
A Hierarchical Graph Model for Probing Multimedia Applications

Baochun Li
Department of Electrical and Computer Engineering

University of Toronto
bli@eecg.toronto.edu

Abstract

In order to achieve the best application-level Quality-of-Service
(QoS), complex multimedia applications need to be dynamically
tuned and reconfigured to adapt to unpredictable open environ-
ments offered by general-purpose systems. We believe that the
objective of such adaptations should be to maintain a stable QoS
with respect to a set of critical application QoS parameters.
However, we have observed that only a limited set of parameters
may be used as “tuning knobs” to affect the application behavior.
In this paper, we present a hierarchical graph model to discover
the relationships between the sets of tunable and critical QoS
parameters. Based on such a model, we propose a polynomial-
complexity QoS probing algorithm to quantitatively capture the
run-time relationships between the two sets of parameters. Our
probing algorithm is integrated into our broader framework, Agi-
los, which uses a configurable visual tracking application to ver-
ify the effectiveness of adaptations.

1 Introduction

In a best-effort open environment where general-purpose sys-
tems are used, complex multimedia applications may not be able
to receive guaranteed Quality-of-Service (QoS). In such situa-
tions, they need to be dynamically tuned and reconfigured to
adapt to the fluctuating environment, triggered by variations in
resource availability. We claim that the objective of such adap-
tations is to maintain stability or optimality with regards to a set
of critical QoS parameters within the application, since the QoS
of these critical parameters will represent the overall quality and
user satisfaction delivered by the application. On the other hand,
any application has a set of tunable QoS parameters to serve as
tuning knobs to tune and reconfigure the application’s behavior.
For example, in a distributed visual tracking application where
multiple tracking algorithms are used to track the location of
moving objects in a streamed live video, the tracking precision
is the critical QoS parameter, where frame rate, image compres-
sion ratio, number of simultaneous trackers may all be tunable
QoS parameters.

The introduction of critical QoS parameters as adaptation ob-
jectives leads to the problem of bridging the “gap” between two
categories of parameters: critical and tunable QoS parameters.
Critical parameters represent adaptation goals, and tunable pa-
rameters are the only “knobs” we may use. In order to reconfig-
ure the set of tunable parameters with the goal of optimizing the
quality of critical parameters, we need to discover the functional
relationships between them. In this paper, we focus on this prob-

lem and present a hierarchical graph model to represent the de-
pendencies between critical and tunable parameters, and present
a QoS probing algorithm to quantitatively capture the run-time
relationships between critical and tunable parameters. We have
shown that with certain optimizations, the computational com-
plexity of such an algorithm may be reduced from exponential
to polynomial.

Previous work has focused on QoS-aware monitoring and
probing mechanisms at the application level [1, 2, 3]. Al-Shaer
et al. [2] has presented HiFi, an active monitoring architecture
for monitoring distributed multimedia systems. Abdelzaher [1]
has presented an on-line least squares estimator for estimating
system parameters in QoS-aware web servers with a linear exe-
cution model. Chang et al. [3] has provided a sandbox imple-
mentation to tune resource availability when measuring appli-
cation behavior. In comparison, our work do not assume prior
knowledge of a particular execution model in an application,
and focuses on discovering the relationships between parame-
ters based on probing results, rather than the particular probing
mechanisms. Finally, this work presents a polynomial-time al-
gorithm to probe multiple critical parameters, which is an exten-
sion and major improvement over our own previous work [5].

The remainder of this paper is organized as follows. Section
2 presents formal definitions of different parameter categories.
Section 3 describes our graph-based model to characterize re-
lationships between different categories of application parame-
ters, presents a QoS probing algorithm, and analyzes its compu-
tational complexity. Section 4 presents a brief case study with
the visual tracking application, when integrating the probing al-
gorithm into our broader control framework, Agilos. Section 5
concludes the paper.

