
Dynamic Reconfiguration for Complex Multimedia Applications

Baochun Li, Klara Nahrstedt
�

Department of Computer Science
University of Illinois at Urbana-Champaign

b-li@cs.uiuc.edu, klara@cs.uiuc.edu

Abstract

Current state-of-the-art distributed multimedia applications require an environment that provides stable Quality of
Service (QoS). However, these applications typically run on best-effort heterogeneous platforms, and compete with
other applications or connections for end system and network resources, hence suffer from instability and dynamic
variations with regards to QoS. In this paper, we present a dynamically reconfigurable middleware control architec-
ture to enhance adaptation awareness of these applications. Our middleware architecture allows for detecting QoS
fluctuations in the surrounding environment and signaling optimal control actions to the application. Furthermore, we
discuss the design of a core component, the Configurator, that adopts a fuzzy control approach to compute optimal
control actions. Preliminary experimental results with a distributed visual tracking application show that our approach
is viable and effective in controlling adaptive applications.

1 Introduction

Complex distributed multimedia applications typically require the underlying environment to provide a desired
level of Quality of Service (QoS). However, in heterogeneous end-to-end environments, QoS-aware system compo-
nents may coexist with QoS-unaware components along the end-to-end path. If service with statistical guarantees or
best-effort service exists in the underlying environment of the applications, the QoS level that the application demands
may not be satisfied continuously. The violation of QoS requirements may be caused by physical resource limitations
such as inherent bandwidth variations in wireless links, or by statistical multiplexing of a dynamic number of appli-
cation tasks sharing the same resource pool in end systems and networks. For example, in an end system without
real-time prioritized scheduling and reservation mechanisms for CPU resources, CPU-intensive applications may not
be able to receive constant QoS with respect to their timeliness requirements in application execution.

The applications, residing on top of the above described environment, must be adaptive to the variations in their
end-to-end execution. This means that applications which have strict mission-critical real-time requirements do not fit
in this environment, because we cannot provide them with deterministic QoS guarantees that they need. Furthermore,
this implies that we need to consider applications which have demands and are flexible within a specific QoS range,
such as

� �������
	���������
, to allow room for adaptations to occur. In these flexible applications, adaptations play an

important role because constant guarantees are either not possible, when physical limitations are present, or not cost-
effective, when it is impossible to predict the maximum QoS requirements to be reserved for interactive applications.

In general, flexible applications demonstrate several scalability properties. First, they can accept and tolerate
resource scarcity to a certain minimum bound

� �����
, and can improve its performance if given a larger share of

resources. Second, they are willing to sacrifice the performance of some quality parameters in order to preserve the
quality of critical parameters. When QoS variations occur and QoS cannot be maintained for all application quality
parameters, it is possible and desirable to trade off less critical parameters for preserving quality assurance of critical
parameters.�

This research was supported by the Air Force Grant under contract number F30602-97-2-0121, NASA Grant under contract number NASA
NAG 2-1250, and National Science Foundation Career Grant under contract number NSF CCR 96-23867.

1

The objective of our work is to support QoS adaptations in flexible applications with several middleware compo-
nents. The services provided by these components have three main goals. First, they serve as a centralized global
coordinator to control the adaptation behavior of all concurrent application tasks in the end system, so that if viewed
globally, these applications do not adapt in a conflicting or unfair way. Second, they enhance the adaptation awareness
of flexible applications, by making decisions to control their adaptive behavior. The adaptation awareness includes
when, how and to what extent adaptation is carried out in the applications. Third, they serve as an observer to monitor
the dynamics in the environment, so that informed decisions can be made to control the applications.

In order to balance between the centralized approach of making optimized and fair control decisions and the di-
versely different QoS requirements from different applications, we consider two separate middleware components:
Adaptor and Configurator. The Adaptor makes control decisions with global awareness of application requirements
and resource availability of the entire system, while the Configurator is in charge of providing translation and con-
figuration services. The Configurator translates the normalized control decisions, generated by the Adaptor, into the
actual parameter-tuning actions or reconfiguration choices used during the execution of the application. Note that this
translation mechanism differs and supersedes the QoS translation between different categories of QoS parameters in
the way that it translates the control actions, rather than parameter values.

In our previous work [12], we exploited the analogy between a control system and the adaptation behavior, and
developed a Task Control Model that gives theoretical results to reason about and prove stability, fairness, and adapta-
tion agility properties of the adaptation behavior. The Adaptor uses the Task Control Model and the results developed
in [12] to make control decisions for individual target applications with a global awareness of resource availability.
The complementary work, presented in this paper, focuses on the internal algorithms used in the Configurator, which
allow for a single control policy to control applications via different application-specific mechanisms.

The major contributions of this paper are the following. (1) We adopt a fuzzy control approach in the design of the
Configurator, so that the adaptation choices and preferences for different applications can be expressed explicitly in
a rule base and member functions for each linguistic value. The rule base provides linguistic rules that the inference
engine is based on, and the inference engine generates manipulating signals that control the actual application. (2)
We show that our approach is feasible when dealing with nonlinearities of different control choices, such as a hy-
brid combination of parameter-tuning actions and reconfiguration choices. These choices are naturally nonlinear and
mostly discrete, while the rules that guide the decision-making process are mostly intuitive and heuristic. These rules
are application-specific and determined by human experts who use trial-and-error approaches to best fit the interests
of the particular application. (3) We validate our approach with a complex client-server based visual tracking appli-
cation. This application is flexible and includes a rich set of adaptation possibilities when running in QoS-unaware
environment.

The rest of this paper is organized as follows. In Section 2, we discuss existing work related to our approach.
In Section 3, we give an overview of the middleware control architecture. In Section 4, we review our Task Control
Model proposed in our previous work [12], designed for the Adaptor, in the context of a distributed visual tracking ap-
plication. In Section 5, we focus on our fuzzy control approach to design the Configurator, including the specification
of application-specific preferences, the benefits of adopting the approach, and a detailed analysis in the context of the
distributed visual tracking application with respect to its parameter-tuning and reconfiguration options. In Section 6
we present preliminary results with the visual tracking application. Section 7 concludes the paper and discusses future
work.

