
sFlow: Towards Resource-Efficient and Agile Service Federation in Service
Overlay Networks

Mea Wang, Baochun Li, Zongpeng Li
Department of Electrical and Computer Engineering

University of Toronto
{mea, bli, arcane}@eecg.toronto.edu

Abstract
Existing research work towards the composition of com-

plex federated services has assumed that service requests
and deliveries flow through a particular service path or tree.
In this paper, we extend such a service model to a directed
acyclic graph, allowing services to be delivered via paral-
lel paths and interleaved with each other. Such an assump-
tion of the service flow model has apparently introduced
complexities towards the development of a distributed al-
gorithm to federate existing services, as well as the provi-
sioning of the required quality in the most resource-efficient
fashion. To this end, we propose sFlow, a fully distributed
algorithm to be executed on all service nodes, such that the
federated service flow graph is resource efficient, performs
well, and meets the demands of service consumers.

1. Introduction
Services have emerged as one of the main motivations

to construct application-layer overlay networks. The con-
cept of services in service overlay networks is not specific
to certain categories, and is in fact quite generic. Nodes in
overlay networks may process data (filtering, computation
or media transcoding services), relay data (proxy or query
forwarding services), store data (storage services) or search
for data (peer-to-peer search engines). In most cases, the
consumers demand complex services that require the fed-
eration or composition of multiple types and instances of
services in overlay networks. The result of a service federa-
tion is referred to as a federated service. The most resource-
efficient service federation minimizes the network and com-
puting resources requirements.

Towards the direction of end-to-end service federation,
Gu et al. [1] and Xu et al. [5] have proposed QoS-aware
algorithms to find point-to-point service paths. In particu-
lar, the algorithm proposed by Xu et al. is designed for the
highly connected service mesh generated by cost-effective
mesh augmentation methods. Beyond the concept of ser-
vice paths that sequentially connect services, the recent con-
cept of service multicast trees [3] makes it possible to cre-

ate multiple paths with shared services merged, effectively
forming a multicast tree. Instead of computing the service
paths in a centralized fashion, Jin et al. [2] have proposed
an distributed service federation algorithm. In this work, the
service overlay network is first organized into a cluster net-
work. The service path finding algorithm is then applied hi-
erarchically in a divide-and-conquer fashion.

Nonetheless, these existing algorithms require services
performing tasks consecutively to meet requirements with
respect to resources. This type of service federation is only
effective for a limited range of applications, such as mul-
timedia transcoding and streaming. In more generic appli-
cations, as in our example, multiple services may perform
tasks independent of each other, and services may be in-
terconnected in a more arbitrary fashion. In this paper, we
seek to address the more generic cases of federating services
in service overlay networks, where the relationship among
services may be characterized as a directed acyclic graph
(DAG), referred henceforth as the service flow graph. In a
service flow graph, federated services may perform tasks in
either a sequential, parallel, or interleaved fashion as neces-
sary.

Our original contribution is to propose sFlow, a fully dis-
tributed and application-independent algorithm to federate
service instances in a resource efficient fashion and accord-
ing to the needs of service consumers, even when the ser-
vice flow relationships are beyond simple service paths or
trees, and may be characterized by a directed acyclic graph.
Using the directed acyclic graph as the model for service
flow graphs has one additional benefit: it generally leads to
superior performance, in terms of bandwidth and service la-
tency. These benefits are validated by our extensive results
in performance evaluations.

The remainder of this paper is organized as follows. In
Sec. 2 and 3, we present salient properties of service fed-
eration in a graph-theoretic setting, and provide theoretical
insights to these problems. sFlow, our algorithm towards
resource-efficient service federation, is presented in Sec. 4.
Sec. 5 presents performance evaluation results of the dis-

tributed algorithm. The paper is concluded in Sec. 6.

2. Towards Resource-Efficient and Agile Ser-
vice Federation: Preliminaries

2.1. Service Requirements
Before we present the general model of service require-

ments, we first consider the example in Fig. 1, where the
source service (Travel Engine) needs to send the requested
data to Agency A via the Hotel service. This example il-
lustrates the most primitive form of service requirements,
where a single chain of services, referred to as the service
path is specified.

1 3 6 9
Travel Engine Hotel Currency Agency A

Figure 1. Service path: a basic form of ser-
vice requirements

Service requirements may also be more flexible by al-
lowing optional services, as the example illustrated in
Fig. 2, which takes two alternative graphical representa-
tions. The source service (Travel Engine) may send the re-
quested data to the Agency A service via a chain of the
Attraction Service and either the Map or the Transla-
tor services. The topology of services that leads to better
performance is preferably selected.