2 Parameter Categorization

We consider a scheme of categorizing application QoS param-
eters. For this purpose, we focus on a single application com-
ponent. We assume that this component accepts input with a
QoS level

�����
and generates output with QoS level

�����
	
, both

of which are vectors of application QoS parameter values. In
order to process input and generate output, a specific amount
of resources � is required, which is a vector of resource types.
Figure 1 illustrates such characterization in terms of QoS param-
eters and resources.

Formally, we define the vectors
� ���

,
� ���
	

and � as follows:

��
�� �������������������������� � ���
�� ! ���� �"! ���� ���������"! ���� � � ���
	
�� ! ����	� �"! ���
	� ���������#! ���
	$ � (1)

Application

Component

Q
in

Q
out

R
resources

output QoS

parameters

input QoS

parameters

Figure 1: The Application and its Parameters

where � � ��� � ��������� � � are the required resource types and
measured with their respective units. In the tracking application,�
 �

, and ����� � is measured with CPU load percentage, while
� ��� 	 is measured with bytes per second.

We assume the vector of all application QoS parameters �

� � ��� �	� ����	 � . We further classify the parameters in the vec-
tor � into three distinct categories:

 Critical QoS parameters. We assume all critical pa-
rameters, which are elements in the vector

���	
����
	
, be-

long to the set of output QoS parameters. Let
����
 ����	

� ! ���
	��� �"! � �
	��� ��������� ! ����	��� � , while ����� ����� ������������������� . The
objective of adaptation is focused on these critical QoS pa-
rameters.

 Tunable QoS parameters. Without loss of generality1, we
assume that all input QoS parameters are tunable.

 Non-critical QoS parameters. It follows that any param-
eters in the vector

� ���
	
that do not belong to the category

of critical QoS parameters are non-critical.

For simplicity of notations, we redefine
�����

and
���	
 � �
	

as
follows, removing extra superscripts and renumbering the sub-
scripts:

� ���
�� ! ���"! �
���������#! � � � �	
 ���
	
�� ! �� � � ! �� � ���������"! �� � �� (2)

Since all tunable QoS parameters are input parameters and all
critical QoS parameters belong to the set of output QoS param-
eters, it is natural that when the tunable parameters are actively
controlled, the critical parameters will consequently change. In
this case, the critical parameters are claimed to be dependent on
the tunable parameters. In addition, in most applications critical
parameters are also dependent on a certain subset of resource
types, since when resource availability changes, they effectively
change the observed values of critical parameters.

In order to characterize the complete set of parameters that
critical parameters depend on, we define a new vector ! ��� to
include the relevant resource types:

! ���
 � � ��� ��� �
�� ! � �#! � ���������"! � ��� � ��� � ����������� � �
(3)

For coherent notations, we redefine ! �#" � = � � , �$�%�&� � ,
so that:

! ���
�� ! � � ! � ���������"! � �"! �#" � ���������"! �'" � � (4)
1If an input QoS parameter is not tunable, we may view it as an output param-

eter instead.

3 Probing Application QoS Parameters

In this section, we present a QoS probing algorithm that bridges
the gap between the set of critical and dependent parameters by
capturing the dependency relationship between

���	
 ���
	
and ! ��� .

3.1 A Bipartite Graph Model

The brute-force way of designing a QoS probing algorithm is
to discover the relationship between any particular critical pa-
rameter and all its dependent parameters. For this purpose, we
need to construct a Directed Bipartite Graph, with all elements
in
�(�	
����
	

forming one partition of the graph, and all elements
in ! ��� forming the opposite partition. If node ! �� � depends on
!*) , �+�,�-�/. �0�1�32$�,4&5 � , there exists a directed edge from
node ! �6 � to node !) in the directed bipartite graph.

p
1

1

p
n

p
n+1

p
n+m

pcr

l
pcr

(R
1
) (R

m
)

Figure 2: The Bipartite Graph Model for Application QoS Pa-
rameters

The objective of a QoS probing algorithm is to tune the pa-
rameters in ! ��� and observe the values of critical parameters.
As an initial step, we assume that each critical parameter in���	
�����	

depends on all the parameters in ! ��� . Figure 2 shows
an example. Obviously, the subgraph consisting of one critical
parameter and all parameters in ! ��� is a two-level tree, with the
selected critical parameter as root and all the parameters in ! ���
as leaves.

