
Collaborative Hierarchical Caching with Dynamic
Request Routing for Massive Content Distribution

Jie Dai†, Zhan Hu†, Bo Li†, Jiangchuan Liu‡, Baochun Li§
†Hong Kong University of Science and Technology
‡Simon Fraser University, §University of Toronto

Abstract—Massive content delivery in metropolitan networks
has recently gained much attention with the successful deploy-
ment of commercial systems and an increasing user popularity.
With an enormous volume of content available in the network,
as well as the growing size of content owing to the popularity of
high-definition video, the exploration of capacity in the caching
network becomes a critical issue in providing guaranteed service.
Yet, collaboration strategies among cache servers in emerging
scenarios, such as IPTV services, are still not well understood so
far. In this paper, we propose an efficient collaborative caching
mechanism based on the topology derived from a real-world
IPTV system, with a particular focus on exploring the capacity of
the existing system infrastructure. We observe that collaboration
among servers is largely affected by the topology characteris-
tics and heterogeneous capacities of the network. Meanwhile,
dynamic request routing within the caching network is strongly
coupled with content placement decisions when designing the
mechanism. Our proposed mechanism is implemented in a dis-
tributed manner, and is amenable to practical deployment. Our
simulation results demonstrate the effectiveness of our proposed
mechanism, as compared to conventional cache cooperation with
static routing schemes.

I. I NTRODUCTION

The delivery of large volumes of content — such as high-
definition videos and operating system software updates — is
becoming a daily routine over the Internet, mostly providedby
content service providers. For example, Netflix now accounts
for around30% of peak downstream traffic in US with its rapid
growth of online video subscribers. Operating system releases,
such as Ubuntu 11.04, have also relied on the public Internet
using mirror servers deployed worldwide [1]. Furthermore,
more cloud-oriented applications require massive amountsof
content to be delivered between service providers and end
users.

Such explosively increasing demand has posed significant
challenges to network infrastructure providers, who promise
quality of service to users. On one hand, the large amount of
available content consumes a huge amount of storage resources
if such content is replicated at service providers. On the other
hand, the delivery of massive content may also overwhelm
link capacities, raising the issue of balancing the tradeoff
between network infrastructure investments and quality of
service guarantees. As such, a critical challenge now is to

†The research was supported in part by a grant from NSFC/RGC under
the contract NHKUST610/11, by grants from HKUST under contracts
RPC11EG29, SRFI11EG17-C and SBI09/10.EG01-C, by a grant from Huawei
Technologies Co. Ltd. under the contract HUAW18-15L0181011/PN, by a
grant from Guangdong Bureau of Science and Technology underthe contract
GDST11EG06.

best utilize existing network infrastructures to better support
future demand for massive content delivery.

It is well known that the network infrastructure at a service
provider is, in general, a caching network, in which multiple
cache servers are deployed at different locations. Serversare
connected in a certain topology, and cooperate to resolve
requests sent from clients. More specifically, cache servers
collaboratively make storage decisions and route content re-
quests inside the cache hierarchy. This requires a carefully
designed placement strategy for cached content, along witha
specific request routing mechanism. In a conventional caching
network that supports web content delivery, the perceived
service quality can be improved with collaborative cachingby
minimizing the end-to-end latency of data packets. However,
the problem becomes even more challenging when the col-
laborative caching mechanism is used to aid massive content
delivery.

Despite a large amount of deployed commercial systems
and modelling research on traditional hierarchical caching
networks, there exists few works in the literature that address
challenges with collaborative caching when massive content
delivery is considered, especially with implications fromreal-
world systems. In this paper, we investigate the capacity
provisioning problem in hierarchical caching networks, based
on a real-world IPTV system. Our caching network topology
has been obtained from a commercial deployment of China
Telecom Guangzhou [2], which provides IPTV service to
millions of users in a metropolitan network. According to our
observations, the overall topology is similar to a hierarchical
structure that is widely applied in web caching systems [3].
However, the collaborative caching problem that we address
in this paper exhibits a number of different features. Existing
works that investigate cache hierarchies have mainly assumed
static content request routing mechanisms. Requests are simply
forwarded to the upper-layer parent server when the contentis
not locally available. Such fixed routing paths have simplified
the problem of finding the optimal content placement inside
the network. In contrast, in this paper, we point out that in
order to maximize the potential for cache cooperation in the
existing infrastructure, dynamic request routing needs tobe
designed jointly with content placement strategies in a tightly
coupled fashion.

Another important feature that distinguishes our work from
similar problems is the large amount of bandwidth that is
consumed as massive contents are delivered [4]. The link
capacity is rarely the bottleneck for web cache servers [5].

Thus, the methods applied in web systems usually define the
optimization objectives using the notion of “cost,” which is
derived from the estimation of distance between requests and
cache servers. However, it is necessary to consider the impact
of hard bandwidth constraints for links in our target system.
In this sense, a dynamic request routing scheme also helps
to avoid the over-utilization of links in the cache hierarchy.
Comparatively speaking, our study tries to optimize the maxi-
mum amount of supported requests while emphasizing the link
capacity constraint, which is a practical concern in real-world
IPTV systems.

In this paper, we take advantage of insights from a real-
world topology to derive an efficient collaborative caching
mechanism. Based on heterogeneous request patterns at dif-
ferent locations of the system and asymmetric settings of
cache capacities, we design our strategic content placement
strategy and the corresponding request routing rules. More
specifically, we decompose these two problems into different
layers of cooperation, so that practical distributed algorithms
can be achieved. Our simulation results show that excellent
performance can be achieved with the proposed mechanism,
compared to conventional cache cooperation with static rout-
ing.