1 5 97, 8

1 5
 8

 9
 7

(a)

(b)

OR

Travel Engine Attraction Map or Translator Agency A

Travel Engine Attraction

Translator

Map
Agency A

Figure 2. Optional services: an enhanced
form of service requirements

It is rather restrictive to require that services be chained
sequentially. We further improve the model of service re-
quirements to allow a number of disjoint service paths,
which execute service tasks concurrently. These disjoint
service paths do not share any particular service except the
source and the sink services. An example of disjoint service
paths is shown in Fig. 3, where the source service (Travel
Engine) sends airline, hotel, and attraction information to
the Agency A service in three disjoint paths.

Nonetheless, the results of a particular service may be
required by more than one downstream services, while it

1

11

 8

4

3

2 12

14

Travel Engine

Aireline

Hotel

Attraction

Currency

Map

Translator

Agency A

Figure 3. Disjoint service paths in service re-
quirements

may also be required to integrate the results of existing ser-
vices in order to provide a specific downstream service. In
the previous example, service results (e.g., price and loca-
tion) of the Hotel service may feed into both the currency
and map services before delivering to Agency A. We seek
to model service requirements beyond simple service paths,
leading to the model of directed acyclic graphs, the most
generic and realistic form. In subsequent sections, we dis-
cuss this model in depth, which is one of the main contribu-
tions of our paper.

2.2. Service Federation: Preliminaries
In our model, we assign each node in the underlying net-

work a unique node identifier (NID). Instead of distinguish-
ing services by their names, we assign each service a ser-
vice identifier (SID). A service may have multiple service
instances. For example, Delta Airlines and Northwest Air-
lines are two service instances of the Airline service.

A service overlay network may be presented as an over-
lay graph G(V,E), which reflects the topologies of ser-
vices in the overlay network. In such an overlay graph, each
node represents a service node, and is denoted by Vi for
i = 1, . . . , n and n = |V |. Two services are compatible if
the output produced by one service matches the input re-
quirements of the other service. Two service nodes can be
linked by an edge if they are compatible and there exists a
path between them in the underlying network. This edge is
called a service link and is denoted by Ei for i = 1, . . . ,m
and m = |E|. The direction of the service link indicates the
direction of the service flow, also referred to as the service
stream. In an overlay graph, a service consumes the out-
put produced by its upstream service in order to provide in-
put for its downstream service or the end users.

Fig. 4 illustrates an overlay graph over a typical underly-
ing network. Each node in the underlying network is labeled
with a NID. Each node in the overlay graph is a service in-
stance of a particular service and is labeled with an appro-
priate SID. In this paper, we will use the terms service node
and service instance interchangeably. Service nodes of the
same service may share the same SID, and they are distin-
guished by their NIDs. An edge exists between each pair of
compatible service nodes and is labeled with its character-

1

106

74

3

13

14

4

11

11
13 15

16

19

20

1

11

10

4

3

14

Underlying Network

Overlay Graph

Service Requirement

(3,6)

(3,9)
(4,6)

(7,3) (10,1)

(3,8)

(6,12)

(3,8)
(2,10)

(2,7) (4,6)

(3,20)

(4,3)
(4,3)

(3,16)

(4,11)

(1,5)

(1,5)

(4,6)

(4,6)

(5,6)
(5,5) (3,9)

(4,8)

(4,3)

(2,6)

(2,3)

(3,8)

 1

2

3

4

5

6

7

8

9

10 11

12

13

14

15

16

17

18

19

20

(2,6)

Figure 4. Modeling service overlay graphs in
application overlay networks

istic performance metrics, such as bandwidth and latency.
The simplest form of service federation is the service

path, in which services perform tasks one after another se-
quentially in delivering the desired service to the end users.
In Fig. 4, the federated service from service 1 to service
14, via services 3, 6, 10, and 13, is an example of a ser-
vice path. Each service, except the source and sink service,
has exactly one upstream service and one downstream ser-
vice.

A slightly more general form of service federation is
the service multicast tree. In Fig. 4, the result of service
1 may reaches two groups of end users via service 14 and
15. A multicast tree may be constructed by merging mul-
tiple service paths that share a subset of common services.
The root of the tree is the source service; and the leaf nodes
are the sink services. Each intermediate service may have
more than one downstream service, but only one upstream
service.