The critical step in the QoS probing algorithm is to discover
the relationship between dependent nodes. For this purpose, we
assume that for 78� ��7:9 , there exists ; ! ��< � ��� and ;�! ��< �>=@? such
that ; ! ��< � ��� � ! ��A 9	BC��;�! �6< �D=0? , any value beyond this range
is either not possible or not meaningful. For example, the frame
rate may vary in the range of �E����F'G � (in frames per second).
Hence, the dependency between each critical parameter and their
dependent parameters can be characterized by H � , defined as:

! �� �
�H ��A ! � �"! � ���������"! �'" � B (5)

; ! $ < � ��� � ! $ A 9	BD�I;�! $ < �>=@?
��
J��� � ����������4$5 � , �
J� � � ���������	.

With the Bipartite Graph Model, the probing algorithm for
computing the dependency relationship between each critical pa-
rameter ! �6 � and the parameters in ! ��� is straightforward. For
each critical parameter ! �6 � , It consists of 4�5 � for loops, each
one of them iterating through the range of 4�5 � leaf parameters.

Theorem 1. the computational complexity of the probing al-
gorithm based on a Bipartite Graph Model is K A .�L�M �D=@?ON �'" �QP B ,
where M��D=0?
 max ;RM � � �	M � � ���������	M �@S�TVU < , and M �0W
A ;�!*) < �D=0?1XY;�!Z) < � ��� B�[#;�!Z) < ��� �6 � � � ��	 .

Proof. Omitted for space limitations.

2

This shows that when the number of tunable parameters and
resource types increases, computation increases exponentially.
In order to carry out QoS probing on-line, we need a more effi-
cient algorithm.

3.2 A Hierarchical Graph Model

Typically, one critical parameter only depends on a limited num-
ber of tunable QoS parameters and resources. Furthermore, we
have observed that if two critical parameters depend on a com-
mon set of parameters in ! ��� , they may have similar depen-
dency relationships with such a common set. If this similarity
of relationships can be captured and then shared by both critical
parameters, computational complexity may be reduced dramati-
cally.

We introduce a set of intermediate QoS parameters that crit-
ical parameters depend on. These intermediate QoS parameters
may be either non-critical QoS parameters in the output QoS, or
other internal parameters within the application component. In
addition, they depend on the parameters in ! ��� . To maximize
the dependency relationship sharing among critical parameters,
intermediate nodes are organized hierarchically. Figure 3 shows
an instance of the possible dependency relationships.

p
1

p
1 p

2
p

3

p
1

p
1

p
2

p
2

p
3

p
4

p
5

p
6

crcr

1

2

1 1

Figure 3: Hierarchical Graph Model for Application QoS Pa-
rameters

The hierarchy in Figure 3 presents the following properties:

 The subgraph composed of a critical parameter node ! �� �A �I� � � . B and all downstream nodes is essentially a
multi-level directed tree, with root as ! �� � and a subset of
parameters in ! ��� as leaves. We refer to such a tree as
Tree A ! �� � B , and the hierarchical graph is

� ; Tree A ! �6 � B < .

 Two critical parameters share dependency on some param-

eters by sharing a subtree. For example, in Figure 3, the
subtree with source at ! �� is shared by both critical parame-
ters ! �6 � and ! �� � .

 All nodes other than leaves have at least outdegree
�
. Oth-

erwise, redundant nodes may be removed as shown in Fig-
ure 4.

p
z

p
y

p
w

p
x

p
z

p
x

p
w

p
i
cr p

i
cr

p
z

p
y

p
w

p
x

(a) (b)

p
y

p
w

p
x

Figure 4: Redundant node removal

 The notation !) � denotes that the node is at level 2 , and is
the � 	�� node at this level. We calculate the level of a node
by counting from bottom, with leaves (parameters in ! ���)
at level G , that is, ! �
 !

�� ���
J� � � ����������4 5 � .