The remainder of the paper is organized as follows. In
Sec. II, we discuss our contribution with comparisons to
related works. In Sec. III, we present characteristics of our
real-world system, along with a description of our problems
at hand. Sec. IV introduces the cache cooperation framework
and the corresponding caching strategies. Sec. V evaluatesthe
performance of the proposed caching mechanisms. Finally, we
conclude the paper in Sec. VI.

II. RELATED WORK

The cooperation of cache servers in hierarchical caching
networks has long been investigated in web caching sys-
tems. Wolmanet al. [5] evaluated the potential advantages
and drawbacks of inter-proxy cooperation in a large-scale
Web environment. The analysis is conducted on a tree-like
cache hierarchy through extensive measurements. Korupolu
et al. [3] considered a cache content placement problem in
a hierarchical network environment. They provided approx-
imation algorithms that minimize the average access cost
measured by the hop count. Rodriguezet al. [6] proposed
a caching architecture in hierarchical web caching systems
where leaf nodes connected to the same parent node can
cooperate together. Similar cache content placement strategies,
proposed in [7]–[9], that formulated the problem with the
objective of minimizing average object access costs, which
is affected by the distance between the source of requests and
the closest server with the requested content. Our work differs
in its focus on massive content delivery, that consumes large
amounts of link bandwidth in the network infrastructure. Asa
result, our work consists of different problem constraintsand
optimization objectives.

Request routing policies have also been discussed in the
context of Content Delivery Network (CDN). Wanget al. [10]

explored strategies to redirect requests in CDNs that aimed
to achieve load balancing and traffic locality. Laoutariset
al. [11] introduced the cache inference problem that infers
the characteristics of caching agents. The design is used in
the decision of forwarding missed streams to available proxy
caches. Betkaset al. [12] discussed joint content placement
and the request routing strategies. However, request routing in
these studies generally represents server selection strategies in
CDNs. In contrast, our work focuses on a real-world system
infrastructure that provides specific link-level routing schemes.
With dynamic request routing, we maximize the potential of
capacity provisioning in the network, combined with concerns
on strategic cache content placement.

Cache content placement in IPTV systems has recently
drawn attention in several studies. Borstet al. [13] developed
cooperative cache management algorithms that aimed to min-
imize bandwidth costs. The work is based on the assumption
that the bandwidth cost is positively correlated to the packet
hop count. However, there was a lack of discussions on content
redirection mechanisms. Compared to their works, we in-
clude more specific cooperation mechanisms by exploring the
three-level cache hierarchy with our proposed request routing
scheme. Moreover, we consider heterogenous settings of user
demands and link capacities. Applegateet al. [14] formulated
collaborative caching as a global optimization problem, which
can take hours to be solved. Compared to their works, we
propose a lightweight collaborative caching mechanism that
is specifically designed for cache cooperation in practical
deployments, taking advantage of specific characteristicsof
the cache topology.

III. C OLLABORATIVE CACHING MECHANISM

In this section, we first analyze the potential of cache
collaboration by presenting basic properties of the system
topology, and then propose our challenges and a practical
decomposition of our problem.

A. Hierarchical Cache Topologies

jj'

ji

ii'

0i

ij

Fig. 1. The topology of a hierarchical caching network.

Hierarchical topologies have been applied in many existing
systems that provide public IPTV or massive content delivery
services. Fig. 1 represents a typical three-level cache topology

derived from a real-world IPTV system deployed by China
Telecom in Guangzhou. As indicated by Fig. 1, we can
categorize the set of cache servers into three groups, located at
the top level, middle level, and bottom level, and represented
by {C0, Ci, Cij}, respectively. Middle level serversCi, each
with the storage capacityBi, denotes theith child of a top
level serverC0. A cache serverCij , with its storage capacity
Bij , indicates thejth child of cache serverCi.

Each content request, issued by clients, attempts to access
a certain contentk ∈ K, with its content sizesk. The content
can be considered as video segments in IPTV systems or
file blocks in file downloading systems. The storage decision
Xk = {0, 1} is used to denote whether or not content
k is placed at the cache server. Content requests are first
directed to the corresponding bottom level serverCij based
on the location of requests. After receiving requests,Cij

either returns the corresponding contents if they are locally
available, or routes requests to other cache servers in the
hierarchy if contents are unavailable. Content requests are
possibly routed to directly-connected bottom level servers or
the parent serverCi. Similar actions are taken at the middle
level server that either returns the corresponding content, or
routes them to other cache servers through dynamic request
routing. Requests can be directed to other sibling nodes ofCij

to satisfy the downstream content requests, or to neighboring
servers at the middle level. A “last resort” option is to route
requests to the top level serverC0, which is the source content
server that stores all available contents in the entire network.
Content requests will eventually be served or rejected given
the constraints on content availability and link capacities.

The links that connect different cache servers in the hierar-
chy have heterogenous capacities. The link capacity between
a pair of nodes at the bottom level is represented byUjj′ . The
capacity of the link from the bottom level server to the middle
level server is denoted byUji. The reverse direction from the
middle to the bottom level has a link capacityUij , which
is considered to be sufficiently large in the system. The link
capacity between a pair of nodes at the middle level isUii′ .
Finally, The link capacity from the source server to middle
level servers is indicated byU0i.

B. Problem Definition and Decomposition

The problem we investigate in this paper is a joint problem
of cache content placement and a corresponding dynamic
request routing scheme. Storage and routing decisions are
made based on user request patterns, heterogenous cache sizes,
link capacities and the specific system topology. Our objective
is to explore the capacity of the existing system infrastructure
by maximizing the amount of supported requests.