The quality of the federated service required by the
user may include the specification of a set of elementary
or primitive services, as well as the service relationships
among them. More formally, a service requirement is a
graph R(V R, ER) consisting of all the required services,
which includes one source service node, at least one sink
service node, and a set of intermediate service nodes. The
edges in a service requirement specify the sequence that the
services should be performed during the federation process.
The direction of each edge indicates the direction of the ser-
vice flow. Fig. 4 shows a complete illustration from the ser-
vice requirement to the underlying network.

Given our model of service overlay networks, the funda-

mental and open problem with respect to the construction of
service overlay graphs is as follows. We wish to select one
particular node for each required service (uniquely identi-
fied by the service identifiers), such that the selected nodes
form a high-quality topology that satisfy the service require-
ment. Such a service topology is henceforth referred to as
the service flow graph. For example, there exist 8 different
paths from service 4 to service 11 in Fig. 4. We choose node
5 over node 4 for service 4, and node 9 over node 14 for ser-
vice 11, because they offer a service flow graph with higher
overall bandwidth and shorter end-to-end latency. In Fig. 4,
the selected service flow graph is highlighted by the darker
lines in the overlay graph.

In this paper, we consider two resource metrics: band-
width and latency. We adopt the distributed algorithm pro-
posed by Wang and Crowcroft [4] based on link states
that finds the shortest widest paths. With this algorithm, the
widest path, or the path with the highest end-to-end band-
width, is selected; and if there are more than one widest
paths, the shortest, or the one with the lowest end-to-end la-
tency, is then selected.

3. sFlow: Theoretical Insights
In this paper, we study a generic form of service federa-

tion, the service flow graph, which includes but is not lim-
ited to service paths and service trees. Services may per-
form tasks in a sequential, parallel, or interleaved fashion.
For instance, in Fig. 5, it is not necessary for the Transla-
tor service to wait for the Map and the Currency services
to be completed before translating the attraction informa-
tion. In this section, we present the concept of the service
flow graph, and investigate the problem of constructing the
service flow graph from a theoretical point of view.

3.1. The service flow model based on directed
acyclic graphs

In practical cases of service federation, end users should
have the freedom to request a federated service of any form.
Therefore, a service requirement should not be restricted to
combinations of service paths, as have been shown. Instead,
multiple service streams may be merged at a merging ser-
vice node; and a particular service stream may also be split
into multiple paths at a splitting service node. In Fig. 5, we
show one example of such service requirements.

We now present the formal definition of the service flow
graph, G′(V ′, E′), as a subgraph of the given overlay graph
G(V,E). The service flow graph takes the form of a di-
rected acyclic graph, and contains one source service Vs,
at least one sink service Vd, and a number of intermediate
services Vi, for i = 1, . . . , n and i �= s, d. In contrast to ser-
vice paths and trees, the service flow graphs allow each in-
termediate service to have multiple upstream services and
multiple downstream services. This provides greater flexi-

1 4
 7

 6
10

Travel Engine Car Rental
Map

Currency

Agency A

Figure 5. Generic service requirements: an
example

bility in the service federation process, in that services may
be federated in any fashion, and may assist in the optimiza-
tion of performance, such as throughput and latency.

In an overlay graph, there are multiple service instances
corresponding to each service specified in a service require-
ment. The service flow graph must consist of exactly one
instance of each required service specified in the service
requirement. It may also need to include other service in-
stances that bridge two required services. Here, we define a
service abstract graph to connect the service requirement to
the overlay graph. Each node in the service abstract graph,
known as a service abstract node, represents a required ser-
vice in the service requirement. This node is further pop-
ulated with service instances of its corresponding service.
Two service instances are linked by an edge whenever there
is an edge between the corresponding required services in
the service requirement. As an result, service instances of
one service abstract node are fully connected to the those
of another service abstract node, if there exists an edge be-
tween these two services in the requirement.

1/1

11/9

10/11

4/5

3/6 14/20

4/4 11/14

Service Abstract Node Service Node

(3,14)

(10,11)
(3,17)

(7,3)

(2,13)

(2,13)
(3,9)

(4,11)

(3,19)

(3,14)
(1,5)

(4,6)

(5,6)

SID/NID

Figure 6. Service abstract graph: an example

Fig. 6 presents the service abstract graph of our pre-
vious example shown in Fig. 4. All edges in the service
abstract graph are labeled with bandwidth and latency of
the shortest-widest path between two service instances in
the overlay graph, which can be easily computed using the
Wang-Crowcroft algorithm [4] based on known weights in
the overlay graph.