2 Related Work

The field of QoS Adaptation in distributed multimedia applications has been studied by various previous work.
In [13], a graceful adaptation service dynamically manages the QoS of real-time communications by changing the
parameter configurations in the network with no or limited disruption. It is implemented using mechanisms such as
dynamic re-routing and load balancing. In contrast to our work, it focuses primarily on communication subsystems,
while our approach focus on adaptation within user-level applications.

Other work [1] [2] [20] tries to adapt frame, layering or coding parameters in multimedia flows so that output rate
can be varied according to feedback from the network. These schemes propose mechanisms for graceful degradation
with multimedia data flows, and they do not address the problem of deciding the timing, scale and choices of adaptation
actions. In [19], the authors proposed a framework for the communication subsystem to provide flexible best-suited
services to the applications with different functional features and numerical QoS attributes. Our framework controls

2

the applications to adapt, rather than the communication subsystems. In [7], the authors proposed adaptation at the
configuration level, which carries out transparent transition from primary components to alternative components, as
well as at the component level, which redistributes resources in different components so that a QoS tradeoff can be
made. Similarly, our approach also models applications as different tasks. However, we differ from the previous work
in the sense that we propose algorithms to make choices on adaptation timing, scale and methods used, which balances
between the frequency and responsiveness of adaptation actions within the application.

The application of control theories has been explored in recent work in the area of QoS adaptation. In one paper
[18], the application of control theory is suggested as a future research direction to analyze adaptation behavior in
wireless environments. In another [3], a control model is proposed for adaptive QoS specification in an end-to-end
scenario. In the third example [6], the time variations along the transmission path of a telerobotics system are modeled
as disturbances in the proposed perturbed plant model, in which the mobile robot is the target to be controlled. In
our previous work [12], theoretical proofs are given for various properties applying control theory to model QoS
adaptation.

Our work is also closely related to and utilizes the knowledge of dynamic resource allocations. In [9], the global
resource management system that relies on middleware services as agents to assist resource management and negoti-
ations. In [15], the work focuses on maximizing the utility functions, while keeping QoS received by each application
within a feasible range. In [17], the authors focus on a multi-machine environment running a single complex applica-
tion, and the objective is to dynamically change the configuration of the application to adapt to the environment. In
comparison, our work focuses on the analysis of the actual adaptation choices, rather than individual or overall utility
factors. We also focus on an environment with multiple applications competing for a pool of shared resources, which
we believe is a common scenario easily found in many actual systems.

Rich features in the field of fuzzy control systems are also utilized in previous research related to adaptive systems
and flow control. In the AutoPilot [16] project, a fuzzy logic approach is adopted to design actuators that process
sensory data observed from high-performance parallel programs, so that optimal performance can be achieved by
adjusting system parameters, such as those in a parallel I/O file system. The actuators and sensors are functionally
similar to the Adaptation Tasks and Observation Tasks in our Adaptors. However, the objectives and domain of
operations are notably different. In [14], a fuzzy control approach is used for the purpose of flow control in ATM
networks, with linguistic variables being the queue length and the change rate of queue length in each ATM switch. In
contrast, our approach focuses on generating control actions to control distributed multimedia applications themselves,
with efforts to best adapt to the environment.

3 The Middleware Control Architecture for Flexible Applications

A major objective of the middleware control architecture is to observe the current conditions in the distributed envi-
ronment and signal control actions to the complex distributed applications, so that reconfigurations or parameter-tuning
actions are carried out within the application. The architecture consists of two parts, the Adaptors and Configurators.
In an end system, each Adaptor corresponds to a single type of resource, such as CPU or transmission bandwidth, and
consists of an Adaptation Task and an Observation Task. Each Configurator corresponds to a single Target Task or
application, and makes control decisions based on the output of several Adaptors related to several types of resources.
The interaction between different middleware components and the application is through a specific service enabling
platform, with the current implementation being CORBA. Figure 1 shows an overview of the architecture.

In Section 4, we review our design of middleware Adaptors using the Task Control Model. In Section 5, we develop
our design of middleware Configurators using the Fuzzy Control Model. We discuss our approach in the context of
the client-server based visual tracking application, which we show preliminary experimental results in Section 6.

4 The Task Control Model for Designing Middleware Adaptors

In order to control the adaptive behavior of distributed applications with a global awareness of resource availability,
so that a fairness property can be achieved, we integrated a Task Control Model as proposed in our previous work [12]
into the design of our middleware Adaptors. This is complementary to the design of Configurators, which is the focus
of this paper. The Adaptors promote global awareness, while Configurators focus on application-specific nonlinear

3

Application Task 3 Application Task 4

Application Task 1 Application Task 2

Configurator

Observation Task

Application

Adaptation Task

System State

A O

Adaptor for CPU Adaptor for Bandwidth

State
Middleware

Control Actions

Operating Systems and Transmission Network

Interactions
via CORBA

Figure 1: An Overview of the Middleware Control Architecture

adaptation possibilities. We review the Task Control Model briefly in the context of a real world application, the
client-server based visual tracking application.

4.1 The Task Control Model

Before proceeding to analyze quantitative properties of the adaptive behavior, we present the Task Control Model
to model the execution environment of flexible distributed applications in the paradigm of traditional control systems.
For this purpose, we consider each distributed application as an ensemble of functional components, which we refer
to as tasks. Tasks are execution units that perform certain actions to deliver results. All tasks in an application can be
presented as a directed acyclic graph, which illustrates the producer-consumer dependency among tasks. A directed
edge from task

� �
to
���

indicates that
���

uses the output produced by
� �

. Each task can be uniquely characterized by
its input quality, output quality and utilized resources [10].