Intuitively, shorter paths of data packets result in less
traffic in the network backbone. To maximize the amount of
supported requests, it is more favourable to replicate popular
contents at each of the bottom level servers. However, this
strategy is questionable when we introduce the cooperation
among cache nodes through dynamic request routing in the
cache hierarchy. Moreover, the problem becomes even more

complicated when we consider the bandwidth consumed dur-
ing the delivery of massive contents in IPTV or file download-
ing systems, which is especially important when we deal with
heterogeneous link capacities and user demands in real-world
systems. It has been shown in previous work [15] that the
content placement problem in the cache hierarchy is NP-hard
even without considering dynamic routing schemes and link
capacity constraints.

To address this challenge, we propose an appropriate de-
composition of the problem to find an efficient yet practical
solution. Based on the topology derived from the system, we
divide the original problem into sub-problems that focus on
the cooperation in different cache levels. We first discuss the
cooperation among interconnected servers at the bottom level.
This is derived from the practical scenario where bottom level
servers co-located in the same location are connected by high
capacity links. The cooperation among bottom level servers
connected via the middle level cache will then be investigated.
Such a form of cooperation is achieved through the unique
downstream content retrieval with dynamic routing decisions.
The third step involves the cooperation among middle level
cache servers. Content requests received at the middle level
can be directed to appropriate neighboring servers through
the proposed mechanism. We will derive practical content
placement and dynamic request routing schemes in subsequent
discussions.

IV. CACHE CONTENT PLACEMENT AND

REQUESTROUTING

In this section, we present our mathematical model that aim
to address all the aforementioned challenges. Each level of
cache cooperation is analyzed with the topological properties,
and the corresponding collaborative caching scheme is also
proposed.

A. Direct Bottom Level Cooperation

We define the average arrival rate of content requests at
bottom level serverCij as λij . The proportion of requests
that attempt to access contentk is represented bypk, and
we assume that such a distribution pattern is uniform for all
fully connected servers co-located in the same location. For
convenience, a request to contentk is said to be a type-
k request. Thus the rate of type-k requests at serverCij is
represented byλk

ij = λijpk. Combined with concerns on the
segment size, we treatλk

ijsk as the bandwidth requirement of
type-k requests in one time unit.

Fig. 2. Direct Bottom Level Cooperation.

As denoted by Fig. 2, fully interconnected cache servers at
the bottom level are able to disseminate contents via direct
links. In the deployed system that we observe, these servers
are usually placed in the same equipment room while inter-
connecting links are typically with high bandwidth capacities.
We then investigate the sub-problem that aims to maximize
the amount of supported traffic at this level by utilizing the
capacity of direct links. We useJ = {j, j′, j′′...} to represent
the interconnected cache set{Cij , Cij′ , Cij′′ ...}. The notation
ykjj′ is used to represent the fraction of type-k requests atCij

being directed toCij′ , which actually indicates the routing
strategy of interconnected cache servers at the bottom level.
We then formulate the supported traffic maximization problem
as:

Maximize
∑

j∈J

∑

j′∈J

∑

k∈K

λk
ijsky

k
jj′ +

∑

j∈J

∑

k∈K

λk
ijskX

k
ij

Subject to:
∑

k∈K

skX
k
ij ≤ Bij ∀j ∈ J

∑

k∈K

λk
ijsky

k
jj′ ≤ Ujj′ ∀j, j′ ∈ J

Xk
ij +

∑

j′∈J

ykjj′ ≤ 1 ∀j ∈ J, k ∈ K

0 ≤ ykjj′ ≤ Xk
ij′ ∀j, j′ ∈ J, k ∈ K

Xk
ij = {0, 1} ∀j ∈ J, k ∈ K

(1)

Constraints in problem (1) include the storage capacity
constraint, the link capacity constraint, and the relationbe-
tween content storage and the request forwarding decision.
It is always optimal to serve a request by the first en-
countered server with the requested content. Thus, we have
Xk

ij+
∑

j′∈J ykjj′ ≤ 1. This guarantees that the request will not
be directed to other servers if the content is locally available.
Without loss of generality, we assume that the link capacity
Ujj′ is consistently larger than

∑

k∈K λk
ijsk, ∀j ∈ J . The

assumption is practical based on our observations in the real-
world system. This leads to the following theorem, which
is used in cache cooperation of interconnected bottom level
servers.

Theorem 1:Given
∑

j∈J Bij ≤
∑

k∈K sk, for any content
k such thatXk

ij = 1, we haveXk
ij′ = 0, ∀j′ 6= j.

Proof: Suppose in the optimal solution of problem (1),
we haveXk

ij = Xk
ij′ = 1 andj 6= j′. With the assumption that

Ujj′ ≥
∑

k∈K λk
ijsk, the constraint

∑

k∈K λk
ijsky

k
jj′ ≤ Ujj′

can be removed from the problem. We change the value of
Xk

ij′ to 0 and the corresponding value ofykj′j to 1, which
generates an assignment no worse than the optimal solution.
Given

∑

j∈J Bij ≤
∑

k∈K sk, we set the value ofXk′

ij′ from
0 to 1 for certain contentk′ such thatXk′

ij = 0 ∀j ∈ J .
The routing decision is made asyk

′

jj′ = 1 ∀j 6= j′, which
yields an assignment that surpasses the optimal solution with
∑

j∈J λk′

ij sk′ . This is a contradiction.
Theorem 1 suggests that all duplicated contents in the

interconnected server set need to be removed and replaced by
other unavailable contents. Moreover, all directly connected
servers can be treated as one single server with aggregated
incoming requests, storage capacities and bandwidth capacities
in subsequent steps of our analysis. There is no need to
consider the strategic placement of contents with such a
combination, since the traffic can be easily routed through
direct links at the bottom level.