With the introduction of the service abstract graph, we
may further investigate the complexity of constructing opti-
mal service flow graphs with respect to their performances.

3.2. Towards optimal service flow graphs
In general, we show the unfortunate result that, con-

structing the most high-performance service flow graph for
a specific service requirement is a NP-Complete problem.
We prove the NP-Completeness property of this problem
by reducing a well-known NP-complete problem, the SAT
Problem, to a special case of our problem, the Maximum
Service Flow Graph Problem. By the notion of maximum
service flow graphs, we mean that the overall bandwidth of
the service flow graph is maximized, or bounded by an up-
per limit. It is a well known fact that the overall throughput
is equivalent to the bandwidth on the bottleneck link, since
the bottleneck provides pressure for flow control towards
both upstream and downstream directions. By the defini-
tion of shortest-widest paths, bandwidth takes precedence
over latency when evaluating the quality of links. There-
fore, proving the NP-completeness of the Maximum Service
Flow Graph Problem is sufficient to show that finding the
optimal-quality service flow graph is NP-complete.
Definition 1: Given a directed acyclic graph
G = (V,E) where V = {v1, v2, · · · , vn} and
vi = si = {v1

i , v2
i , · · · , vmi

i } for all 1 ≤ i ≤ n and
mi = |vi|, e = {va

i , vb
j |1 ≤ a ≤ mi, 1 ≤ b ≤ mj} ∈ E

for 1 ≤ i, j ≤ n and i �= j, weight w(e) ∈ Z+,
and a positive integer K, the Maximum Service
Flow Graph Problem is to find a service flow graph
G′ = (V ′, E′) in this graph with minimum weight
among all edges min(w(e1), w(e2), . . . , w(e|E′|)) ≥ K,
where V ′ = {vi1

1 , vi2
2 , · · · , vin

n |1 ≤ i1 ≤ mi, 1 ≤ i2 ≤
m2, · · · , 1 ≤ in ≤ mn}.
Theorem 1: The Maximum Service Flow Graph Problem
is NP-complete.
Proof: It is easy to see that the Maximum Service Flow
Graph Problem ∈ NP. We shall show that the SAT Prob-
lem ∝ the Maximum Service Flow Graph Problem.

Given an instance of the SAT Problem, collec-
tion C = {c1, c2, · · · , cn} of clauses on a finite set
U = {u1, u2, · · · , um}, we shall construct an instance of
the Maximum Service Flow Graph Problem.

Let each clause, ci, corresponds to vi in the directed
acyclic graph G. The construction of graph G(V,E) in-
volves the local replacement of the basic element vi, for
1 ≤ i ≤ n. We replace each node vi by a set of nodes
{v1

i ...vmi
i } where vk

i corresponds to the kth literal in clause
ci and mi = |ci|. Every pair of nodes with the form
{va

i , vb
j}, where i �= j, 1 ≤ a ≤ |ci|, and 1 ≤ b ≤ |cj |,

is connected by an edge. This step connects all nodes to
each other, except the nodes corresponding to the literals
in the same clause. Now we label each edge e = {va

i , vb
j}

with w(e) = 1 if node va
i and node vb

j correspond to p and
p, otherwise, let w(e) ≥ 2. At the end, we add directions
to each edge. Starting at v1, we make v1 the source/root
node, such that all edges are outgoing edges. We then make

each undirected edge of v2 an outgoing edge. Repeat this
step from v2 to vn. This makes v1 the source node and
vn the sink node. Let K = 2. It is easy to see that this
transformation takes polynomial time. Fig. 7 visualizes the
transformation process with an example, U = {x, y, z, w}
and C = {{x, y, z, w}, {x, y, z}, {x, y, w}, {y, z}}. The
weight of each edge is indicated by its darkness. The darker
edges have w(e) = 1, and the normal edges have w(e) ≥ 2.