The Task Control Model focuses on one task in the directed acyclic graph, the Target Task. In addition, in order to
utilize the analogy with control systems, we introduce an Adaptation Task, which enforces the control policy, as well as
an Observation Task, which observes or estimates the states of the Target Task and feeds them back to the Adaptation
Task. These tasks are embedded in the functional middleware component of an end system, namely, the Adaptor, as
shown in Figure 2(a). By coordinating with a middleware Configurator, the middleware Adaptor effectively controls
the Target Task in the application, and assures that the output quality of critical quality parameters is preserved within
the desired QoS level, regardless of variations in resource availability.

As a proof-of-concept system, we present a client-server based visual tracking application that validates our ap-
proach. The basic operations of the application are described as follows. A tracking server obtains live video feed
from an online video camera, and sends the video feed over the transmission network to the tracking client. The client
executes one or more CPU-intensive kernel tracking algorithms, which identify and track objects of interest to the user.
The result is presented to the user visually showing coordinates of the tracked objects. Naturally, the critical quality
parameter in this application is tracking precision. An example of the Task Control Model presented in the form of a
directed acyclic graph is shown in Figure 2(a), and an example for the distributed visual tracking application is shown
in Figure 2(b).

The visual tracking application is flexible in the following manner. First, since network bandwidth between the
tracking server and the client may fluctuate, the image quality and delivery timeliness may be affected, thus affecting
tracking precision. The application allows for degradation to lower image resolutions or smaller image sizes and still
be able to preserve tracking precision. Second, since the tracking algorithms can track multiple objects simultaneously,
the available CPU cycles may not be sufficient for all objects. The application allows for degradation by tracking only
the most important objects. It may also replace a more CPU-intensive tracking algorithm with a less intensive one,
in order to keep the tracking precision. Third, the application may wish to reconfigure itself and add compression or
security modules in order to take advantage of excessive CPU cycles and release the burden on transmission bandwidth.
The application shows its superior flexibility by the above parameter-tuning and reconfiguration choices.

In the middleware Adaptor, our objective is to adequately model the Target Task, and utilize the Task Control Model
to generate appropriate control signals, which are directed to the Configurator and translated into control actions within
the application.

4

Control

Values
Target
Task

Task

States

Application

Adaptation Reference

Input Task

Observed Values

Observation
Task

Middleware Adaptors

(a) Task Control Model Implemented in the Mid-
dleware Adaptor

Update
State

Update
State

Update
State

Video Camera

Network
Transmission

of Digital
Live Video

Visual Tracking
Frame Digitizing

Visual Tracking
Feature Detection

Feature Detection

Visual Tracking
Feature Detection

ClientServer

Live video input
Identification
and display

(b) A Client-Server Based Visual Tracking Application

Figure 2: The Middleware Adaptors in the Context of a Distributed Visual Tracking Application

4.2 A Linear Model for the Target Task

In order to develop control algorithms in the Adaptation Task, we need to have a precise analytical model to
characterize the internal dynamics in the Target Task. The independent parameters in this model are referred to as
task states. Let us assume that � denotes task states, � denotes controlled input, � denotes system output, � denotes
system noise, � denotes observation, and � denotes observation error. We use linear and discrete-time models to model
a Target Task as follows:

���	��
�������	������
���� � �	������
�� � �	������
 (1)

� ����
�������	��
 (2)

� ����
� � �	�
�� � �	��
 (3)

where �!�"� 	$#%#$# 	 � ���� with � ���� as the maximum possible time instant, and � , � , and � are known matrices
without error.

We illustrate the above discussed generic models on a concrete example by considering the following scenario.
We assume multiple tasks competing for a shared resource pool with the capacity & ���� . Each task

� �
makes new

requests ' � for resources in order to perform their actions on inputs and produce outputs. These requests may be
granted or outstanding. If a request is granted, resources are allocated immediately. Otherwise, the request waits
with an outstanding status until it is granted. The system grants requests from multiple tasks with a constant request
granting rate (.

For different types of resources, the notation resource requests is interpreted differently. For temporal resources,
such as communication bandwidth and CPU, where the resources are shared in a temporal fashion, outstanding re-
source requests are mapped to data in the waiting queue, and granted requests are mapped to allocated temporal
resources, such as bandwidth. For example, for transmission tasks, the request granting rate (denotes the total physi-
cal bandwidth of the communication channel, while the granted requests denote data that have completed transmission
over the channel, and outstanding requests denote data that are in flight in the channel or in the waiting queue.

Figure 3 illustrates the above scenario for the Target Task, along with an Adaptation Task implemented in the
middleware Adaptor. As the figure shows, the Target Task includes functions which request new resources, as well
as functions which wait, because their resource requests are outstanding due to unavailability of resources. The
Adaptation Task computes a new request rate and issues it to the Target Task as the throttled request rate value.

Output
Reference

Input ObservationAdaptation Task
Task

Shared Resource
Pool

Outstanding

Feedback Path

Target Task

Throttled Value

u(k)
x
c

(k)
x(k)

Requests
New Resource

r(k)

(observed)

Requests x(k)

y(k)

y

Figure 3: A Linear Model for the Target Tasks

5

In this particular scenario, we can use a linear control model within the Adaptation Task to adapt the Target Task
fairly.

We define the following terms for a Target Task
� �

:

1.
���

is a constant sampling time interval, which represents the time elapsed in the interval
� � 	 � � � � , � being time

instants satisfying � � � 	%#$#$# 	 � ���� ;

2. (� ����
 is the number of granted requests for
� �

in the interval [k, k+1], and the observation of which is � � �	��
 with
an error of � � ����
 ;

3. (is the total number of granted requests for all tasks, which we assume to be a constant;

4. � � �	��
 is the number of throttled resource requests in
� � 	 � � � � controlled by Adaptation Task for

� �
;

5. � � �	��
 is the number of outstanding resource requests made by
� �

;

6. � �	��
 is the total number of outstanding resource requests made by all tasks at time � ;

With these notations, we may define the following to model the Target Task:

�� � � �	�
 � � �	������
��
�
	��������
����� � � ����� �
 � ((4)

where � ����
 is the total number of active tasks competing for resources in the system in
� � 	 � � � � .