B. Indirect Bottom Level Cooperation

Fig. 3. Indirect Bottom Level Cooperation.

If the content is available at the bottom level, the request
could be immediately served by the attached cache server or
the interconnected server set. When the request is not fulfilled,
it will then be routed to the corresponding upper level server.
To maximize the overall amount of supported requests, we now
proceed to explore the potential of indirect cache cooperation
among bottom level servers as shown in Fig. 3. The main
idea is to achieve downstream content retrieval through a
path of the tree rooted at the parent middle level server.
There exists a number of challenges in finding appropriate
caching mechanisms in this form of cooperation. First, cache
servers are not placed in the same place as compared to the
interconnected server set at the bottom level. Therefore, user
demands received by cache servers are also heterogeneous,
which can be represented by different access patternspkij .
In addition, the caching decision becomes more complicated
owing to the bandwidth capacity constraintsUji and the
storage capacity constraintsBij , which are usually asymmetric
in practical systems.

In this step, we useJ = {j, j′, j′′...} to represent the
child server set ofCi as {Cij , Cij′ , Cij′′ ...}. These child
servers are connected via the middle level serverCi. Since
content delivery among nodes are sharing uplinks of bottom
level servers, it would be challenging to keep track of the
status of the pairwise content delivery. We instead define the
proportion of the uplink ofCij that is dedicated to serve type-
k requests asqkij . The request routing decision is then made at
Ci based on the value ofqkij . For the bottom level cacheCij ,
the total traffic handled locally is given by

∑

k∈K Xk
ijskλ

k
ij ,

in which λk
ij = λijp

k
ij . The amount of requests supported

by other bottom level servers constitutes another part of the
optimization objective. We then formulate the indirect bottom
level cooperation problem as:

Maximize
∑

j∈J

∑

k∈K

qkijUji +
∑

j∈J

∑

k∈K

λk
ijskX

k
ij (2)

Subject to:
∑

k∈K

skX
k
ij ≤ Bij ∀j ∈ J (3)

∑

j∈J

qkijUji ≤
∑

j∈J

λk
ijsk(1−Xk

ij) ∀k ∈ K

(4)
∑

k∈K

qkij ≤ 1 ∀j ∈ J (5)

0 ≤ qkij ≤ Xk
ij ∀j ∈ J, k ∈ K (6)

Xk
ij = {0, 1} ∀j ∈ J, k ∈ K (7)

To achieve a distributed solution with heterogeneous set-
tings of input parameters, a conventional method is to apply
Lagrangian relaxation. Constraints (4) and (6) can be incorpo-
rated into the objective function by associating a Lagrangian
multiplier with each constraint.ηk is associated with constraint
(4) and γk

ij is associated with constraint (6). Then the La-
grangian dual problem is represented as:

Minimize L(ηk, γ
k
ij)

Subject to: ηk ≥ 0, γk
ij ≥ 0

(8)

The objective functionL(ηk, γk
ij) in the dual problem is:

L(ηk, γ
k
ij)

= max
∑

j∈J

∑

k∈K

(Uji − ηkUji − γk
ij)q

k
ij

+
∑

j∈J

∑

k∈K

(ηkλ
k
ijsk + (γk

ij + (1− ηk)λ
k
ijsk)X

k
ij)

The Lagrangian subproblem can then be decomposed into
|J | storage allocation problems and|J | link allocation prob-
lems. Both storage and link allocation problems can be solved
in a distributed manner at each bottom level cache server. The
Lagrangian multipliers are then updated at each iteration with
the coordination of the middle level serverCi, in order to
find the optimal solution through the subgradient algorithm.
However, our simulation studies show that our algorithm above
requires a long time to converge, especially when there exists a
large number of objects. Inspired by the Lagrangian relaxation
method, we propose a heuristic algorithm by limiting the
decision of qkij at each iteration. The proposed algorithm
can achieve much faster convergence with a near-optimal
performance.

We decompose the Lagrangian multiplierηk into coeffi-
cients ηkij to achieve a finer granularity in controlling the
storage and bandwidth allocation decisions at each iteration.
ηkij reflects the interest of storing a particular content and the
willingness of sharing stored content. We then omitγk

ij and put
constraint (6) into the optimization problem. At each iteration
t, cache serverCij first solves the storage allocation problem
as the following:

Maximize
∑

k∈K

(1− ηkij)λ
k
ijskX

k
ij

Subject to:
∑

k∈K

skX
k
ij ≤ Bij

Xk
ij = {0, 1} ∀k ∈ K

(9)

In a practical system setting, contents can be divided into
segments with equal sizes for convenience. Therefore, the
optimal solution of the storage allocation problem is given
as:

Xk
ij(t) =

{

1, for k ∈ [1, z);

0, for k ∈ [z, |K|]
(10)

In solution (10), the content setK is sorted in descending
order by the critical index(1 − ηkij)λ

k
ij , and z = min{h :

∑h

k=1 sk > Bij}. Given the storage decision at each bottom
level server, the middle level serverCi acts as a master node
to collect the temporal information fromCij . It calculates
the content demandQk(t) for k at the current iteration as
the following, which will then be distributed to bottom level
servers:

Qk(t) =
∑

j∈J

λk
ijsk(1−Xk

ij(t)) ∀k ∈ K (11)

Then each cache serverCij solves the bandwidth allocation
problem individually such that:

Maximize
∑

k∈K

(Uji − ηkijUji)q
k
ij

Subject to:
∑

k∈K

qkij ≤ 1

qkijUji ≤ Qk(t) ∀k ∈ K

0 ≤ qkij ≤ Xk
ij(t) ∀k ∈ K

(12)

The optimal bandwidth allocation in the collaboration can
be achieved as:

qkij(t) =

Qk(t)
Uji

for k ∈ [1, z) andXk
ij(t) = 1;

Uji−
∑z−1

k=1 Qk(t)

Uji
for k = z;

0 for k ∈ (z, |K|] or Xk
ij(t) = 0

(13)
In solution (13), the content setK is sorted in descending

order by the critical index(1 − ηkij), and z = min{h :
∑h

k=1 Qk(t)X
k
ij(t) > Uji}.