Assume the parent node !) � depends on � child nodes !) ���� , !) �� � ,

..., !)��� � . The dependency can thus be characterized by a function
H � W ��� � W �� � � � W �� � � 	 	 	 � � W �� � , defined as:

!) �
�H � W � � � W �� � � � W �� � � 	 	 	 � � W �� � A !
) ���� �"!) �� � ���������"!)��� � B (6)

;�!)�
�
 < � ��� � !)�
�
 A 9	B>�I;�!)�
�
 < �D=@?
�
J� � � �����������

A hierarchical QoS probing algorithm is shown in Figure
5. For each critical parameter, we calculate all dependency
functions between one non-leaf node and its dependent child
nodes. The calculation is performed from bottom to top of
the hierarchical graph. The idea in this algorithm is that, if
a child node !) $ is not a leaf, it must depend on some other
lower level nodes, and the dependency between them should
have already been calculated and saved in the log. The cal-
culated value set for this node should be within the range
� ; !) $ < � ��� � ;�!) $ < �>=@? � , and each value is rounded to the nearest
discrete value ; !) $#< � ��� 5 � L ;�!) $'<
��� �6 � � � � 	 �	G,� � � M � W � ,

where M � W �
 A ; !) $ < �D=@? X ;�!) $ < � ��� B�[#; !) $ < ��� �� � � � � 	 . The

sample values for this child node will be retrieved from the log.

for each critical parameter ! �� � and its associated Tree A ! �6 � B
for level 2 = 1, 2�� depth(Tree A ! �6 � B), 2 ++

for each node !) $, whose children are !) �$ � , !) �$ � , . . . , !)��$ �
��
 outdegree A !) $ B
list := ; !) $ < // observing list
for each child !)��$ � , �1���%�

if !) �$ � is a leaf and is not a resource then
!)��$ � iterates from ;�!)��$ � < � ��� to ;�!)��$ � < �D=@? ,

step ; !)��$ � < ��� �� � � � ��	
else if !) �$ � is a resource parameter then

if !) $�� list then
list := list - ; !) $ <
list := list + ;�!) �$ � <
!) $ iterates from ;�!) $#< � ��� to ;�!) $'< �D=0? ,

step ;�!) $#<
��� �6 � � � ��	
else

list := list + ;�!) �$ � <
else // non-leaf node
search log and find the sorted value set for !)��$ �
!)��$ � iterates elements in the found value set

log observed values for parameters in list

Figure 5: The Hierarchical QoS Probing Algorithm

Note that if a resource parameter is one of the dependent
nodes, we control the values of the parent node instead and ob-
serve the changes of the resource parameter. The variable list
keeps track of the parameters to be observed. This is because
resource usage is usually hard to control precisely.

3

According to the algorithm, it is obvious that if a node in
Tree A ! �6 � B and a node in Tree A ! �6) B share a subtree, the calcu-
lation for the subtree may be done only once for both trees
and the dependency function can thus be shared by both nodes.
For example, in Figure 3, the subtree rooted at ! �� exists in
both Tree A ! �6 � B and Tree A ! �6 � B . After the dependency function
H � �� � � � � � � is determined, it will be shared by parent nodes ! � � in
Tree A ! �6 � B and ! �6 � in Tree A ! �� � B .
3.3 Complexity Analysis

The computation in the algorithm is sequentially performed for
each Tree A ! �6 � B , ��
 � � � ����������. . Therefore, we first consider a
single tree Tree A ! �6 � B . It is obvious that the complexity depends
on the number of non-leaf nodes in the tree. We first demonstrate
that the number of non-leaf nodes is bounded by the number of
leaves in Tree A ! �6 � B .

Let
� A�� B and � A�� B denote the number of non-leaf nodes

and number of leaves in a Tree � , respectively. Let � A�� B denote
the depth of the tree � .

Lemma 1: Given a directed tree � . If outdegree for each
non-leaf node is no less than

�
, then

� A�� B���� A�� B .
Proof. Proved by induction. Omitted for space limitations.
For each node !) $ in Tree A ! �� � B , we assume that its outdegree

is

 A !) $ B . Let

 ��D=0?
 max ;
 A !) $ B < , the maximum outdegree
of the nodes in Tree A ! �6 � B . Let

 �D=0?
 max ;
 ��>=@? < , � �J�+�
. , the maximum outdegree of the nodes in

� ; Tree A ! �6 � B < . In
addition, let M �D=@? = max ; M � W � < .