The difference equation (4) depicts the internal dynamics of the Target Task. Intuitively, the difference between
outstanding resource requests of two adjacent time instants should be equivalent to the difference between the input
resource requests and the granted (output) resource requests. In our scenario, with the presence of the Adaptation Task,
the input resource request rate is the same as the number of throttled resource requests � � �	��
 , which is the generated
control values by the Adaptation Task.

4.3 Control Algorithms in Adaptation Tasks

In [12] we developed a standard proportional-integral- derivative (PID) control [5]1 as an example of the control
algorithms embedded in the Adaptation Task. In this case, � � ����
 obeys the equation

� � �	��
�� � � �	������
���� � �
� ����
 � � ����
 � ����� � �

� �	��
 � � ����
 � � � �
� �������
 � � �	������
 ��� (5)

where � and � are configurable scaling factors. We were able to prove the following properties given priority
weights for each task:

� Equilibrium: The number of outstanding resource requests � in the system, established by Equation (4) and (5),
will converge to an equilibrium value which equals to the reference value �

�
.

� Fairness: The system fairly shares resources among competing tasks according to the weighted max-min fair-
ness property, based on their priority weights.

� Stability: There exist appropriate values of parameters � and � so that all tasks in the system are asymptotically
stable around a local neighborhood, for any pre-determined priority weight for a task

� �
.

5 The Fuzzy Control Model for Designing Middleware Configurators

Within the Adaptation Tasks implemented in the middleware Adaptors, global fairness, responsiveness and sta-
bility properties are ensured by the well-designed control algorithms, and reflected by the theoretical control values
expressed in the form of the number of throttled resource requests � �	��
 in the time interval

� � 	 � � � � . This section
focuses on the design of middleware Configurators, which determine nonlinear and discrete control actions based on
application-specific needs, as well as control values from the Adaptors.

1PID control is a classic control algorithm where the control signal is a linear combination of the error, the time integral of the error, and the rate
of change of the error.

6

5.1 Motivations behind the Fuzzy Control Model

Similar to the role of the Task Control Model in the design of middleware Adaptors, we utilize the rich semantics
and features in existing fuzzy logic and fuzzy control systems theory to design the control algorithms in the middleware
Configurators. This design model for the Configurators is referred to as the Fuzzy Control Model.

The advantages of adopting the Fuzzy Control Model are the following:

1. Taken the fact that multiple reconfiguration options and parameter-tuning possibilities exist in a typical complex
application, the controllable regions and variables within the application are in most cases discrete, non-linear
and complex. In these applications, the models for the Target Tasks are nonlinear in nature. On the other
hand, a fuzzy logic control system can be conceived as a nonlinear control system, in which the relationships
between inputs and control outputs are expressed by using a small number of linguistic rules stored in a rule
base. The nonlinearity of the fuzzy controller matches naturally with the nonlinearity of controllable regions
and adaptation possibilities within an application.

2. The Fuzzy Control Model is inherently generic and highly configurable. Both the rule base and the definition
of membership functions for linguistic values can be configured to be application-specific. The Fuzzy Control
Model offers a common design for Configurators suitable for all applications, without loss of generality and
configurability.

3. The Fuzzy Control Model includes the fuzzy inference engine (with its linguistic rule base), which represents
the decision-making process and resembles natural human communication and reasoning. For this reason, it
is natural and straightforward for the application to specify its own adaptation preferences and decisions in the
form of linguistic values and rules. The merits of the simplicity, however, do not affect the flexibility and power
of fuzzy control systems to define the most complicated nonlinear multiple-dimensional control surface.

5.2 Configurator Design: The Fuzzy Control Model

As stated in previous sections, the Configurator takes the output of the Adaptor as input, and generates actual
manipulating signals as control actions to command reconfiguration or parameter tuning within the application. The
Fuzzy Control Model, shown by Figure 4, is used for designing the overall architecture of the Configurator. The model
comprises of five components built within the Configurator. The fuzzy inference engine implements particular fuzzy
control algorithms defined in the application-specific rule base and membership functions for linguistic values. The
input normalizer, fuzzifier and defuzzifier prepare input values for the fuzzy inference engine, and convert fuzzy sets
(the decisions made by the inference engine) to the actual real-world control actions for the applications. Note that the
Fuzzy Control Model is utilized as a nonlinear transfer element in the overall control loop, which means that the rule
based representation of the model does not include any dynamics with respect to time, e.g. derivation or integration.

Middleware Configurator

FuzzifierInput Normalizer DefuzzifierInference
Fuzzy

Engine

Membership
Fuctions

Rule Base

Control
Actions

Middleware
Adaptor for
Bandwidth

Middleware
Adaptor for

CPU

x
in

u(k)

u(k)

Figure 4: The Overall Architecture of the Fuzzy Control Model

While the architecture of the Fuzzy Control Model is generic and can be applied to any applications by configuring
the rule base and membership function definitions, we adopt the client-server based visual tracking application as a
concrete example to elaborate our design of the Configurator.

5.2.1 The Design of Rule Base

The decisions of selecting linguistic values and rules in the rule base are based on a combination of human expertise
and trial-and-error experiments on the particular application. The tradeoff is to decide on a minimum number of
linguistic rules, while still maintaining the desired accuracy to achieve an acceptable adaptation performance. All of

7

the linguistic values used in the rule base should use words of a natural or synthetic language, such as moderate or
below average for the linguistic variable cpu demand. These values are modeled by fuzzy sets. In most cases,
this form of representation leads to compact description of the adaptation behavior within the application.

