A Gateway-Assisted Approach Toward QoS Adaptations

William Kalter, Baochun Li, Won Jeon, Klara Nahrstedt, Jun-Hyuk Seo*
Department of Computer Science
University of Illinois at Urbana-Champaign
kalter,b-li,wonjeon,klara,jseo@cs.uiuc.edu

Abstract

In this paper, we present a gateway-assisted QoS adap-
tation framework which satisfies high-level QoS application
guarantees. We validate this framework via a distributed
tracking system and show provisioning of critical QoS guar-
antees despite the best effort underlying resource manage-
ment.

Keywords: Visual tracking, resource adaptation, adap-
tive middleware, gateway

1. Introduction

Many distributed client/server applications today exe-
cute over a best-effort system environment. In this envi-
ronment the underlying system is incapable of providing
resource guarantees, such as network bandwidth and pro-
cessor time. Despite this lack of guarantees we would like
the application to execute using the current resource avail-
ability. To do this, the application should adapt itself to
execute at a level which provides QoS that is acceptable to
the user yet utilizes only as much resources as are currently
available.

Several recent works have attempted to perform these
adaptations for distributed client/server applications. The
first approach, taken in [1, 4, 7], is to create a QoS-aware
proxy between the client and server. This proxy transcodes
the server data so that it matches the client’s reconfigured
QoS needs, thus enabling the client to dynamically alter it-
s execution level [2]. The second approach is to provide a
gateway between the client and a series of servers [5]. In
this approach, the gateway selects one server from a series
of servers for each client, with each server providing an e-
quivalent data stream. The first approach provides QoS cor-
related data between the client and server but limits recon-

*This research was supported by the NSF PACI grant under contract
number NSF PACI 1 1 13006, NSF Career under contract number NSF C-
CR 96-70736, NSF CISE Infrastructure grant under contract number NSF
EIA 99-72884, ARPA grant under contract number F30602-97-2-121, NS-
F CISE Infrastructure grant under contract number NSF CDA 96-24396,
and NASA grant under contract number NASA NAG 2-1250.

figurations to those which can be performed on the outgoing
server data stream. Since the server is not involved in the
reconfiguration process it is not possible to adapt the QoS of
the stream content itself. In contrast, the second approach
allows for the possibility of providing a different QoS sat-
isfying application data stream from each server. However,
it does not provide a means for reconfiguring the format of
the data since each server must provide equivalent service
to the client.

In this paper, we present a framework which merges
these two approaches to provide reconfiguration capabili-
ties for both the application data content and the resources
required to transport and present data to the client. Our
framework is centered around an intelligent gateway which
facilitates distributed QoS reconfigurations for a client. This
gateway exists as an extension of the adaptive middleware
architecture previously presented in [6].

The remainder of this paper is organized as follows: Sec-
tion 2 describes the design of the gateway framework. Sec-
tion 3 describes a particular application of the framework,
the omni-directional video camera (ODVC). Section 4 de-
scribes the implementation of our framework. Section 5
shows some experimental results from the ODVC applica-
tion. Section 6 then concludes this paper.

2. Design
2.1. The Gateway-Centric Architecture

The gateway-centric architecture used by our framework
consists of a group of servers and clients connected to a
gateway. Figure 1 shows the toplogy of nodes within the
framework. The gateway manages control connectivity be-
tween each client and the servers and assists the client in
QoS adaptive behavior. Note that the transfer of data will
follow a direct path between one client and one server.

The gateway and servers are collectively coordinated and
serve as a single service facility. At any time, each client is
being serviced by a single server within the facility. The
decision as to which server is serving the client is dynami-
cally chosen based on client resource observations, user per-

?
Data Path i
Figure 1. Topology of client and facility

ceived observations, and gateway state information.

The ODVC provides a typical example of a single ser-
vice facility. Here, the video servers are arranged circular-
ly around common scene of interest. Each client receives
a video stream only from a single server within the facili-
ty. The decision which server streams video to the client is
made by the client, depending on which view of the scene
the user wants to see.

To assist QoS functional adaptations, we designed a set
of protocols within the single service facility, as well as be-
tween the clients and the service facility. The goals of our
design are:

1. Agility. The gateway should be able to maintain a
dynamic environment in which servers are added, re-
moved, and unexpectedly fail.

2. Speed. The amount of time taken to switch servers for
a client should be kept minimal, growing no worse than
linearly in the number of servers within the facility.

3. Flexibility. The framework should be generic so that
a variety of new applications can be easily extend-
ed from it. Any application-specific QoS information
should be efficiently handled by the framework and
then interpreted using an application-specific knowl-
edge base.

4. Development transparency. There should be very little
difference between developing an application with one
highly reconfigurable server and an application with
several less reconfigurable servers which can be dy-
namically switched by the gateway.

5. User transparency. The end user should neither be
aware of nor involved in the negotiation and switch-
ing protocols taking place within the middleware.

The next three sections focus on the server-gateway pro-
tocols, client-gateway protocols, and internal gateway pro-
tocols.