The parent cache serverCi is then responsible for gathering
temporal results from bottom level servers and updating the
value ofηkij for the next iteration:

ηkij(t+1) = ηkij(t)+θ(t)(
∑

j∈J

qkij(t)Uji−Qk(t))∗f(
∑

k∈K

qkij(t))

(14)

The insufficient provisioning of bandwidth in the collabo-
ration for certain contentk leads to a decreasing value ofηkij ,
which then inspires servers to store and share the correspond-
ing content. The functionf() is positively correlated to the
remaining bandwidth of current allocation(1−

∑

k∈K qkij(t)).
θ(t) = 1/t denotes the step size in the current iterationt.
Both of them ensure the quick convergence of the proposed
heuristic algorithm.

The entire process of indirect bottom level cooperation is
then summarized in Algorithm 1.

Algorithm 1 Indirect Bottom Level Cooperation

1) Initialize coefficientsηkij(0) = 0, ∀j ∈ J, k ∈ K.
2) Iterate until coefficientsηkij converge toηkij

∗
:

a) CalculateXk
ij(t) according to Equation (10),∀j ∈

J, k ∈ K.
b) Calculate demandsQk(t) at Ci.
c) Calculateqkij(t) according to Equation (13),∀j ∈

J, k ∈ K.
d) Update coefficientsηkij according to Equation (14),

∀j ∈ J, k ∈ K.

3) Obtain the near-optimal solution asqkij
∗
= qkij(t) and

Xk
ij

∗
= Xk

ij(t).

Based on the previous results ofqkij
∗

and Xk
ij

∗
, we then

define the routing mapRb = [R1
bj , R

2
bj , ..., R

k
bj , ...] for the

dynamic request routing in the indirect bottom level coopera-
tion atCi. The probability of routing a request for contentk
to Cij is given as:

Rk
bj =

qkij
∗
Uji

∑

j∈J λk
ijsk(1−Xk

ij

∗
)

(15)

Note that the summation of the probability
∑

j∈J Rk
bj might

be smaller than1 since not all requests are promised to
be fulfilled in indirect bottom level cooperation even though
the contents are available. Remaining requests are routed to
neighboring middle level servers or the top level server with
probability (1−

∑

j∈J Rk
bj).

We have now obtained a cache cooperation mechanism that
fully explores the potential of downstream content retrieval.
The assignment is in a distributed fashion while both asym-
metric link capacities and heterogeneous user demands are
considered. Note that the capacity of the middle level server
is not involved in making a decision, which allows us to further
explore the opportunity of middle level cache cooperation in
the next subsection. Compared to cache cooperation with static
routing, our exploration of indirect bottom level cooperation
can be beneficial in the scenario of heterogenous user demands
as servers can fulfill others’ requests through downstream
content retrieval, while the exploration of the middle level
cooperation can be beneficial in the scenario of homogeneous
user demands, as middle level servers do not have to store
nearly duplicated contents with our dynamic routing scheme.

C. Middle Level Cooperation

ii'

0i

Fig. 4. Middle Level Cooperation.

Given our proposed mechanisms, the intra-links of the
bottom level and the inter-links between the middle and bottom
level have been utilized in cache cooperation. The amount
of requests being processed at the middle level is then given
below:

λk
i =

∑

j∈J

λk
ij(1−Xk

ij

∗
)−

∑

j∈J

qkij
∗
Uji/sk ∀i ∈ I, k ∈ K

(16)
On this basis, we now proceed to explore middle level cache

cooperation as indicated by Fig. 4. We observe that any intra-
link at the middle level is dedicated to the content transferbe-
tween a pair of servers, called neighboring servers. To ensure a
minimum delay in each data packet, we impose the restriction
that requests in middle level cooperation can only be routedto
neighbors of each node. The main challenge here is to find the
appropriate content placement within the neighboring server
set with respect to heterogeneous demands and link capacities.
We useI = {i, i′, i′′...} to represent the child cache servers of
C0 as{Ci, Ci′ , Ci′′ ...}. For each cache serverCi, we define its
neighboring set asNi = {nij |j = 1, 2, ...}, Ni j I. Based on
demands at each cache server, we then associate a cost-utility
index with each contentk at serverCi when considering cache
content placement:

uk
i =

uk
il + uk

ir

sk
∀i ∈ I, k ∈ K (17)

The utility function includes two parts as the local utility
uk
il and the remote utilityuk

ir. The local utility uk
il should

be positively correlated to demandλk
i . Meanwhile, it is also

related to content availability of contentk within the neighbor-
ing setNi, which affects middle level cache cooperation. The
remote utilityuk

ir also needs to reflect the potential of cache
cooperation, which will be positively correlated to content
demand rates at neighboring servers. The information above
on neighboring servers can be obtained through periodical
information exchanges. Furthermore, both utilities are con-
strained by the link capacityUniji andUinij

among middle
level servers as a special characteristic of massive content
distribution. The cost of placing contentk at Ci is the storage

cost sk. We then derive the utility function based on the
aforementioned consideration:

uk
il = λk

i sk(1− max
nij∈Ni

Xk
nij

(1− ρ
Uniji

avg(U))) (18)

uk
ir =

∑

nij∈Ni

λk
nij

sk(1−Xk
nij

)(1− ρ
Uinij

avg(U))) (19)