The design of the rule base is a two-phase process. First, the linguistic rules are determined. Second, membership
functions of the linguistic values are set. In the fuzzy control system, the first phase of design generates a set of
conditional statements in the form of if-then rules. The generic form is:

� 	 �����
if � � is �

	 ���� and
#$#$#

and � �
is �

	 ����
then � is � 	 � �

���	� �	���
� 	 � � �

if � � is �
	 � �� and

#$#%#
and � �

is �
	 � ��

then � is � 	
� �

(6)

where � � #$#%# � �
and � are linguistic variables, �

	�� �� #%#$# � 	�� �� and � 	�� � (� � � 	%#$#%# 	�
) are linguistic values, defined

by fuzzy sets
��
	�� �� #$#%# �� 	 � �� and

�� 	�� � (�!� � 	$#$#%# 	�
), respectively. These linguistic values are also characterized by
their membership functions, ��������� � �
 and �������� � (
 (� � � 	$#$#%# 	��), respectively, with � and (being the elements of

universal sets � and � . Each rule defines a fuzzy implication that performs a mapping from fuzzy input state-space
to a fuzzy output value. After the defuzzification process, the fuzzy output value directly corresponds to a particular
control action within the application.

The fuzzy inference engine operates by using the dual concepts of generalized modus ponens and compositional
rule of inference [4]. For mathematical completeness of the paper, the internal mechanisms of the inference engine
are covered in Appendix A. In our preliminary implementation of the fuzzy inference engine, we adopt the C-FLIE
inference engine implementation [14] as well as its input format for specifying the rule base and membership functions.

We consider the visual tracking application as an example for designing the rule base and membership functions
used in the middleware Configurator. As we noted, the ultimate objective and most critical application-specific quality
parameter in the application is tracking precision. If the precision is compromised, the objects lose track and other
parameters are not meaningful.

In this application, the adaptation possibilities can be classified into two categories. First, control actions may
occur in order to adapt to transmission bandwidth variations, so that bandwidth requirements within the application
are adjusted to maintain tracking precision. Second, adaptations may take place to adapt to varied availability of CPU
cycles, so that CPU requirements are adjusted. For other complicated applications, memory requirements or storage
I/O requirements are also taken into consideration.

Within the above categories of adaptation possibilities, there are two different kinds of adaptation actions. First,
parameter-tuning actions try to tune quantitatively continuous parameters, such as image size, to meet adaptation
goals. Second, reconfiguration possibilities within the application enable adaptation by selecting among different
configuration options, each having diverse requirements for resources. This process sometimes involves an alteration
in the Task Flow Graph of the application.

Divided in two major categories, we have identified the adaptation possibilities in this application as the following.

� Adaptation of Communication Bandwidth Requirements. Since the application is client-server based, suffi-
cient bandwidth is required for preserving tracking precision. First, the following options exist for parameter-
tuning actions for uncompressed image transfer. (1) The image size can be enlarged or reduced to adjust band-
width requirements, by chopping the edges. The tradeoff is that the smaller the image, the higher the probability
that the objects move out of range. (2) The image size can be enlarged or reduced by scaling, the tradeoff being
a higher CPU load for real-time per-frame scaling. (3) The color depth can be altered. Existing choices for
coding one pixel are 24 bits RGB, 16 bits packed RGB, 8 bits grayscale or 1 bit black-and-white. Second, if we
consider reconfiguration choices, compression and corresponding decompression can be activated, using avail-
able choices such as Motion-JPEG and streaming MPEG-2 among others. Bandwidth requirements are reduced
dramatically at the expense of increased CPU load.

� Adaptation of CPU Requirements. The tracking algorithms are inherently computationally intensive. In the
current implementation, there are three frequently used tracking algorithms. Line tracking and corner tracking
are edge based algorithms, SSD tracking is a region based algorithm. Table 1 shows that these algorithms
present diverse computational requirements. In addition, the application can run multiple algorithms tracking
multiple objects simultaneously, with each algorithm referred to as a tracker, and the tradeoff being increased

8

computation load. These facts motivate the following reconfiguration choices: (1) Add additional trackers to
utilize idle CPU; (2) Drop running trackers to decrease CPU demand; (3) Replace existing trackers by less or
more computationally intensive trackers. Finally, parameter-tuning adaptation may also be applied by modifying
the size of the tracked region of a specific tracker, effectively tuning the computational load of the tracker. The
tracked region is defined as the searching range of the tracker in the feature detection stage of computation.

Computation Stage Line Tracking Corner Tracking SSD Tracking
Initialization: Average 0 0 15
Feature Detection: Average 171.37 195.73 135.8
Feature Detection: Variance 539.90 331.37 471.41
Internal State Update: Average 0 0 1.07
Internal State Update: Variance 0 0 16.48
Display: Average 0 1.57 7.83
Display: Variance 0 22.87 63.59

Table 1: Computational Load of Tracking Algorithms: A Comparison (milliseconds)

The adaptation measures described above make it possible to design the rule base for the visual tracking applica-
tion, following the generic form given in Equation (6). As Figure 4 shows, the fuzzy control model takes the output
of multiple Adaptors as input, each of which corresponding to one type of resource. In the particular case of visual
tracking, we focus on two types of resources: CPU cycles and transmission bandwidth. In our rule base, the linguistic
variable cpu corresponds to the values � �	�
 generated by the Adaptor observing the CPU resource, and the linguistic
variable rate corresponds to the values � �	�
 generated by the Adaptor observing transmission bandwidth. The range
of measuring linguistic variable cpu is

� � 	 � ����� � with an unit of milliseconds of CPU required per second, and the
range of measuring linguistic variable rate is

� � 	�� ����� �
with an unit of kilobytes transmitted per second. Before

processing in the inference engine, the numerical crisp values � � are first linearly normalized to the above ranges and
units, then mapped to a fuzzy set by the fuzzification process, of which the mathematical details are documented in
Appendix B.

