∈I

nk
ij) + (1− λ)ak

i

∑
j∈I

ñk
ji

∗
)

Subject to:
∑
k∈K

ak
i fk ≤ Si

ak
i = {0, 1} 1 ≤ k ≤ Nk

(11)

Here λ (0 ≤ λ ≤ 1) specifies the design choice for the stor-
age update strategy in the collaborative caching mechanism.
If we set λ = 1, the storage decision is made solely based on
the local demands. If we set λ = 0, the storage update strategy
is fully dominated by demands in the current market. When
we set λ as a certain value between 0 and 1, it represents
a combined strategy that benefits both demands of the local
WSP and content requests from other WSPs.

DAI et al.: COLLABORATIVE CACHING IN WIRELESS VIDEO STREAMING THROUGH RESOURCE AUCTIONS 463

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Slots

S
tr

ea
m

in
g

Q
ua

lit
y

C−Caching
I−Caching

Fig. 2. The streaming quality of collaborative caching versus independent
caching.

C. Impact of Storage Update Interval

The video popularity throughout the entire system dynami-
cally changes over time. In this case, the cache server with an
independent caching mechanism needs to frequently update its
storage to cache the most popular content, in order to achieve
an efficient use of bandwidth resources. However, frequent
updates would cause considerable cost in distributing content
from the centralized content server to cache servers.
Such costs can be significantly reduced in our proposed

collaborative caching by enabling content delivery among
different WSPs. The diversified contents among multiple
WSPs can help satisfy requests for videos that are not locally
available even with a long interval of storage update. This cost
reduction is illustrated in our performance evaluation section.

VI. PERFORMANCE EVALUATION

In this section, we examine the performance of the proposed
collaborative caching scheme, in comparison with the con-
ventional independent caching mechanism. Our evaluation is
based on a time-slotted simulator implemented using Python.
The performance of different caching mechanisms is analyzed
in terms of the overall streaming quality, i.e., the percentage
of online users that experience a smooth playback, and the
achieved cache hit ratio, defined in Sec. V. We also take a
close look at the potential cost and overhead of collaborative
caching, which is critical in practical system design.
We simulate four WSPs that deploy cache servers to assist

wireless video streaming. There are 500 video channels and
the peak popularity is distributed over 10 to 500. The band-
width resource auctions are carried out periodically according
to a predefined allocation update interval. The storage space
of cache servers is randomly filled at the initial phase, and
then periodically updated with different strategies in Sec. V.

A. Performance Improvement through Collaborative Caching

We first plot the overall streaming quality improvement
brought forth by the proposed collaborative caching (denoted
as C-Caching) in Fig. 2. The allocation update interval is one
time slot, and the storage update interval is 50 time slots. The
size of the bandwidth unit in the auction is the same as the
video streaming rate of 500 kbps. Each cache server can store
25% of all the existing video channels, and the bandwidth

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Slots

A
ch

ie
ve

d
C

ac
he

 H
it

R
at

io

C−Caching
I−Caching

Fig. 3. The achieved cache hit ratio of collaborative caching versus
independent caching.

capacity is set to 16, 000 bandwidth units which account for
20% of the total bandwidth requirement in the system. The
value of parameter β and λ is set to 0.6 and 0.5, respectively.
We first observe that the overall streaming quality of C-

Caching consistently outperforms that of the independent
caching (denoted as I-Caching). Due to the random initial-
ization of each cache storage, the streaming quality of C-
Caching and I-Caching stay stable at around 50% and 30%,
respectively. After the first storage update, the streaming
quality of I-Caching increases to 40%, as more bandwidth
units are utilized for supporting channels with high valua-
tion. However, the streaming quality of C-Caching does not
explicitly increase since the resource auctions already fulfill
the demands for those unavailable popular videos before the
storage update. In subsequent time slots, the streaming quality
of I-Caching fluctuates between 20% and 40%, while C-
Caching always maintains a satisfactory level of performance.
This demonstrates the stability of the proposed collaborative
caching mechanism.
Similar performance patterns can be observed in the

achieved cache hit ratio as plotted by Fig. 3. On average, the
achieved cache hit ratio of C-Caching is almost 3 times higher
than that of I-Caching. The rationale is that I-Caching prefers
to assign bandwidth resources to the most popular videos to
achieve a better overall performance. As such, only a smaller
portion of videos can be satisfied by deployed cache servers.
In comparison, the diversified content exchanges under C-
Caching and the dedicated bandwidth resource in resource
auctions could help maintain a higher cache hit ratio and
relatively stable streaming quality.
Fig. 4 compares different scenarios of the bandwidth and