Theorem 2: The computational complexity of the hierarchi-
cal QoS probing algorithm is bounded by K A .DL A 4 5 � B�LA M �D=@? B	� U�
�� B . . is the number of critical parameters, 4 is the
number of tunable parameters and � is the number of resource
parameters.

Proof. For Tree A ! �6 � B in the hierarchical graph
� ; Tree A ! �� � B < ,

we count the number of non-leaf nodes in this tree. According to
Lemma 1, the number of non-leaf nodes is less than the number
of leaves, which is 4 5 � . Therefore, the total time of profil-
ing one critical parameter is less than A 4 5 � B L A M �D=@? B	� U�
�� .
For . critical parameters, the upper bound is K A . L A 4 5 � B-LA M �D=@?ZB	� U�
�� B . This is obviously polynomial. QED.

Tracking precision

Object velocity Tracking frequency

Frame rate Weighted quantity

of trackers

Image properties

Compression

ratio

Image size

Codec type Codec parameters Size in

pixels

Color

depth

Number of

trackers

Property

of one tracker

Size of

region

Tracker

type

Bandwidth

Figure 6: Hierarchical Graph for Distributed Tracking

4 Case Study: Distributed Visual Tracking

In our experiments, the QoS probing algorithm presented in this
paper has been integrated into our broader QoS control frame-
work, the Agilos architecture [4]. Figure 6 shows the hierarchi-

cal graph for the tracking application. Discovered by the prob-
ing algorithm, Figure 7 shows the dependency relationships be-
tween the critical parameter, tracking precision, and the inter-
mediate QoS parameters object velocity and tracking frequency.
We have shown in [4] that the Agilos architecture is able to con-
trol the adaptation behavior in the tracking application, so that
the tracking precision remains stable at all times, even with the
presence of bandwidth and CPU fluctuations due to a best-effort
execution environment. The QoS probing algorithm plays an
important role in this framework.

Tracking Frequency

1

max

0
0

(times/sec)

10 15

Tracking

2

Precision (pixels, smaller values shows better precision)
Object Velocity (pixels/sec)

Figure 7: QoS Probing Results: An Example

5 Conclusion

In this paper, we first define application QoS as the quality of a
set of critical parameters. Based on such assumptions, we have
presented a polynomial-time QoS probing algorithm for probing
multimedia applications, and discovering functional relation-
ships between critical and tunable parameters. This algorithm
has been integrated into the broader Agilos framework for con-
trolling applications to adapt to best-effort open environments.
A visual tracking application is deployed under the control of
Agilos, and the critical parameter, tracking precision, remains
stable at all times by trading off other non-critical parameters.

References

[1] T. Abdelzaher. An Automated Profiling Subsystem for QoS-
Aware Services. In Proceedings of Second IEEE Real-Time
Technology and Applications Symposium, 2000.

[2] E. Al-Shaer, H. Abdel-Wahab, and K. Maly. HiFi: A New
Monitoring Architecture for Distributed Systems Manage-
ment. In Proceedings of IEEE ICDCS 99, pages 171–178,
May 1999.

[3] F. Chang and V. Karamcheti. Automatic Configuration and
Run-time Adaptation of Distributed Applications. In Pro-
ceedings of HPDC-9, pages 11–20, August 2000.

[4] B. Li, W. Jeon, W. Kalter, K. Nahrstedt, and J. Seo.
Adaptive Middleware Architecture for a Distributed Omni-
Directional Visual Tracking System. In Proceedings of the
SPIE Multimedia Computing and Networking 2000, pages
101–112, January 2000.

[5] B. Li and K. Nahrstedt. QualProbes: Middleware QoS
Profiling Services for Configuring Adaptive Applications.
In Proceedings of Middleware 2000, pages 256–272, April
2000.

4