V

V

V

V

V

V

V

V

V

V

V

V

weight >= 2 weight = 1

1 1
1

4

4

4

1

1

1

2

2

2

2

2

2 2

1
3 3

3

3

3
3

1

Figure 7. An example of transformation

Now, consider the graph G(V,E) and the integer K we
have just obtained. A service flow graph with a minimum
edge weight greater than or equal to K must have one node
from each vi. According to the transformation described
above, each vi corresponds to a clause, and each node in
vi corresponds to a literal in that clause. We set the liter-
als corresponding to the chosen node to true, that is, set-
ting exactly one literal in each clause to true, and then set
the rest of the variables randomly to true or false. Since the
minimum edge weight is greater than or equal to K, only
the edges with weight greater than or equal to 2 can be se-
lected. In other words, nodes corresponding to p and p must
not be selected at the same time. Since this assignment guar-
antees that at least one literal in each clause is true, the as-
signment must be a satisfying truth assignment in the SAT
problem.

Conversely, if there exists a satisfying truth assignment
in the SAT problem, at least one literal in each clause is set
to true. We randomly choose one of the truth literals from
each clause, and select the corresponding nodes in the graph
G. These nodes form a service flow graph with a minimum
weight equal to K, since a literal and its complement should
never exist in the truth assignment at the same time, that is,
all bottleneck links are avoided. Therefore, the Maximum
Service Flow Graph Problem is NP-complete. ��

Given that the Maximum Service Flow Graph Problem
is NP-complete, an algorithm that targets the optimal solu-

tion of the shortest-widest service flow graph may not do
much better than the brute-force exhaustive search. How-
ever, there exists a polynomial time algorithm for a special
case of the problem, which serves as the baseline algorithm
that leads to the fully distributed sFlow algorithm. We first
present such a baseline algorithm to solve the problem in
the special case, and then present intuitions towards heuris-
tics that incorporates such baseline algorithms to solve more
complex problems.

3.3. The Baseline Algorithm
In the special case where the service requirement is a sin-

gle service path, we show that there still exists a polynomial
time algorithm for finding the optimal-quality service flow
graph. Given a single-path service requirement, our base-
line algorithm that computes the optimal service flow graph
is shown in Table 1.

Baseline algorithm
1 Compute the all-pairs shortest-widest path by

computing the shortest-widest path from each
node to every other nodes in the overlay graph
using the Wang-Crowcroft algorithm.

2 Construct the service abstract graph using the
service requirement, as shown in Sec. 3.1;

3 Compute the shortest-widest abstract path from the
source service to each sink service in the service
abstract graph;

4 Replace each edge in the service abstract path with
the actual shortest-widest path between two
consecutive service instances in the service
abstract graph.

Table 1. The baseline algorithm

Since the time complexity of the Wang-Crowcroft algo-
rithm to compute shortest-widest paths [4] is shown in [4]
to be O(N2), the all-pairs shortest-widest paths computa-
tion takes O(N3) time. Step 2, 3 and 4 takes at most O(N)
time. Therefore, the time complexity of the baseline algo-
rithm is also O(N3), where N is the number of nodes in
the overlay graph.

3.4. Heuristics
Based on the baseline algorithm presented in Table 1,

we seek to develop heuristics to construct optimal service
flow graphs satisfying generic service requirements. To-
wards this objective, we attempt to reduce complex service
requirements to more primitive service requirements. Such
reductions may hopefully lead to single service paths in the
service requirement, which may be solved by applying the
polynomial-time baseline algorithm.

3.4.1. Path Reduction Strategy Even for service require-
ments with a slightly more complex topology, we may still
be able to reduce them to simple service paths. As an ex-
ample, the service requirement in Fig. 8(a) may be split into
three requirements, shown in Fig. 8(b). After such a reduc-
tion, we can certainly find the local optimal service flow
graph for the two single-path requirements using our base-
line algorithm. The remainder of the requirement topology
requires another heuristic — the Split-and-Merge Reduc-
tion, that we will introduce next. Since the baseline algo-
rithm guarantees the optimality of delivering main service
streams in each single-path service requirement, the over-
all service flow graph for the given service requirement has
the best quality within an acceptable degree of approxima-
tion. Since each part of the service flow graph is of optimal
quality corresponding to a disjoint service path in the ser-
vice requirement, the merged graph is also an optimal qual-
ity service flow graph.

1 10

4

3

2
 7

14

 8
12

(a) (b)

1 103 14

1 144

2
 7

 8
121 14

8

7
2 12

1 14

(c)

(d)

2 12

Figure 8. Path reduction: an example.