In this formulation,ρ is a tunable parameter that satisfies
0 < ρ < 1. The smaller the value ofρ, the greater
sensitivity to remote content availability will be. The nota-
tion avg(U) denotes a non-negative average link capacity as
max(

∑

nij∈Ni
Uniji/|Ni|, ǫ > 0). Our definition of the utility

function has addressed many concerns in our system design.
We first investigate its properties using two special scenarios
in link capacity settings.

Proposition 1: The caching decision ofCi is not affected
by the neighboring servernij with limited link connectivity
such thatUniji = Uinij

→ 0.
Proof: In this case, there will be no content delivery

between this pair of middle level servers. From the definition
of the utility we have:

ρ
Uniji

avg(U) = ρ
Uinij

avg(U) = 1

It precludes the impact ofXk
nij

and λk
nij

from uk
ir and

uk
il. Therefore, the caching decision of local serverCi is not

affected by the status of neighboring servernij .
Proposition 2: When the link capacity is unlimited, no

utility will be gained for duplicating contents within a pair
of cache servers.

Proof: In this scenario, we haveUniji = Uinij
→ ∞,

which suggests that the cache cooperation can be achieved as
long as the content is stored in neighboring servernij . From
the definition we have,

ρ
Uniji

avg(U) = ρ
Uinij

avg(U) = 0

If the neighbor server has contentk as Xk
nij

= 1, we
have the utility uk

ir(nij) = λk
nij

sk(1 − Xk
nij

) = 0 and
uk
il = λk

i sk(1− max
nij∈Ni

Xk
nij

) = 0. Therefore, no utility will be

gained for duplicatingk at Ci for this pair of servers.
In other cases of link capacity settings, the utility function

also conforms to the practice of cache cooperation design.
The increase of link capacityUniji leads to an increase with

1− ρ
Uniji

avg(U) , which further results in a decreasing concern on
local demands when the content is stored in the corresponding
neighboring server. Similarly, the increase ofUinij

implies that
demands from the server with a larger link capacity are given
higher priorities when considering content placement. More-
over, both local and remote utilities decreased for contents that
are already placed in neighboring servers, which emphasizes
the requirement of content heterogeneity.

The selection of parameterρ has also significantly affected
the performance of our proposed mechanism. On one hand, a
higher request heterogeneity among neighbors leads to a larger
value ofρ, which satisfies both requirements of local demands
and the content heterogeneity requirement among neighboring
servers. On the other hand, the value ofρ should be care-
fully chosen in the case of homogeneous request patterns.
Generally, the setting ofρ should be negatively correlated to
the bandwidth provisioned,i.e., positively correlated to the
amount of arriving requests. This can help satisfy popular
content requests without dynamic routing while maintaining a
certain level of storage heterogeneity for the benefit of cache
cooperation.

Based on the analysis above, we then propose the content
placement strategy for middle level cache cooperation in
Algorithm 2.

Algorithm 2 Content Placement in Middle Level Cooperation

1) For each contentk ∈ K, associate cost-utility indexuk
i

based on Equation (17).
2) Sort contents in a descending order based onuk

i .
3) Fill in the cache storage in a greedy manner,i.e.,

contents with higher ranks are preferentially stored and
contents with lower ranks are preferentially evicted.

Dynamic routing at the middle level is based on con-
tent availability at neighboring servers and the link capacity
Uniji. Since each link is dedicated to the content transfer
between a pair of servers, our routing design therefore aims
to deliver appropriate types and amounts of requests to each
neighboring server. We define the routing mapRnij

=
[R1

nij
, R2

nij
, ..., Rk

nij
, ...], k ∈ K for each neighbornij and

perform the logical subtraction for subsequent calculations:

Rnij
= Xnij

−
∑

j′ 6=j

Xnij′
−XCi

∀nij ∈ Ni (20)

R
m
nij

= Xnij
−Rnij

−XCi
∀nij ∈ Ni (21)

Rnij
denotes contents that only have single copies in

neighbor setNi. Thus type-k requests are routed tonij if
Rk

nij
= 1. R

m
nij

denotes contents that have multiple copies
in neighbor setNi, in which the dynamic request routing
still needs careful consideration. To address this challenge,
we further define a global availability map as:

Rg =
∑

nij∈Ni

Xnij
−

∑

nij∈Ni

Rnij
−XCi

(22)

We then adjust the routing mapRnij
based on request rates

at Ci and the comparison between the value ofUniji and
∑

k∈K λk
iR

k
nij

.

• If
∑

k∈K λk
iR

k
nij

≤ Uniji, we iteratively move the
contentk such thatRk

nij
= 0, Rmk

nij
= Rk

g = 1 into
Rnij

by settingRk
nij

= 1, Rmk
nij

= Rk
g = 0. We repeat

the process until any movement of contents leads to

4 4.5 5 5.5 6 6.5 7 7.5 8

x 10
4

0.6

0.7

0.8

0.9

1

Amount of Requests Per Bottom
Level Server

P
er

ce
nt

ag
e

of
 S

up
po

rt
ed

 R
eq

ue
st

s

D−Routing
S−Routing

Fig. 5. The percentage of supported requests in
collaborative caching versus different amounts of
content requests.