storage capacity settings. Along with an increase in storage ca-
pacity, the streaming quality under I-Caching increases almost
linearly since the negative impact of the content unavailability
brought forth by system dynamics can be alleviated. In com-
parison, the streaming quality improvement under C-Caching
is initially significant and becomes less significant if the
storage capacity exceeds 40%. This clearly demonstrates that
collaborative caching through multiplexing can substantially
reduce the overall storage requirement to achieve a desirable
streaming quality.
Fig. 5 depicts the impact of the portion of bandwidth

resources that are allowed to be utilized by other WSPs.

464 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 30, NO. 2, FEBRUARY 2012

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Storage Capacity

S
tr

ea
m

in
g

Q
ua

lit
y

I−Caching, BW=10000
C−Caching, BW=10000
I−Caching, BW=20000
C−Caching, BW=20000

Fig. 4. The streaming quality of collaborative caching versus independent
caching, under different settings of bandwidth and storage capacity.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−β

S
tr

ea
m

in
g

Q
ua

lit
y

C−Caching, BW=10000
C−Caching, BW=16000
C−Caching, BW=20000
I−Caching, BW=20000

Fig. 5. The streaming quality versus the percentage of bandwidth provisioned
to other WSPs, under different settings of bandwidth capacities and caching
mechanisms.

It can be observed that the streaming quality is maximized
when an adequate portion of bandwidth is allocated for other
WSPs (i.e., for auctions), and both excessive local and external
bandwidth provision in C-Caching cannot yield the maximal
streaming quality. The reason is that when β is small, most of
content requests from other WSPs can be satisfied even with
a low valuation of the bandwidth units. On the contrary, if the
value of β is as large as 1, cache servers can no longer benefit
from resource multiplexing across different WSPs, in cases of
popularity variation or content unavailability. Fig. 5 suggests
that we can properly design the β to achieve better streaming
quality in practical engineering.
Fig. 6 denotes the effect of parameter λ in the storage

update under different storage capacity settings. We observe
that a local demands first strategy is preferred when the storage
capacity is limited (ST= 20%) in C-Caching. However, the
overall content diversity is satisfactory by caching respective
popular contents, which can be concluded from Fig. 3 that
exhibits a satisfactory level of the achieved cache hit ratio.
The sensitivity of λ decreases when the storage capacity is
relatively abundant, since both locally preferred and socially
preferred contents could be kept with a larger storage space,
regardless of specific settings of λ.

B. Overhead with Collaborative Caching

We next examine the overhead incurred by the proposed
C-Caching by analyzing the impact of the update interval
of cache storage and that of bandwidth allocation. Fig. 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Parameter λ in Storage Updates

S
tr

ea
m

in
g

Q
ua

lit
y

C−Caching, ST=20%
C−Caching, ST=40%
C−Caching, ST=60%
I−Caching, ST=60%

Fig. 6. The streaming quality versus the parameter λ in the cache storage
update, under different settings of storage capacities and caching mechanisms.

0 10 20 30 40 50 60 70 80 90
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Storage Update Intervals

S
tr

ea
m

in
g

Q
ua

lit
y

C−Caching
I−Caching

Fig. 7. The streaming quality versus the cache storage update interval, under
different settings of caching mechanisms.

illustrates the tradeoff between the streaming quality and the
frequency of cache storage updates. It can be seen that the
performance gap between the two mechanisms becomes more
significant when the update interval gradually gets larger. The
increasing gap is caused by fluctuations in channel popularity,
which can easily be resolved with inter-WSP resource auc-
tions. This shows that I-Caching has to frequently update its
storage which brings a higher cost associated with the cache
replacement. In sharp contrast, the performance of C-Caching
remains stable despite specific cache update strategies.
We then analyze the tradeoff between the streaming quality

and the update interval of bandwidth resource allocation in
Fig. 8. We evaluate several scenarios in which decisions of
bandwidth allocation from resource auctions are utilized over
multiple rounds. Fig. 8 clearly shows that the overall streaming
quality only slightly decreases along with an increase of the
allocation update interval. This implies that in practice, it is
feasible to reuse existing bandwidth allocation results, which
further reduces the overhead of auction mechanisms.