3.4.2. Split-and-Merge Reduction Strategy More com-
plex service requirements allow the splitting and merging
of service streams, where a service may feed into multi-
ple downstream services, or consume outputs from multiple
upstream services. We show that a split-and-merge topol-
ogy may be identified and isolated from the rest of the ser-
vice requirement, and once the performance metrics are de-
termined from the splitting node to the merging node (pos-
sibly by further reductions), it can be replaced with one
single edge from the splitting node to the merging node.
Fig. 8 continues to show our example from Fig. 8. The
split-and-merge topology in the original service require-
ment (Fig. 8(b)) can be isolated from the rest of the require-
ment, and replaced by an edge between the splitting node
2 and the merging node 12. After such an isolation and
replacement process, the reduced topologies can be repre-
sented by both multiple disjoint paths (Fig. 8(c)) and a sin-
gle service path (Fig. 8(d)). The former may be further re-
duced to two service paths by applying the path reduction
strategy previously outlined. The optimality of each reduced
requirement leads to the approximate optimality of the over-
all service flow graph.

It is clear that these reduction strategies are best-effort
heuristics, and do not guarantee the successful reduction
of arbitrary generic service requirements to single service
paths. However, these heuristics lead to insights that we use

in the design of the distributed sFlow algorithm, and they
are applicable to a wide range of service requirements. In
Sec. 4, we present the sFlow algorithm that computes ser-
vice flow graphs in a fully distributed fashion.

4. sFlow: a Distributed Algorithm for Service
Federation

In this section, we seek to design a fully distributed algo-
rithm, referred to as sFlow, to construct service flow graphs
that satisfy the provided service requirements, and optimize
performance at the same time. For this purpose, we apply
theoretical insights and heuristics developed in Sec. 3 to
compute locally optimal service flow graphs on each ser-
vice node, based on its knowledge of the local neighbor-
hood in the overlay graph. We will use the example shown
in Fig. 9 as a running example throughout our explanations
in this section, which uses the same service requirement as
our previous example in Fig. 4.

To mark the starting point of the service federation pro-
cess, the user delivers the service requirement, to the source
service node by sending a sFederate message. As the source
service node receives the sFederate message and the em-
bedded service requirement, it first seeks to analyze its lo-
cal overlay graph and locate the immediate downstream ser-
vice nodes in its overlay graph.

As an example, examine Fig. 9(a), where node 1, as the
source service node, splits the service requirements into two
simpler requirements, with two immediate downstream ser-
vices, 3 and 4. Fig. 9(a) also shows the local overlay graph
that node 1 has the knowledge of, assuming that all ser-
vice nodes are aware of the portion of the overall overlay
graph within a two-hop vicinity in the overlay graph. All
service nodes in the local overlay graphs are labeled with
their SID/NID tuples. Operating with such a local overlay
graph, it is straightforward for node 1 to execute our base-
line algorithm and reduction heuristics, in order to compute
the most efficient partial service flow graph, as a subgraph
of the local overlay graph. The result of such computation
is shown at the bottom of Fig. 9(a).

As node 1 has obtained its locally computed partial ser-
vice flow graph, it promptly forwards it to its immediate
downstream nodes in the graph, embedded in new sFeder-
ate messages. In our example shown in Fig. 9(a), the two
downstream service nodes are nodes 5 and 6, carrying ser-
vices 3 and 4, respectively. Carried by the same sFederate
message, node 1 also forwards the service requirement to
its downstream service nodes. Compared to the original ser-
vice requirement received at each node, the service require-
ment that it forwards to its downstreams does not include
service on this node itself, since all computations involv-
ing node 1 has already been considered in the partial ser-
vice flow graph it generates.

As the nodes 5 and 6 receive the sFederate message, they
execute precisely the same sFlow algorithm, yet with a sim-

13/15

13/17

16/12

(a) sFlow algorithm at node 1

(b) sFlow algorithm at node 6

(c) sFlow Algorithm at node 5

(e) service flow graph at node 9

(f) service flow graph at node 15

Node 1

Node 6 Node 5

Node 11

Node 9

1
11

10

4

3

14

partial service flow graph

partial service flow graph

local overlay graph

local overlay graph

Service NodeSID/NID

114 14
Splitting Service Requirement

local overlay graph

local overlay graph

local overlay graph

local overlay graph

partial service flow graph

(d) sFlow algorithm at node 11

partial service flow graph

partial service flow graph

partial service flow graph

Service Requirement

1
11

10

4
141 103 14

(5,6)

(4,6)1/1

6/6

7/94/5

3/6

4/5

(1,5)

