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Abstract—Peer-to-Peer (P2P) live video streaming systemsin depthwhy the intuitive “demand vs. supply’condition is
have recently received significant attention, with commercial insufficient to capture the system scale. (2) We further gedc
deployment gaining increased popularity in the Internet. It is 44 4 enhanced constraint that quantitatively charaetehiaw
evident in our empirical experiences with real-world systems . . - .
that, it is not uncommon to have hundreds of thousands of .the system scale is further constrained bY the tlmln.g. caimeir
viewers trying to join a program in the first few minutes of if the partial knowledge of peers and their competition foe t
a live broadcast. This phenomenon in live streaming systems, limited upload bandwidth resources in the system are taken
referred as the flash crowd, poses unique challenges in the systeminto account. In addition, our analytical framework alstecs
design. In this paper, we develop a mathematical model to capture us the flexibility to investigate the effects of various ica

the inherent relationship between time and scale during a flash fact including the initial t le. th le offtash
crowd. We derive an upper bound on the system scale, and then actors, Including the iniial system scale, the scale efias

demonstrate that the timing factor plays a critical role for such ~ crowd, the peer upload capacity, and the number of partners
a system to scale. In addition, our analysis also brings a more in- each peer has.
depth understanding with respect to the use of Gossip protocols,  With respect to analytical studies on P2P streaming systems
i.e, the effects of partial knowledge. Kumar et al. [4] have derived the maximum streaming rate
for churnless systems and developed a stochastic fluid model
with peer churn to examine its performance. There have also
Recently, the Internet has witnessed a significant increas@erged a number of analyses on the performance bounds
in the popularity of peer-to-peer (P2P) live media stre@mirof tree-based or mesh-based systems in terms of streaming
applications, that deliver real-time and sustained meoient rate, delay, and server load.§, [5]-[7]), particularly through
to potentially millions of users. As participating peerst nathe perspective of chunk dissemination to participatingrpe
only download media streams, but also contribute theiragbloAlong this direction, a more recent study [8] has analyzed th
bandwidth capacities to serve one another, such systems ggformance gap between the fundamental limits and actual
potentially more scalable, and are thus cost-effectiveetdd performance of mesh-pull systems. Zhetual. [9] have com-
ployed, compared to traditional infrastructure-basedtsms, pared, through a stochastic model, different chunk scliegiul
such as IP multicast or Content Delivery Networks. strategies based on the performance metrics of continnity a
While recent measurement studies [1], [2] on real-worlgtartup latency. While recognizing the significance of these
P2P streaming systems have demonstrated that the streamifigr works, our study is different from and complementary t
performance can be typically maintained at a high level onggem. To our knowledge, this paper, for the first time, attesmp
the systems have reached a reasonable scale, this is geallemo provide an analytical characterization and understandf
by a severe phenomenon called thiash crowd in which the scale-time relationship in P2P streaming systems, avith
there could be a large number of peers arriving at the systgawticular focus on the flash crowd and various criticaldest
within a short period of time, just after a new live event
has been released. It is evident in our empirical expergence
from the latest version of Coolstreaming+ [3] that, it i\ System Model
considerably more challenging for a P2P streaming systemin this section, we present our basic model for P2P live
to accommodate an abrupt surge of newly arrived peers, witltleo streaming under a flash crowd, including the undeglyin
reasonable streaming qualities and initial startup delays  assumptions and notations summarized in Table I. We canside
In this paper, we seek to analyze and understand the inhergntideo with rateR = zr to be streamed to all participating
relationship between time and scale in P2P streaming sgstgseers, wherer is the bit rate corresponding to a unit of
under a flash crowd scenario (henceforth referred tecate- bandwidth, andR corresponds to the bandwidth requirement
time), through a tractable analytical model that we proposef z units. This can alternatively be related to the concept of
Specifically, our major contributions are: (1) We first derivsubstreamsn the real-world large-scale P2P streaming system
the fundamental constraint of the scale-time relations¥ith  Coolstreaming+ [2], in which a media stream is divided into
the upper bound of system scale over time, which explainsultiple substreams and peers could subscribe to different
substreams from different partners.
*The research was support in part by grants from RGC under the For g peeri, let u; denote the upload capacity of the peer.
contracts 615608, and 616207, by a grant from NSFC/RGC utider Lo
contract NHKUST603/07, by a grant from HKUST under the contractThe peer download capacity is assumed not to be the bottle-
RPCO06/07.EG27. neck, which is in accordance with most of the recent Internet