4 4.5 5 5.5 6 6.5 7 7.5 8

x 10
4

0

1

2

3

4

5

6
x 10

5

Amount of Requests Per Bottom
Level Server

A
m

ou
nt

 o
f S

up
po

rt
ed

 R
eq

ue
st

s

D−Routing B−Level
D−Routing M−Level
S−Routing B−Level
S−Routing M−Level

Fig. 6. The amount of supported requests in
different cache levels versus different amounts of
content requests.

4 4.5 5 5.5 6 6.5 7 7.5 8

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Amount of Requests Per Bottom
Level Server

P
er

ce
nt

ag
e

of
 S

up
po

rt
ed

 R
eq

ue
st

s

D−Routing B−Level
D−Routing M−Level
S−Routing B−Level
S−Routing M−Level

Fig. 7. The percentage of supported requests in
different cache levels versus different amounts of
content requests.

∑

k∈K λk
iR

k
nij

> Uniji, or we cannot find contentk such
thatRk

nij
= 0, Rmk

nij
= Rk

g = 1.
• If

∑

k∈K λk
iR

k
nij

> Uniji, we iteratively remove the con-
tent such thatRk

nij
= 1 from Rnij

by settingRk
nij

= 0.
We repeat the process until

∑

k∈K λk
iR

k
nij

≤ Uniji.

After the aforementioned processes, a set of routing maps
defines a near-optimal request routing scheme based on con-
tent availability and heterogenous link capacities. Type-k re-
quests are routed tonij if Rk

nij
= 1. Note that routing maps

are mutually exclusive such thatRnij
−Rnij′

= Rnij
.

D. Dynamic Request Routing

Based on our decomposed cache cooperation design pro-
posed in Sec. IV, we have solved the coupled problems of
content placement and dynamic request routing, considering
practical concerns in massive content distribution. For any
type-k request, we summarize our dynamic request routing
scheme in Algorithm 3.

Algorithm 3 Dynamic Request Routing
1) After receiving a type-k request at bottom level server

Cij , fulfill the request ifXk
ij = 1.

2) If not yet fulfilled, check the content availability of
the interconnected server set, route the request to the
corresponding server if the content is available.

3) If not yet fulfilled, route the request to the middle level
serverCi, fulfill the request ifXk

i = 1.
4) If not yet fulfilled, check the following three options:

a) Check the routing mapRb. Route the request
for content k to bottom level serverCij with
probabilityRk

bj according to Equation (15).
b) Otherwise, check the routing mapsRnij

for each
nij . If Rk

nij
= 1 for somenij , route the request to

the neighboring servernij .
c) As a last resort, route the request to the top level

server.

V. PERFORMANCEEVALUATION

In this section, we evaluate our cache cooperation scheme
using system settings derived from a real-world IPTV system,

in comparison with a conventional static hierarchical caching
scheme. Unlike our proposed dynamic request routing, static
hierarchical caching usually defines fixed routing paths from
the bottom level to the top level, and makes collaborative
caching decisions correspondingly. Therefore, the most popu-
lar contents are replicated at the lower level while less popular
contents are placed at the upper level.

We use Python to implement a simulator that constructs the
cache topology as a three-level hierarchy, in which each top
and middle level server has four children servers. We use the
Zipf-Mandelbrot model [16] to formulate the content request
pattern with the shape parameter0.7 ≤ α ≤ 0.8 and 4 ≤
q ≤ 5. The average link capacity ofUji, Uii′ , andU0i is set
to 1GB/s, 2GB/s and4GB/s initially based on the real-world
system. The storage capacity of top level, middle level, and
bottom level servers are given as100%, 20% and 5% of the
entire content set. The parameterρ is adjusted between0.5
and0.8 to adapt to different settings of the system.

We first compare the cache cooperation performance be-
tween dynamic (denoted as D-Routing) and static request rout-
ing (denoted as S-Routing) in Fig. 5. It can be observed that
the percentage of supported requests of D-Routing consistently
outperforms that of S-Routing with13% to 18% improve-
ments. The performance gap is achieved through downstream
content retrieval or the middle level cooperation in D-Routing.
However, the gap is gradually decreasing with an increasing
number of content requests, as long as link capacities in D-
Routing have been fully utilized.

We then analyze the amount of supported traffic in different
levels of cache cooperation in Fig. 6. The traffic supported by
the bottom level is calculated as the summation of requests
directly satisfied at the bottom level and the contribution from
indirect bottom level cooperation. The traffic supported bythe
middle level is a combination of direct content transfer from
middle level servers and the support from middle level cache
cooperation. It is not surprising that both middle level and
bottom level of S-Routing fulfill less demands compared to
that of D-Routing. Meanwhile, bottom level servers satisfy
much more demands than middle level servers in D-Routing,
which can be explained as most content requests are already
served in D-Routing through downstream content retrieval.

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

x 10
4

0.8

0.9

1

1.1

Amount of Requests Per Bottom
Level Server

Li
nk

 U
til

iz
at

io
n

Bottom Level Utilization
Middle Level Utilization

Fig. 8. The link utilization in D-Routing versus
different amounts of content requests.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.7

0.8

0.9

1

1.1

The Value of Parameter ρ

P
er

ce
nt

ag
e

of
 S

up
po

rt
ed

 R
eq

ue
st

s

Request=40000
Request=60000
Request=80000

Fig. 9. The percentage of supported requests in
D-Routing with different values of parameterρ.