20/8

(7,3)

(5,5)

(4,6)

(3,9)

(3,6)

1/1

6/6

7/94/5

3/6

103 14

Service Requirement

Service Requirement

Service Requirement

6/6

3/6

(5,5) 10/11
(3,9)

1/1

6/6

7/94/5

3/6 10/11

11

10
4 14

104 14

10/11

11/9

11/14

(10,1)

(3,8)

7/94/5

20/8

(7,3)

(4,6) (2,10)
(3,8)

(2,7)

1/1

6/6

7/94/5

3/6 10/11

11/9

(6,12)
(4,11)

(4,3)

10 14

(4,3)

(3,16)

(3,8)
13/15

13/17

14/20

15/19

10/11

(3,20)

(4,3)

(2,6)

(4,8)

(2,3)

Service Requirement

11 14

(3,8)
13/15

13/17

14/20

15/19

11/9

(4,3)

(2,6)

(2,3)
1/1

6/6

7/94/5

3/6 10/11 13/15 14/20

6/6

7/94/5

3/6 10/11

11/9

11/9

13/15 14/20

Node 15

Node 20

14
(3,8)

13/15

14/20

15/19

(4,3)

1/1

1/1

6/6

7/94/5

3/6 10/11 13/15 14/20

Figure 9. The sFlow algorithm in action: an
example.

pler service requirement. For example, node 5 receives a
single-path service requirement 3 → 10 → 14, which can
be easily solved with our baseline algorithm. Node 5, on
the other hand, receives a slightly more complex service re-
quirement, that can easily be solved by first applying the
split-and-merge reduction strategy, and then the baseline
algorithm. As the distributed sFlow algorithm progresses,
more downstream service nodes will receive the sFederate
message, and eventually the complete service flow graph
will be computed and finalized on the sink service node,
which is node 20 in our example.

We note that, even though the path reduction strategy is
used explicitly on each service node to compute its own par-
tial service flow graph, the split-and-merge strategy may
also be applied implicitly by the distributed sFlow algo-
rithm, since the tasks of computing optimal service flow
graphs are generally assumed by the splitting node.

5. Evaluation
We have performed a simulation-based study to evalu-

ate the effectiveness of sFlow. In the simulation, we have
implemented the sFlow algorithm in C++ in a local host,
while all network communications are simulated using the
event-driven simulation methodology. For comparisons, we
have implemented three alternative heuristic algorithms as
control: the random algorithm, the fixed algorithm, as well
as the single service path algorithm. The random algorithm
randomly chooses a direct downstream in the local over-
lay graph that leads to the corresponding downstream re-
quired in the service requirement. The fixed algorithm al-
ways chooses the direct downstream with the highest avail-
able bandwidth that leads to the corresponding downstream
service in the service requirement. The single service path
algorithm is identical to the end-to-end service federation
algorithm previously proposed by Gu et al. [1].

In our simulation, the sink service node creates service
requirements of any type, and starts the service flow graph
computation as described in Sec. 4. The overall service flow
graph is collected at the source service node. We have exe-
cuted the sFlow algorithm in networks of sizes 10, 20, 30,
40, and 50 respectively, to observe how the sFlow algorithm
scales with network size. We also computed the global opti-
mal resource-efficient service flow graph, and used it as the
benchmark to evaluate the scalability and correctness of the
sFlow algorithm.

To verify the correctness of the sFlow algorithm, we
compare the service flow graph computed by all four service
federation algorithms, with fixed global optimal resource-
efficient service flow graph. We define the correctness coef-
ficient as the ratio between the number of matching nodes in
the two service flow graphs and the total number of nodes in
the global optimal graph. The coefficient should be greater
than zero and less than or equal to one. As the coefficient ap-

proaches one, the service flow graph is closer to the global
optimal service flow graph.