2.2. Server-Gateway Protocols

As previously stated, each server can be designed as
though it were the only server in the standard single clien-

t/server model. To make the server perform within a facility
should require only a minimal set of additions to the server.
This is accomplished by adding two component entities to
the server middleware: an observer and a negotiator.

The observer monitors local resource conditions which
affect the current utility of the server, such as CPU load.
The server then periodically updates the gateway with the
state of these conditions.

The negotiator maintains communication between the
server and the gateway. These communications include
informing the gateway that the server has not died, keep-
ing the gateway apprised of QoS conditions satisfied by
the server, and responding to client authentication requests
made by the gateway.

2.3. Client-Gateway Protocols

The major goal of the client in this protocol is to observe
QoS and adapt with large scale adaptations in case of QoS
degradation. The adaptation performed is decided by a two-
tier adaptive middleware as shown in Figure 2 [6]. We will
briefly discuss this architecture in order to validate its use as
the driving force behind the QoS adaptations at the gateway.

Application | Task 1 |—»| Task 2
=x

User Level
Processes

Active
Middleware

-
Architecture To Gateway

Obsevation Obsevation

Task Task

Operating Systems
and Transmission Network

Figure 2. Client Architecture

The client middleware assists the application with the
provision of best QoS possible, using the underlying best-
effort resource management. The central component is the
configurator. The configurator consists of two components;
the functional configurator and the user configurator. The
functional configurator performs coarse application-level
reconfigurations using a fuzzy inference engine when the
fine-grain adaptations performed by the adaptors are insuf-
ficient for adapting to the current observed resource states.
The user configurator performs high-level reconfigurations
initiated by user responses to Quality of Perception (QoP)
degradation. QoP degradations occur when application-
specific quality (e.g. view of a physical object) is degrad-
ed independently of the underlying resource availability [3].
For example, within the ODVC system, a functional recon-
figuration may switch compression schemes for the video

data, whereas a user reconfiguration may switch to a server
with a better view of the scene.

7. Start service

New Server
2. Auth. Client
1. <action, conditions> 3. Accept Client
Client | G J
4. Switch: <New Server,
conditions> 5. Drop Client
Old Server

6. Shutdown service

Figure 3. The Server Switching Protocol

When a reconfiguration requires switching servers, the
negotiator is used to negotiate a new server from the gate-
way. The protocol between the client’s negotiator and the
gateway is shown in Figure 3. In step 1, the negotiator sends
the gateway the action it needs to perform and a list of con-
ditions the action must satisfy. The gateway then ranks the
servers using a fuzzy inference engine identical to the con-
figurator’s. It then cycles through steps 2 and 3 in decreas-
ing order from the top ranked server until a server accepts
the client. When the gateway returns the selected server in
step 4, it must also provide a list of conditions the server
satisfies so that the client application can adjust itself to the
conditions met by the server. For example, the client’s ac-
tion could be to switch to a new format and the condition-
s could include a list of acceptable formats. The gateway
would then return not only the new server but also the spe-
cific format from the list which the server satisfies.

2.4. The Gateway

The gateway serves as the centerpiece in the connection
between each client and the facility. It is responsible for
receiving client reconfiguration requests and processing the
requests for the client.

Client 1 State
Client 2 State

Server 1 State
Server 2 State

Server S State

Client C State

Clients Servers

‘ Client/Server Matching Module ‘

Gateway

Figure 4. Gateway Architecture

The gateway’s architecture can be seen in Figure 4. The
gateway maintains two state tables, one for the clients and
one for the servers. An example of gateway states is shown
in Figure 5. Between these is a mapping table which main-

tains which clients are being serviced by which servers.
This table is updated by the client/server matching module.

The matching module is invoked during the server
switching protocol described in section 2.3. This module
is responsible for assigning a rank to each server. The
rank is computed using a preprocessed representation of
the action, conditions, client state, and server state. This
representation is inputted into the fuzzy inference engine
with a rule base specifically created for the gateway. For
example, a rule for moving left (clockwise) within an
ODVC is as follows:

if (server_directionis left) and (serv-
er_angle is close) then server ranking is
hi gh;

In this example, server_direction and server_angle are
preprocessed values derived from the views on the client’s
current server and the evaluated server. The better a server
matches the criteria for the action, the higher the server’s
ranking will be. Additional information can be encoded into
each rule to create a more robust rule base.

View
App. Specific Current View Format
State Current Format CPU Load

System State Host Name Host Name
Inet Address Inet Address
Client State Server State

Figure 5. ODVC Gateway States

3. Omni-Directional Video Camera

The ODVC is a suitable experimental application be-
cause it provides for demonstrating the capabilities of the
framework.

The ODVC'’s client has two reconfiguration actions the
gateway can satisfy: requesting compression and request-
ing camera movement. Upon evaluating a client’s request,
the gateway’s rule base ranks the servers on four criteria:
the video format and CPU load on the new server, and the
direction and distance within the ODVC between the new
server and the client’s current server. The rules are written
so that different rankings apply given different actions. For
example, a format request does not take into account the
server’s direction while a move request assigns a very low
ranking to a server in the wrong direction.