There are two inference outputs using the rule base, corresponding to the bandwidth adaptation and CPU adapta-
tion measures, respectively. The linguistic variables used are rate demand and cpu demand, respectively. The
linguistic values used for both cpu and rate are very low, below average, moderate, above average
and very high.

We present one design of the rule base using the input format in the C-FLIE implementation of fuzzy inference
engine.

/* linguistic rules corresponding to bandwidth adaptation */
if rate is very_high then rate_demand is chopped_image
if cpu is very_high and rate is below_average then rate_demand is compress
if cpu is very_high and rate is very_low then rate_demand is compress
if cpu is above_average and rate is below_average then rate_demand is compress
if cpu is moderate and rate is moderate then rate_demand is scaled_image
if cpu is below_average and rate is above_average then rate_demand is RGB24_color
if cpu is below_average and rate is moderate then rate_demand is RGB16_color
if cpu is below_average and rate is below_average then rate_demand is grayscale
if cpu is very_low and rate is very_low then rate_demand is back_and_white

/* linguistic rules corresponding to cpu adaptation */
if cpu is very_high and rate is above_average then cpu_demand is add_tracker
if cpu is very_high and rate is very_high then cpu_demand is add_tracker
if cpu is below_average and rate is very_low then cpu_demand is drop_tracker
if cpu is very_low and rate is very_low then cpu_demand is drop_tracker
if cpu is moderate and rate is moderate then cpu_demand is replace_tracker
if cpu is above_average and rate is above_average then cpu_demand is adjust_region

9

5.2.2 The Design of Membership Functions

In normal design practices of fuzzy control systems, Gaussian, triangular or trapezoidal shaped membership func-
tions are used to define the linguistic values of a fuzzy variable. Since triangular and trapezoidal shaped functions
offer more computational simplicity, we choose them to define all membership functions for linguistic values used in
the rule base.

The particular design of these membership functions is largely application-specific. In our visual tracking applica-
tion, we have defined the membership functions as shown in Figure 5, in four universal sets for variables cpu, rate,
cpu demand and rate demand, respectively.

0

1

2000 Transmission
Bandwidth

KB/sec

below_average above_average

very_highvery_low moderate

0

1

below_average above_average

very_highvery_low moderate

0

1

0

1

2000

CPU

Rate Demand

CPU Demand1000

msec

KB/sec

msec

1000

scaled_image

RGB24_color

chopped_imageGrayscale RGB16_colorb&w

compress

replace_tracker add_tracker

drop_tracker adjust_region

Figure 5: Membership Functions of the Linguistic Values

5.2.3 The Defuzzification Process

Since the decision of the inference engine is expressed in fuzzy sets, in order to be able to use it as a control signal
for applications, it has to be mapped to reconfiguration options or crisp numerical values of parameter-tuning actions.
The defuzzification process produces a non-fuzzy output, (����� , whose objective is to represent the possibility distribu-
tion of the inference. There is no single method for performing the defuzzification. In fuzzy control systems, because
of the ability of generating smoother control surfaces, the Center of Gravity method is frequently used. Detailed
mathematical definition of the Center of Gravity method is documented in Appendix C.

Once (����� is obtained, the mappings to the actual control actions are straightforward. If
�� is a fuzzy set correspond-

ing to a reconfiguration option (e.g. drop tracker, etc.) and � � (�����
��� �
, the corresponding reconfiguration is

activated. Otherwise, if
�� is a fuzzy set corresponding to a parameter-tuning action associated with the parameter �

(e.g. scaled image associated with image size) and the tuning range
�
�
����� 	

�
��� � �

, then the modified value of � is
set at

� � � � ���� � �
�����

	 � � (�����
�� �

�����
(7)

when � � (�����
��� �
.

6 Experiments with the Visual Tracking Application

Based on the design for middleware Adaptors and Configurators presented in previous sections, we have imple-
mented a middleware framework to control the client-server based visual tracking application, which is the example
throughout the paper. Based on tracking algorithms implemented in the XVision [8] project, we have successfully
implemented this application on the Windows NT 4.0 platform in Visual C++ 5.0, using Windows Sockets 2 API for
the network transmission.

Programmed in C++ and Java as middleware components, we implemented the Adaptor, including the Adaptation
Task and Observation Task, as well as the internal mechanisms of the Configurator using the Fuzzy Control Model. We
adopted the C-FILE implementation [14] as our fuzzy inference engine. All middleware components interact among
one another and with the application using service enabling platforms such as CORBA. We use ORBacus 2.0.4 [11] as
our CORBA implementation. Figure 6(a) shows the main tracking window of the application, and Figure 6(b) shows
the Observation Task running within the middleware Adaptor.

10

(a) The Main Tracking Window (b) The Observation Task within the middleware Adaptor

Figure 6: A Running Client-Server Based Visual Tracking Application

As a first series of experiments we tested our system in a varying network environment, in order to explore adap-
tation possibilities on transmission bandwidth requirements. The network environment is currently a simple network
simulator which allows us to simulate bandwidth fluctuations in a typical distributed environment over WAN. The
simulator simulates packet delay through a transmission path of multiple network routers, each of them implementing
the FIFO scheduling algorithm. Because of the bursty nature of cross traffic, throughput fluctuations may occur at
various times over the connection.

For the purpose of repeating the same set of experiments and for measurements of tracking precision, we use a
computer generated image sequence, in which the object moves at fixed speed and path. For the experimental results
shown in Figure 7, the moving speed of the rectangle is set at a constant 3 pixels per second continuously. In addition,
we assume there are no other CPU intensive process running in the background on the same platform. This is for the
purpose of separating the experiments on bandwidth requirements from those on CPU requirements.