10 15 20 25 30 35 40 45 50
100

150

200

250

300

350

400

450

 Network Size

 T
im

e

 Time vs. Network Size
 Global Optimal
 sFlow

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

 Network Size

 E
nd

to
E

nd
 B

an
dw

id
th

 (
B

ps
)

 sFlow Bandwidth Performance

 sFlow Algorithm
 Fixed Algorithm
 Random Algorithm

(a) Correctness of the sFlow aglorithm (b) Scalability over network size

10 20 30 40 50
0

10

20

30

40

50

60

70

80

 Network Size

 L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

 sFlow Latency Performance
 sFlow Algorithm
 Fixed Algorithm
 Random Algorithm

10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

 Network Size

 C
or

re
ct

ne
ss

 C
oe

ffi
ci

en
t

 Correctness of the sFlow Algorithm
 sFlow Algorithm
 Fixed Algorithm
 Random Algorithm
 Service Path Algorithm

(c) Latency performance (d) Bandwidth performance

Figure 10. Scalability and performance

As shown in Fig. 5(a), the sFlow algorithm outperforms
the other three algorithms. This figure shows that the cor-
rectness of the service flow graph is comparable with the
global optimal service flow graph. The service path algo-
rithm has the lowest success rate, since it can only handle
the simplest service requirements. The success rate of the
random algorithm is about 50%, since it always randomly
choose one instances out of many candidates of the required
services. The fixed algorithm has high success rates only
when the optimal service flow graph contains all the links
with the highest bandwidth. As the network size increases,
each service node has less global overlay network infor-
mation, which causes the service flow graph to fall below
global optimality. Fig. 5(a) shows that the locally optimized
service flow graph guarantees a correctness coefficient of
0.9 or larger.

We now verify the scalability of the sFlow algorithm.
Since the complexity of the sFlow algorithm is O(N3), it
is scalable in theory. We further verify the scalability by the
computation time. The results are presented in Fig. 5(b).
Since there is no polynomial time algorithm for finding
the optimal service flow graph for non-simple service re-
quirements, we use only simple requirements in order to
make reasonable comparison between the sFlow algorithm
and the global optimal algorithm. As the network size in-
creases, the computation time increases gradually, as ex-
pected. Since the global optimal service flow graph is com-
puted once at the sink node, its computation time is slightly
less than that of the sFlow algorithm. The time difference
between the two lines is due to re-computation time in-

troduced at certain service nodes. Generally speaking, the
distributed sFlow algorithm does not introduce significant
amount of computation overhead, and performs in a scal-
able fashion.

The major advantage of the service flow graph approach
over the traditional service path approach is that, the for-
mer allows services to be involved in any fashion. It turns
out that, this flexibility also leads to better delay perfor-
mance. In Fig. 5(c), we compare delay latency introduced
in the service flow graph algorithm with that in the fixed
and random algorithms. The sFlow algorithm supersedes
the service path algorithm since the latter fails to consider
the parallel processing cases. As indicated in Fig. 5(d), the
sFlow algorithm consistently produces service flow graphs
with higher end-to-end throughput, regardless of the net-
work size. To conclude, among the different algorithms we
have studied, the sFlow algorithm produces service flow
graphs with the best quality.

6. Concluding Remarks
In this paper, we have presented a generic form of ser-

vice federation that allows independent services to perform
tasks in any appropriate fashion. We have proposed sFlow, a
fully distributed, scalable, and flexible service federation al-
gorithm for finding a resource efficient service flow graph
in a service overlay network. Our simulation results have
verified the correctness and the scalability of the sFlow al-
gorithm over different network size. As we have expected,
the end-to-end latency and overall bandwidth in the service
flow graph is significantly better than the traditional service
path. Given the results we have presented, we claim that
the sFlow algorithm is a scalable, flexible, and reliable ser-
vice federation algorithm for generic service requirements
in any generic network settings, and is able to produce ser-
vice flow graphs with high qualities.

References

[1] X. Gu and K. Nahrstedt. A Scalable QoS-Aware Service Ag-
gregation Model for Peer-to-Peer Computing Grids. In Proc.
of 11th IEEE International Symposium on High Performance
Distributed Computing (HPDC-11), July 2002.

[2] J. Jin and K. Nahrstedt. Large-Scale Service Overlay
Networking with Distance-Based Clustering. In Proc.
of ACM/IFIP/USENIX International Middleware Conference
(Middleware), June 2003.

[3] J. Jin and K. Nahrstedt. On Construction of Service Multicast
Trees. In Proc. of IEEE International Conference on Commu-
nications (ICC), May 2003.

[4] Z. Wang and J. Crowcroft. Quality-of-Service Routing for
Supporting Multimedia Applications. IEEE Journal of Se-
lected Areas in Communications, 14(7):1228–1234, 1996.

[5] D. Xu and K. Nahrstedt. Finding Service Paths in an Over-
lay Media Service Proxy Network Dongyan Xu. In Proc. of
SPIE/ACM Conf. on Multimedia Computing and Networking
(MMCN), January 2002.