I. INTRODUCTION

Il. SYSTEM MODEL AND FUNDAMENTAL PRINCIPLES



. . . TABLE |
access technologies and measurement studies of existiig P2 KEY PARAMETERS IN THE SYSTEM MODEL.

systems [10]. Given a streaming raf we define theelative
surplus upload capacity; of a peeri as the ratio ofu; — R) | Notation | Definition

to r. Let u be the average peer upload capacity ande the M Initial system scale.
relative average peer surplus capacity, which will be elaten N Flash crowd scale.
in Theorem 1 (Sec. 1I-B) later. R Video streaming rate=t xr).

To capture essential aspects of practical systems, yetlbe st «; Upload capacity of peet.
simple enough to yield relevant insights, our model mainly &, Relative surplus upload capacity of peet= (u; — R)/r).
considers the following aspects: u Average peer upload capacity.

> First, initial system capacityWe assume initially there h Relative average peer surplus capaciy (u — R)/r).
are M existing peers that already joined the system. That |s, & Number of partners of a new peer ).
they have obtained sufficient upload bandwidth resources|toS(t) System scale (number of existing peers) in tté time slot.
satisfy the streaming rate, and are able to contribute their Us Server capacity provisioning.
upload capacities to the system. We assume that there existsus Relative server capacity provisioning:(Us /).

one or multiple servers in the system with aggregate uploggkes the peer streaming buffer state or/and chunk scimeduli
CapaC!ty Us lee-n a Streamlng rat®, the relative server as main Consideratiore(g_’ [5], [6], [8], [9])1 we attempt to
capacityu, is defined as the ratio df,/R. provide a complementary perspective in this paper: we aealy

> Second, flash crowd/Ve focus on an extreme flash crowghe asymptotic scaling behavior of the system, rather than t
scenario whereV (> M) peers arrive at approximately theindividual peer behavior.

same time [8], just after a new live event has been releasedgased on this system model, we are able to derive a
Each new peer that has yet to join the system needs to gathgfltable theoretical framework in Sec. 1I-B, which regeal

leastz units of upload bandwidth resource from those existingie fundamental relationship between time and scale in P2P

peers to meet the streaming rate requirement. Our modgleaming systems under a flash crowd, as well as insights on
strives to capture the difficulty for peers to gather suffitie e impacts from various critical factors, includig h, M,
upload bandwidth resources at startup, which we believe i;gq v

critical issue under a flash crowd. B. Scale-Time Relationship with Critical Factors

> Third, system scale and initial startup delay&/ithout i ) ,
loss of generality, we assume that tirés slotted. If anew ~ First of all, we derive the fundamental constraint of the
peer— one that has not yet joined the system — has obtainéﬁale't'me relationship in P2P _streammg systems, eveln wit
sufficient upload bandwidth resourdee( = units) at thet-th glot_)al “knowledge and centrallzgd control_ of the systems:
time slot, it is regarded as “joined the system” and countdy"ile “the average peer uploading capacity should be no
towards the system scat¥t) of existing peers. Otherwise, the ess t.han the average peer downloading rates IS a necessary
peer will continue to seek upload bandwidth resource albag tcondition for P2P streaming systems to scale, it is inseffici
subsequent time slots until it joins the system. In our moddf capture the system scale, as the upload bandwidth resourc
once a peer is able to join the system, it will not leave tH°M Newly arrived peers cannot be utilized immediatélyis
system during the flash crowd. From the perspective of usgRds t0 the following upper bound of system scale over time.
experience, the time represents the initial startup delays for Theorem 1: For a P2P streaming system with a given
peers. streaming rateR and average peer upload capacity the