0 0.1 0.2 0.3 0.4 0.5 0.6
0.6

0.7

0.8

0.9

1

Increase of Cache Link Capacity

P
er

ce
nt

ag
e

of
 S

up
po

rt
ed

 R
eq

ue
st

s

D−Routing
S−Routing

Fig. 10. The percentage of supported requests
in collaborative caching with different increases of
cache link capacities.

If we further investigate the percentage of supported traffic
in different levels in Fig. 7, we find that both middle level
and bottom level contribution in D-Routing can maintain
a stable performance with different amounts of incoming
requests, which clearly reveals the stability of our proposed
collaborative caching mechanism.

The utilization of intra-links at the middle level and inter-
links between the middle and bottom level reflect the effec-
tiveness of the proposed mechanism with D-Routing. Fig. 8
shows that both middle level and bottom level cooperation
are sufficiently good initially with over90% utilization. When
demands increase over the entire system, larger amounts of
requests received at different levels lead to the full utilization
of link capacities for both downstream content retrieval and
middle level cache cooperation.

We then investigate the impact of parameterρ in Fig. 9.
The amount of requests per bottom level server is adjusted
from 40000 to 80000. The increasing amount of requests also
reflects a decreasing trend of the bandwidth provisioned in
the system. We first observe that the percentage of fulfilled
requests is gradually decreasing with an increasing input scale.
Meanwhile, the optimal value ofρ is also “shifting,” such
that a larger amount of requests (80000) achieves the optimal
result whenρ = 0.8 while a smaller amount of requests
(40000) achieves the optimal value withρ = 0.6. This
practically proves our previous analysis that the selection of ρ
should be negatively correlated to the bandwidth provisioned,
in order to maintain a balance between the requirement of
local demands and the adequate level of content heterogeneity
among neighboring servers at the middle level.

Fig. 10 introduces the sensitivity analysis on cache capacity
settings by adjusting the link capacity in the system. Although
the performance of S-Routing also has nearly1% improvement
for each10% of extra link capacities, the performance gap
between S-Routing and D-Routing is still gradually increasing.
The rationale is that the proposed D-Routing can successively
explore the maximum potential of cache cooperation with
expanded link capacities.

VI. CONCLUSION

In this paper, we have proposed a new collaborative caching
mechanism based on the topology derived from a real-world

system that provides IPTV services in a metropolitan network.
In particular, we have focused on the exploration of the exist-
ing network infrastructure to better support new scenariosof
massive content distribution. We have shown that dynamic re-
quest routing helps explore the capacity of a caching network.
Our simulation results have demonstrated the effectiveness of
our proposed mechanism, as compared to conventional static
routing schemes.

REFERENCES

[1] “Ubuntu Mirrors,” https://wiki.ubuntu.com/Mirrors/.
[2] “China Telecom,” http://en.chinatelecom.com.cn/.
[3] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman, “PlacementAlgo-

rithms for Hierarchical Cooperative Caching,” inProc. ACM SODA, Jan.
1999.

[4] L. Chen, M. Meo, and A. Scicchitano, “Caching Video Contents in IPTV
Systems with Hierarchical Architecture,” inProc. IEEE ICC, Jun. 2009.

[5] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. Karlin,and
H. M. Levy, “On the Scale and Performance of Cooperative Web Proxy
Caching,” inProc. ACM SOSP, Dec. 1999.

[6] P. Rodriguez, C. Spanner, and E. W. Biersack, “Analysis of Web Caching
Architectures Hierarchical and Distributed Caching,”IEEE/ACM Trans-
actions on Networking, vol. 9, no. 4, 2001.

[7] W. Li, E. Chan, G. Feng, D. Chen, and S. Lu, “Analysis and Perfor-
mance Study for Coordinated Hierarchical Cache Placement Strategies,”
Computer Communications, vol. 33, no. 15, 2010.

[8] K. Li, H. Shen, F. Y. L. Chin, and S. Q. Zheng, “Optimal Methods for
Coordinated Enroute Web Caching for Tree Networks,”ACM Transac-
tions on Internet Technology, vol. 5, no. 3, 2005.

[9] X. Jia, D. Li, H. Du, and J. Cao, “On Optimal Replication of Data Object
at Hierarchical and Transparent Web Proxies,”IEEE Transactions on
Parallel and Distributed Systems, vol. 16, no. 8, 2005.

[10] L. Wang, V. Pai, and L. Peterson, “The Effectiveness of Request
Redirection on CDN Robustness,” inProc. USENIX OSDI, Dec. 2002.

[11] N. Laoutaris, G. Zervas, A. Bestavros, and G. Kollios, “The Cache
Inference Problem and its Application to Content and Request Routing,”
in Proc. IEEE INFOCOM, May 2007.

[12] T. Bektas, J.-F. Cordeau, E. Erkut, and G. Laporte, “Exact Algorithms
for the Joint Object Placement and Request Routing Problem inContent
Distribution Networks,”Computers and Operations Research, vol. 35,
no. 12, 2008.

[13] S. Borst, V. Gupta, and A. Walid, “Distributed Caching Algorithms for
Content Distribution Networks,” inProc. IEEE INFOCOM, Mar. 2010.

[14] D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, andK. Ramakr-
ishnan, “Optimal Content Placement for a Large-Scale VoD System,” in
Proc. ACM CoNext, Nov. 2010.

[15] I. Baev, R. Rajaraman, and C. Swamy, “Approximation Algorithms for
Data Placement Problems,”SIAM J. on Computing, vol. 38, no. 4, 2008.

[16] M. Hefeeda and O. Saleh, “Traffic Modeling and Proportional Partial
Caching for Peer-to-Peer Systems,”IEEE/ACM Trans. Netw., vol. 16,
no. 6, 2008.