C. Fairness among WSPs

When the auction is conducted in practice among multiple
WSPs, it is indispensable to further evaluate the fairness of
the system. Fig. 9 plots the respective streaming quality of
different WSPs in our simulation. It shows that the variation
of streaming quality at WSPs exhibits a similar pattern over
time. This demonstrates that the proposed resource auction
can improve the social welfare by mutual assistance. Fig. 10

DAI et al.: COLLABORATIVE CACHING IN WIRELESS VIDEO STREAMING THROUGH RESOURCE AUCTIONS 465

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0.2

0.3

0.4

0.5

0.6

Allocation Update Intervals

S
tr

ea
m

in
g

Q
ua

lit
y

C−Caching
I−Caching

Fig. 8. The streaming quality versus the update interval of bandwidth
allocation, under different settings of caching mechanisms.

0 50 100 150 200 250 300
0.4

0.45

0.5

0.55

0.6

Time Slots

S
tr

ea
m

in
g

Q
ua

lit
y

WSP1
WSP2
WSP3
WSP4

Fig. 9. The streaming quality of different WSPs in collaborative caching
over time.

further plots the cumulative amount of received packets from
other WSPs. It can be observed that the trend of all curves
remains similar overall, which also reflects the fairness of the
collaborative caching mechanism.

VII. CONCLUSION

In this paper, we have proposed a collaborative caching
mechanism for wireless video streaming that coordinates
cache resource provisioning among selfish WSPs. In partic-
ular, we focus on engineering the incentives to promote and
encourage cache servers from different WSPs to truthfully
cooperate with one another in the context of VCG auctions.
We have derived solutions to allocate server bandwidth and
analyzed the utilization of server storage space. Simulation
results demonstrate that the performance of streaming sys-
tems can be significantly improved, with maximized social
welfare in auctions conducted by the collaborative caching
mechanism.

REFERENCES

[1] F. Khan, LTE for 4G Mobile Broadband: Air Interface Technologies and
Performance. Cambridge University Press, 2009.

[2] Q. Zhang, Z. Xiang, W. Zhu, and L. Gao, “Cost-Based Cache Re-
placement and Server Selection for Multimedia Proxy across Wireless
Internet,” IEEE Transactions on Multimedia, vol. 6, no. 4, 2004.

[3] H. Chen and Y. Xiao, “Cache Access and Replacement for Future
Wireless Internet,” IEEE Communications Magazine, vol. 44, no. 5,
2006.

[4] “Explanation of Optimization Deployment,” http://www.verizonwireless.
com/vzwoptimization/.

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6

Time Slots

R
ec

ei
ve

d
B

an
dw

id
th

 U
ni

ts

WSP1
WSP2
WSP3
WSP4

Fig. 10. The number of received packets from other WSPs in collaborative
caching over time.

[5] N. Nisan and A. Ronen, “Computationally Feasible VCG Mechanisms,”
Journal of Artificial Intelligence Research, vol. 29, no. 1, 2007.

[6] Q. Zhang, F. Yang, and W. Zhu, “Cross-layer QoS Support for Multime-
dia Delivery over Wireless Internet,” EURASIP J. Appl. Signal Process.,
vol. 2005, no. 2, 2005.

[7] E. Tan, L. Guo, S. Chen, and X. Zhang, “SCAP: Smart Caching in
Wireless Access Points to Improve P2P Streaming,” in Proc. IEEE
ICDCS, Jun. 2007.

[8] J. Dai, B. Li, F. Liu, B. Li, and H. Jin, “On the Efficiency of
Collaborative Caching in ISP-aware P2P Networks,” in Proc. IEEE
INFOCOM, Apr. 2011.

[9] L. Chen, M. Meo, and A. Scicchitano, “Caching Video Contents in IPTV
Systems with Hierarchical Architecture,” in Proc. IEEE ICC, Jun. 2009.

[10] S. Borst, V. Gupta, and A. Walid, “Distributed Caching Algorithms for
Content Distribution Networks,” in Proc. IEEE INFOCOM, Mar. 2010.

[11] A. T. S. Ip, J. C. S. Lui, and J. Liu, “A Revenue-rewarding Scheme of
Providing Incentive for Cooperative Proxy Caching for Media Streaming
Systems,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 4,
no. 1, 2008.