In Figure 7, for comparison purpose, the three graphs on the left show the tracking results without any adaptation.
Those on the right show the case with adaptation support from the middleware framework, adopting both Task Control
and Fuzzy Control Models presented in the previous section. We can observe that by chopping image sizes being
transmitted, the bandwidth requirements are effectively reduced, the tracking precision will be preserved without any
tracking error at all times during the connection. In contrast, without any adaptation, when the network throughput
degrades to a certain degree, the tracking algorithm is not able to keep track of the object, the error accumulates
rapidly showing that the tracking algorithm loses the object. This prove-of-concept system validates that the adaptation
measures activated by the Configurator are effective in preserving tracking precision in a distributed environment with
varying bandwidth. We also observed that the parameter-tuning measures related to image sizes are only effective
within a higher range of bandwidth availability. When bandwidth availability becomes even lower, other measures,
such as altering color depth and reconfiguring to add compression and decompression modules, are desirable. We
are in the progress of adding more adaptation measures within the visual tracking application, so that it may react
appropriately to the control signals generated by the middleware Configurator.

7 Conclusions

In this work, we focused on flexible distributed multimedia applications that need to adapt their behavior to varia-
tions of the resource availability and assure quality of critical QoS parameters. In this work we presented the design of
the middleware Configurator, which maps numerical values from the middleware Adaptors to actual control actions of
parameter tuning or reconfiguration choices. A Fuzzy Control Model was adopted in the design of the Configurator,
and the design of the rule base and membership functions was shown in the context of a distributed visual tracking ap-

11

plication. In our preliminary experiments we showed that our model successfully controls the communication aspects
of the visual tracking application, and adapts to varying bandwidth in a distributed environment. Ongoing and future
work involves extensions of our preliminary experiments, as well as collaboration issues involving multiple Adaptors
and Configurators in an unicast or multicast environment.

0

200000

400000

600000

800000

1e+06

1.2e+06

0 20 40 60 80 100 120 140 160 180 200

th
ro

ug
hp

ut
 (

B
yt

es
/s

)

time (s)

Observed Throughput (Bytes/s)

(a) Observed Throughput

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

0 50 100 150 200 250 300 350 400

th
ro

ug
hp

ut
 (

B
yt

es
/s

)

time (s)

Observed Throughput (Bytes/s)

(b) Observed Throughput

0

50000

100000

150000

200000

250000

300000

350000

0 20 40 60 80 100 120 140 160 180 200

fr
am

e
si

ze
 (

by
te

s)

time (s)

Frame Size (bytes)

(c) Parameter-tuning Action: Chopped
Image Size

0

50000

100000

150000

200000

250000

300000

350000

0 50 100 150 200 250 300 350 400

fr
am

e
si

ze
 (

by
te

s)

time (s)

Frame Size (Bytes)

(d) Parameter-tuning Action: Chopped
Image Size

-20

-15

-10

-5

0

5

10

15

20

0 20 40 60 80 100 120 140 160 180 200

T
ra

ck
in

g
E

rr
or

 (
pi

xe
ls

)

time (s)

Tracking Precision: Error

(e) Tracking Precision

-20

-15

-10

-5

0

5

10

15

20

0 50 100 150 200 250 300 350 400

T
ra

ck
in

g
E

rr
or

 (
pi

xe
ls

)

time (s)

Tracking Precision: Error

(f) Tracking Precision

Figure 7 (Left): Experiments without adaptation support Figure 7 (Right): Experiments with adaptation support

Figure 7: Experiments with the Client-Server Based Visual Tracking Application

Appendix A: Internal Mechanisms in the Fuzzy Inference Engine

The fuzzy inference engine operates by using the dual concepts of generalized modus ponens and compositional
rule of inference [4].

The concept of generalized modus ponens is derived from the operation of modus ponens in binary logic. Modus

12

ponens is the operation to draw a conclusion from two premises. Assume that we have the proposition �
�
” � is � ”

and the implication if-then rule � ��� �
”if � is � then (is � ” as true, we can conclude that the proposition � �

” (
is � ” has to be true. In fuzzy logic theory, Generalized modus ponens extends the above operation in the following
manner. If we have propositions �

�
” � is � ” and � �

” � is � ” where � and � are linguistic variables and � and �
are linguistic values, when both the if-then implication rule � ��� �

”if � is � then � is � ” and proposition ��� � ” � is
� � ” is valid, where � � is not necessarily the same as � , we can perform the generalized modus ponens and conclude� � �

” � is � � ”. The membership function of � � is calculated by using the ���
	 ��	 compositional rule of inference
and Larsen’s product operation rule:

 ��� � (
�� ���	� � � � � �
�� � � �
 � � (
 � (8)

where � is a t-norm operator. An usual selection is the intersection definition of t-norm: � ����� min � � 	 �
 .
When multiple input linguistic variables exist in the rule, inference can be extended by interpreting the fuzzy set

of � 	 � � , which is
�� 	�� � , as the product of fuzzy sets �

	 � �� 	$#%#$# 	 � 	�� �� . Its membership function is defined as:

 ��� � ������������ ��� � �� � � � 	 ����� 	 � �
� �������� � � �
� ��� � �� � ���
� �	��� � ��� ���� � � �
 (9)

where � is the previously defined t-norm operator and � � � 	$#%#$# 	
 .
If a rule base contains multiple rules, overall decision of the inference engine is obtained by taking the union of�� 	 � � � �	��� � 	$#$#%# 	�

 , which is the fuzzy sets of linguistic values � 	�� � � calculated by Equation (8) and (9). The

calculation is as follows:
 � � � ����� ����� � � ��!���� � (
�� � � � �"� � (
$# ����� # � ��!���� � (
 (10)

where # represents the s-norm operator for defining disjunctions in approximate reasoning. A usual selection is
� #%��� max � � 	 �
 .
Appendix B: The Fuzzification Process

A fuzzy inference engine calculates fuzzy sets as results, taking fuzzy sets as inputs. In the above equations, the
calculated union of fuzzy sets

�� 	�� � � ��� � � 	%#$#%# 	�

 is the output of the inference engine, while the inference rules
and the fuzzy set

�� � are the inputs.
However, we do not normally have the fuzzy set

�� � in advance, since we normally deal with numerical crisp
values. The fuzzification process takes the numerical crisp value � � � as input, and generates a fuzzy set

�� � . If there is
no uncertainty in the numerical values, a simple fuzzification process can be:

 � � � �
�
& � 	 if � � � ���

� 	
if � �� � ��� (11)

Otherwise, if there is some uncertainty in the numerical value � � � , the membership values of the elements of
�� � can

be selected such that, � � � �
 is taken as � if � � � � � , and � � � �
 decreases linearly from � as � moves farther away
from � � � .