4. Implementation

To test our framework, we implemented it in two steps.
In the first step, we created the framework itself. In the sec-
ond step, we extended the framework towards an ODVC as
a component of our OmniTrack visual tracking application
[6]. Our implementation was created for Windows NT 4.0
SP5 using Visual C++ 6.0. We used CORBA interfaces to
communicate between the various middleware components.

5. Experiments

We have designed three experiments to demonstrate
the gateway’s ability to provide each client with a QoS-
satisfactory server. We evaluate the gateway’s server de-
cision using two criteria; how well the selected serv-
er matched the client’s reconfiguration request, and how
well the gateway performed load balancing while satisfy-
ing these requests.

Each experiment was performed using six clients and
three servers. The clients were placed on hosts of varying
speed, one client per host. The servers were placed on three
hosts, one server per host, in descending order or host pro-
cessor speed: an MJPEG server on a Pentium I1 400 (PII
400), another MJPEG server on a dual processor Pentium
Pro 200 (PPro 200), and an uncompressed server on a Pen-
tium 200 MMX (P 200). The gateway was placed on "PlI
400”. For all three experiments, each server could satisfy
each client’s initial QoS parameters: any video format with
any view.

For the first experiment, we manually selected the serv-
er for each client to best balance the overall server load.
This experiment was performed as a control for evaluating
the second and third experiments. The results of this ex-
periment are shown in (a, b, c¢) of Figure 6. The jumps in
execution levels indicate when each server begins servicing
another client. Notice that although server ”P 200" reaches
100% utilization, at the time the second client was placed
on the host it had the lowest utilization of all three servers.

For the second experiment, we repeated the first exper-
iment, this time allowing the gateway to select the server
for each client. The results of this experiment are shown in
(d, e, f) of Figure 6. As expected, the gateway satisfied all
client requests while performing an equivalent level of load
balancing which had been performed manually in the first
experiment.

In the second experiment, the relative load on each server
was close enough such that a random or round robin client
placement would have performed adequate load balancing.
To prove that the gateway would respond equally well with-
in a more biased service facility, we switched the fastest
server, "PIl 400", from MJPEG to uncompressed video.
This change greatly reduced the processor overhead for this

server. For the third experiment, we allowed the gateway
to select servers with the new configuration. This time, the
gateway placed every client on ”PIl 400”. Even with the
gateway executing and a server servicing all six clients, the
CPU load on this host was still lower than the load on the
other non-servicing hosts. Thus, the gateway successfully
demonstrated that it could meet a client’s QoS needs while
maintaining optimal utilization across the facility.

CPU Load (%)
CPU Load (%)
CPU Load (%)

0 50 100 150 200 250 300 0 50 100 150 200 250 %5 50 100 150 200 250
Time (s) Time (s) Time (s)
(@) PII 400 (b) PPro 200 () P200
100 ———————— 100 100 ——— T
-~ 8o E -~ 8o - e
£ £ £
T eof T eof T eof g
S S S
5 wr R 5 wr 5w R
° ot R O 2 O 2 R
ol v o b
0 50 100 150 200 250 300 0 50 100 150 200 250 0 50 100 150 200 250
Time (s) Time (s) Time (s)
(d) PII 400 (€) PPro 200 (f) P 200

Figure 6. Experiment CPU Loads

6. Conclusions

In this paper we presented a novel approach for perform-
ing high level QoS adaptations for a distributed applica-
tion. Our approach does this by using several servers and a
gateway working together to provide the client with flexible
QoS reconfiguration options via the set of available servers.
We then demonstrated one extension of our framework, the
omni-directional camera.

References

[1] E. Amir, S. McCanne, and H. Zhang. An Application Level
Video Gateway. Proceedings of ACM Multimedia’ 95, 1995.

[2] S. Brandt, G. Nutt, T. Berk, and M. Humphrey. Soft Real-
Time Application Extension with Dynamic QoS Assurance.
IWQ0S 98, 1998.

[3] S.Fish, G.Ghinea, and J. P. Thomas. Mapping Quality of Per-
ception to Quality of Service for a Runtime-adaptable, Com-
munication System. SPIE MMCN 99, 1999.

[4] A.Fox, S. Gribble, Y. Chawathe, and E. Brewer. Adapting to
Network and Client Variation Using Active Proxies: Lessons
and Perspectives. |EEE Personal Communications, Special
I ssue on Adaptation, 1998.

(5]

(6]

(7]

M. Garland, S. Grassia, and S. Puri. Implementing Distribut-
ed Server Groups for the World Wide Web. Carnegie Mel-
lon University School of Computer Science Technical Report
CMU-CS-95-114, 1995.

B. Li and K. Nahrstedt. A Control-based Middleware Frame-
work for QoS Adaptation. |EEE Journal of Selected Areasin
Communications, Sept. 1999.

D. Xu, D. Wichadakul, and K. Nahrstedt. Multimedia Ser-
vice Configuration and Reservation in Heterogeneous Envi-
ronments. |CDCS 2000, 2000.