[12] S. Dobzinski and N. Nisan, “Mechanisms for Multi-Unit Auctions,”
Journal of Artificial Intelligence Research, vol. 37, no. 1, 2010.

[13] C. Wu, B. Li, and S. Zhao, “Diagnosing Network-wide P2P Live
Streaming Inefficiencies,” in Proc. IEEE INFOCOM, Apr. 2009.

[14] C. Wu and B. Li, “Multi-channel Live P2P Streaming: Refocusing on
Servers,” in Proc. IEEE INFOCOM, Apr. 2008.

Jie Dai is currently a Ph.D. student in the Depart-
ment of Computer Science and Engineering, Hong
Kong University of Science and Technology. Prior
to that, he received his B.Eng. degree in computer
science from Huazhong University of Science and
Technology, Wuhan, China, in 2007. From April to
August 2011, he was a visiting student at the School
of Computing Science, Simon Fraser University,
Canada. His research interests include collaborative
caching systems, ISP networks, cloud computing,
peer-to-peer networks, and multimedia systems. He

is a student member of IEEE.

466 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 30, NO. 2, FEBRUARY 2012

Fangming Liu received his B.Engr. degree in 2005
from Department of Computer Science and Tech-
nology, Tsinghua University, Beijing, China; and
his Ph.D. degree in Computer Science and Engi-
neering from the Hong Kong University of Science
and Technology in 2011. He is currently an Asso-
ciate Professor in the Services Computing Technol-
ogy and System Lab, Cluster and Grid Computing
Lab, School of Computer Science and Technology,
Huazhong University of Science and Technology,
Wuhan, China. From Aug 2009 to Feb 2010, he

was a visiting student at the Computer Engineering Group, Department
of Electrical and Computer Engineering, University of Toronto, Canada.
His research interests are in the area of peer-to-peer networks, rich-media
distribution, cloud computing and large-scale datacenter networking. He is a
member of IEEE and IEEE Communications Society.

Bo Li (F’11) is a professor in the Department
of Computer Science and Engineering, Hong Kong
University of Science and Technology. He is a
Cheung Kong Chair Professor in Shanghai Jiao Tong
University, China, and the Chief Technical Advisor
for China Cache Corp. (NASDAQ:CCIH). He was
previously with IBM Networking System Division,
Research Triangle Park, and an adjunct researcher
at Microsoft Research Asia. His recent interests in-
clude: large-scale content distribution in the Internet,
Peer-to-Peer media streaming, the Internet topology,

cloud computing, green computing and communications.
He received his B. Eng. Degree in the Computer Science from Tsinghua

University, Beijing, and his Ph.D. degree in the Electrical and Computer
Engineering from University of Massachusetts at Amherst.

Baochun Li received the B.Engr. degree from the
Department of Computer Science and Technology,
Tsinghua University, China, in 1995 and the M.S.
and Ph.D. degrees from the Department of Com-
puter Science, University of Illinois at Urbana-
Champaign, Urbana, in 1997 and 2000. Since 2000,
he has been with the Department of Electrical and
Computer Engineering at the University of Toronto,
where he is currently a Professor and the Bell
Canada Endowed Chair in Computer Engineering.
His research interests include cloud computing,

peer-to-peer networks, applications of network coding, and wireless networks.
He was the recipient of the IEEE Communications Society Leonard G.
Abraham Award in the Field of Communications Systems in 2000. In 2009,
he was a recipient of the Multimedia Communications Best Paper Award
from the IEEE Communications Society, and a recipient of the University of
Toronto McLean Award. He is a member of ACM and a senior member of
IEEE.

Jiangchuan Liu (S’01-M’03-SM’08) received the
BEng degree (cum laude) from Tsinghua University,
China, in 1999, and the PhD degree from The
Hong Kong University of Science and Technology
in 2003. He is a co-recipient of the Best Student
Paper Award of IWQoS’2008 and the Multimedia
Communications Best Paper Award from the IEEE
Communications Society.
He is currently an Associate Professor at Simon

Fraser University, British Columbia, Canada, and
was an Assistant Professor at The Chinese Univer-

sity of Hong Kong from 2003 to 2004. His research interests include cloud
computing, peer-to-peer systems, multimedia communications, and wireless
networking. He is an Associate Editor of IEEE Transactions on Multimedia,
and an editor of IEEE Communications Surveys and Tutorials.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