> Fourth, we first analytically consider the case of globaPystem scale after theth time slot,S(#), has the following
knowledge and centralized control of the system, whichdgiel UPPer bound:
an upper bound of the system scale over time. Further, we "
proceed to demonstrate the effects of partial knowledge, by S(t) < min{(ﬁ)t(MJFC) —C,N + M}, 1)
a simple random partner selection strategy. Specificadlghe
new peer will randomly seledt partners from the current setwhereC = U /(u — R), M is the initial system scale at time
of existing peers to ask for their surplus upload capacities t = 0, Us is the server capacity provisioning, andis a flash
each time slot. Since an existing peer can be selected bgrawd of newly arrived peers.
number of new peers, it would randomly choose a certain Proof: Clearly, the system scale cannot exceed the total
number of them to supply its upload bandwidth resourcepymber of peers, including both existing and new peers;, thus
depending on its surplus capacity. Such random partner $&¢) < N + M.
lection strategy with parametet essentially represents the Furthermore, the system scale after each time $l@d
decentralized gossiping among peers to gather upload baisdbounded by the aggregate upload bandwidth resource that
width resource. This is a reasonable assumption, as sucks aurrently availablein the system, which depends on the
strategy is typically adopted in many practical P2P systemsmber of existing peers in previous time slate.( S(t — 1))
(e.g, BitTorrent and Coolstreaming) for bootstrapping peerand their surplus upload capacitiég, as well as the server
mainly due to its simplicity. capacity provisioningU;. If these resources can be fully

Different from the perspective of chunk dissemination thattilized, which essentially implies that global knowledaed



centralized control of the system can be achieved, then Based on Lemma 1, we can derive an approximation of the
expected system scale as follows.

ies%:q)hl U, Theorem 2: For a P2P streaming system with each peer
S5 < St-D+———+—4 having partial knowledge of the system and a random part-
ho U, ner selection strategy, assume that each existing peed coul
= St-1)+5¢t-1)_+ 4 randomly provide each of its new partner with unit of
h . h upload bandwidth resource with a probability lofq(t, k). If
< (1+ ;)ts(o) + _bR ((1 + E)t - 1) we use the expected valuglq(t, k)] given by Eq. (2) as an
u U U approximation ofg(t, k), then the expected system scale after
= (E)t(M + —SR) - —SR' the t-th time slot, £[S(¢)], can be approximated by

Combining the above two bounds gives Eq. (1). Equivaleittly, E[SQ@)] = Sk(t —D+ N+ M-S -1))

also implies the minimum time to accommodate a flash crowd ; ; _

of N poers . xS Gl kB (1t k) (3)
Note that this fundamental upper bound neither depends = _ o

on specific flash crowd arrival patterns, nor the bandwidtdherep(t, k,h) ~ ha(t)/k is the probability for a new peer

unit. However, it intuitively would still be too optimistic © obtain1 unit of upload bandwidth resource frqm an existing

as it assumes all current surplus bandwidth resources fr&@€h anda(t) = S(t —1)/(N + M — 5(t — 1)) is the ratio

existing peers can be fully utilizedSince the system scaleOf the number of existing peers to the number of new peers

is further constrained by the partial knowledge of peers arifl the system at the beginning of th¢h time slot.

their competition for limited resources, how can we qugntif ~ Proof: Based on Lemma 1, we have(t k) ~

such effects7o this end, we proceed to analyze the scal@nomiallN' + M — S(t —1),k/S(t — 1)). Since one of

time relationship with a random partner selection stratagy the important features of a binomial distribution is that it

follows. probability mass function Ry(¢t,k) = j] gains the highest
Since it has already been proved in [4], [8] that the avera%{@lue atj = E[q(t, k)], we chooseF[q(t, k)] given by Eq. (2)

peer upload capacity satisfies: > R in large-scale streaming {0 @Pproximatey(t, k) for all existing peers. Them(t, &, h)

systems, we shall focus on the general homogeneous c&@8 Pe derived as

whereu; = u > R (i.e, hi = h > 0) for all peers. This 1 5y o h <h) ( St-1) )

is reasonable as we are more interested in the asymptoﬁé’ ’ Elq(t, k)] N+M-S5t-1)

collective behavior of the system rather than the individua h

peer behavior. As we focus on such a homogeneous case, = Ea(t)'

we first ignore the server capacity, and will introduce it ashen, the amount of upload bandwidth resouicthat can

a parameter later. be obtained by a new peer can be simplified to a binomial
Lemma 1: For a P2P streaming system with each pegfistribution with parametergk, p(t, k, h)). The corresponding