In the former case where no uncertainty is involved, since
�� � will contain only a single element with membership

value equal to � , calculation in Equation (8) will become

 � � � (
 � � � � � �
 � � (
 (12)

In the case of multiple input variables, we substitute Equation (9) in (12) and obtain

 �'� � (
� min
� � � � � � �
 	 ����� 	 � � � � � �
 � � � (
 (13)

to compute the output of one inference rule. Finally, we compute an overall decision by applying Equation (10) to
aggregate the calculated

�� 	 � � � 	 � � � 	%#$#%# 	�
 . This shows that the simple fuzzification process shown in Equation
(11) simplifies the inference process in the inference engine.

13

Appendix C: The Defuzzification Process

The Center of Gravity method is a frequently used method for the defuzzification process. This method divides the
integral of the area under the membership function of the output fuzzy set (Equation 13) into half, and the defuzzified
value (����� marks the dividing point. Formally in the continuous case, this results in

(����� �
� (�'� � (
�� (
� �'� � (
�� ((14)

Acknowledgment

The authors thank graduate students Jun-Hyuk Seo, Kihun Kim, Won Jeon and Seung-won Hwang of University
of Illinois at Urbana-Champaign for their useful contributions to the visual tracking project.

References

[1] S. Cen, C. Pu, R. Staehli, C. Cowan, and J. Walpole. A Distributed Real-Time MPEG Video Audio Player.
Proceedings of the 5th International Workshop on Network and Operating System Support of Digital Audio and
Video (NOSSDAV’95), April 1995.

[2] Z. Chen, S. Tan, R. Campbell, and Y. Li. Real Time Video and Audio in the World Wide Web. Proceedings of
Fourth International World Wide Web Conference, 1995.

[3] J. DeMeer. On the Specification of End-to-End QoS Control. Proceedings of 5th International Workshop on
Quality of Service ’97, May 1997.

[4] D. Driankov, H. Hellendoorn, and M. Reinfrank. An Introduction to Fuzzy Control. Springer-Verlag, 1996.

[5] G. Franklin and J. Powell. Digital Control of Dynamic Systems. Addison-Wesley, 1981.

[6] F. Goktas, J. Smith, and R. Bajcsy. Telerobotics over Communication Networks: Control and Networking Issues.
36th IEEE Conference on Decision and Control, 1997.

[7] A. Hafid and G. Bochmann. Quality of Service Adaptation in Distributed Multimedia Applications. ACM
Springer-Verlag Multimedia Systems Journal, 6, 1998.

[8] G. Hager and K. Toyama. The XVision System: A General-Purpose Substrate for Portable Real-Time Vision
Applications. Computer Vision and Image Understanding, 1997.

[9] J. Huang, Y. Wang, and F. Cao. On developing distributed middleware services for QoS- and criticality-based
resource negotiation and adaptation. Journal of Real-Time Systems, 1998.

[10] D. Hull, A. Shankar, K. Nahrstedt, and J. Liu. An End-to-End QoS Model and Management Architecture.
Proceedings of IEEE Workshop on Middleware for Distributed Real-time Systems and Services, December 1997.

[11] Object Oriented Concepts Inc. ORBacus for C++ and Java. ftp://ftp.ooc.com/pub/OB/3.1/OB-3.1b1.pdf, 1998.

[12] B. Li and K. Nahrstedt. A Control Theoretical Model for Quality of Service Adaptations. Proceedings of Sixth
International Workshop on Quality of Service, 1998.

[13] C. Parris, G. Ventre, and H. Zhang. Dynamic Management of Guaranteed-Performance Multimedia Connections.
ACM Springer-Verlag Multimedia Systems Journal, 1994.

[14] A. Pitsillides, Y. Sekercioglu, and G. Ramamurthy. Effective Control of Traffic Flow in ATM Networks Using
Fuzzy Explicit Rate Marking (FERM). IEEE Journal on Selected Areas in Communications, 1997.

[15] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A Resource Allocation Model for QoS Management. 18th
IEEE Real-Time System Symposium, 1997.

14

[16] R. Ribler, H. Simitci, and D. Reed. The AutoPilot Performance-Directed Adaptive Control System. http://www-
pablo.cs.uiuc.edu/Publications/publications.htm, 1997.

[17] D. Rosu, K. Schwan, S. Yalamanchili, and R. Jha. On Adaptive Resource Allocation for Complex Real-Time
Applications. 18th IEEE Real-Time System Symposium, 1997.

[18] M. Satyanarayanan. Fundamental Challenges in Mobile Computing. Proceedings of the ACM Symposium on
Principles of Distributed Computing, 1996.

[19] B. Stiller, D. Bauer, G. Caronni, C. Class, C. Conrad, B. Plattner, M. Vogt, and M. Waldvo-
gel. Da CaPo++ - Communication Support for Distributed Applications. TIK Report No. 25,
ftp://ftp.tik.ee.ethz.ch/pub/publications/TIK-Report25.ps, 1997.

[20] N. Yeadon, F. Garcia, A. Campbell, and D. Hutchison. QoS Adaptation and Flow Filtering in ATM Networks.
Proceedings of the Second International Workshop on Multimedia: Advanced Teleservices and High Speed Com-
munication Architectures, 1994.

15