having partial knowledge of the system and a random partrigbbability mass function i€ p(t, k, )" (1 — p(t, k, h))*

selection strategyi.e. each new peer independently and Furthermore, recall that a new peer needs to gather at

randomly selects: partners from the set of existing peers)east = units of upload bandwidth resource (corresponding

the number of new partners of an existing peer during/#tie o the streaming rateR) to join the system; hence, the

time slot,q(¢, k), is a random variable that follows a binomialexpected system scale after th¢h time slot, E[S(t)], can

k

distribution with parameter&V + M — S(t—1),k/S(t—1)), be approximated by Eq. (3). n
and an expected value of Theorem 2 with Eq. (3) qualitatively indicates thatt, &, h)
k(N + M — S(t —1)) plays an important role for the system scale, which depends o
Elq(t, k)] = (2)  «(t), h, andk. The effects of these factors will be thoroughly

St-1) demonstrated in Sec. IIl.

whereS(t — 1) is the current number of existing peers in the Furthermore, as demonstrated by both the real-world expe-

system. rience [3] and the numerical results (Sec. Ill) derived from
Proof: At the beginning of the-th time slot, the number our model, P2P streaming systems by nature do not react

of existing and new peers in the systemSig¢ — 1) and N + well to a flash crowd. Specifically, the system scale grows

M —S(t—1), respectively. Since each new peer independentiglatively slower during the initial time slots. This maties

and randomly selects partners from those existing peers, tha natural questionHow a certain amount of server capacity

probability for an existing peer to be selected as a partger provisioning can help improve the system scak&sed on

a new peer iso];(;l_l)_l/cg(tfl) = k/S(t — 1). Hence, the Theorem 2, we can approximately derive the improved system

probability for an existing peer to be selected as a partger bcale with a given amount of server capacity provisioning as

1 new peers is a binomial distribution with parametéMs+  follows.

M—-S(t—1),k/S(t—1)). Hence, the expected value g, k) Corollary 1: For a P2P streaming system with a streaming

can be expressed as Eq. (2). m rate of R and an aggregate server upload capalityassume



that server(s) support a number of = U,/R randomly flash crowd effect in P2P streaming systems, and improve the
selected new peers at the beginning of each time slot. Theer experience with shorter initial startup delays. Sipadiy,
remaining N + M — S(t — 1) — us new peers still rely on it can help improve the system scale during the initial mkrio
the S(¢t — 1) existing peers through a random partner selectiaf a flash crowd. Once the system scale reaches a reasonable
strategy. Then, the expected system sda|€(t)] given by level (e.g, this can be simply reflected by(t), which can
Theorem 2 can be potentially improved as be roughly captured by the tracking server used for peer
registration and discoveries), peer resources would then b
sufficient for the system to scale up further, and thus theeser
capacity can be reduced accordingly.

ESt)] ~ St—-1)+us+(N+M—-5(t—-1)—u,) x

k

SOtk hyug) (1= P (K b)) T ()

o B. Sensitivity Analysis on Critical Factors
where p/(t, k, h,us) = hd/(t,us)/k, o' (t,us) = St —
1)/(N+M—S(t—1)—u,), andu, = U,/R is the relative ~ We next demonstrate the effects of several critical factors
server capacity. indicated by Theorem 2, by carrying out a series of sengitivi

The proof of Corollary 1 is similar to the proof of Theo-analysis. Specifically, we apply the classical approach of

rem 2. The effects of the parameter will be quantitatively Vvarying one or two parameters while keeping others constant

demonstrated in Sec. Il First, Fig. 3 compares the approximated system scale over
time, by varying the number of partners for new peérs
IIl. NUMERICAL RESULTS ANDINSIGHTS We observe that the system scale improves significantly as

In this section, we take advantage of the theoretical result increases in the range of typical settings that real-world
derived from our model to demonstrate the fundamental scagystems use [2]. Equivalently, the time to accommodateengiv
time relationship in P2P streaming systems under a flaseale of a flash crowd decreases significantly. However, when
crowd, as well as the effects of various critical factors. k continues to increase to larger values up to the size of curre

set of existing peers§(t — 1), the improvements, though still
A. Scale-Time Relationship and Join Time Distribution exist, become relatively minor.

Fig. 1 compares the approximated system scale over timeMe further examine the effects &fby comparing the time
slots obtained by Theorem 1, 2 and Corollary 1, under tite accommodate different scales of a flash crowd when
same flash crowd scenario setting. We observe the followingiries, as shown in Fig. 4. We observe that: (1) When the flash

First, the system scale grows relatively slower during initiatrowd is less severe relative to the initial system capdciy,
time slots, as a surge of newly arrived peers compete for tthe demand to supply ratio dfVz)/(Mh) is relatively less
limited surplus capacities from a relatively smaller numbk stringent), results are relatively insensitive to diffarealues
existing peers. This results in considerable difficulty hew of k. Specifically, the increase df actually does not help
peers to obtain sufficient upload bandwidth resources. (e.g, when the flash crowd scal®& = 4000, the time to

Second as more peers gradually joining the system withccommodate it under different values /ofstays nearly the
positive gain of surplus capacities, the ratio of the nuntdfer same); or could even bring negative effects when the flash
existing peers to the number of new peef$) continuously crowd scale decreases. This is in conflict with the intuitive
increases and the total system capacity improves; thus thadief that an increase of the number of partners for peers
system scale ramps up more and more quickly. can always help reduce the startup delays and improve the

Third, as expected, the system scale can be improveystem scale. (2) As the scale of the flash crowd increases,
with an additional amount of server capacity provisionedur results become more sensitive to different valuess, @nd
especially for the initial time slots. However, we note tie there are remarkable improvements by increagingowever,
improvement slows down with more and more server capaciycessive increase éfbrings relatively minor improvements,
provisioned, as demonstrated by the decreasing gaps betwabich consists with previous observation from Fig. 3.
the curves. Finally, we examine the impact from the relative average

To reflect the user experience under a flash crowd, Fig.pBer surplus capacity,, the initial system scalel/, and
plots the peer join time distribution.¢., the percentage of their correlation withk. Fig. 5 and Fig. 6 plot the time to
peers that joined the system in each time slot). It showscommodate a given scale of a flash crowd wheor M
that potentially many peers could suffer from long startugaries, respectively, under different settingskofWe observe
delays under a flash crowd; while only a small portion dhat: (1) As expected, the increase/obr M can effectively
peers can join the system within the initial time slots. Aseduce the time to accommodate flash crowd, as it essentially
an additional amount of server capacity is provisioned, tlehances the entire system capacity. In general, the more
join time distribution noticeably shifts towards the earltime upload bandwidth resources exist in the system (thougkesta
slots, with a relatively larger portion of peers joining theime to utilize them), the less time it takes to accommodate
system with shorter startup delays. a flash crowd. (2) The impact &f observed in Fig. 4 is also

The above findings suggest that an adequate amountvefified. When the upload bandwidth resource is relatively
additional server capacity provisioning could help akegithe constrainedi(e., whenh or M decreases), the performance
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gaps (in terms of time saved) between different settings of
are more profound. [1]
V. CONCLUSION AND FUTURE WORK

In this paper, we have studied the inherent reIationshig]
between time and scale in P2P streaming systems during_a
flash crowd, through a mathematical framework we developegf
We have derived an upper bound on the system scale and
demonstrated that the timing factor plays a critical role fol4]
such a system to scale. In addition, our analysis also brin
a more in-depth understanding with respect to the partial
knowledge of peers and their competition for the limited Ipool®]
of upload bandwidth resources, as well as important insight
on a few other critical factors. 7

We believe that this work represents only the first step
towards analyzing flash crowd behavior of P2P streamin
systems. For example, it is desirable to consider more géner
and bursty patterns of peer arrival and departure, whicloiem
representative of real-world systems. From the perspectv ol
additional server capacity provisioning, it is also imaoit to
dynamically adjust additional capacities from serversdap [10]
to the size of the flash crowd. We defer these investigations
to our future work.
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Fig. 6. Time to accommodate a flash crowd

of N = 10000 peers when the initial system scale
M varies, under different settings of the

number of partners for new peeks

The value ofk varies from10 to 100.

Others are set ags = 0,h = = = 5.

r different settings
new peers
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