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Abstract— When designing distributed algorithms for applica-
tion overlay networks, it is usually assumed that the overlay nodes
are cooperative to collectively achieve optimal global performance
properties. However, this assumption does not hold in reality, as
nodes generally tend to be non-cooperative and always attempt
to maximize their gains by optimizing their strategies. With
such an assumption, we present extensive theoretical analysis
to gain insights from a game theoretic perspective, with respect
to the behavior of nodes and the equilibrium of the system.
The main idea in our analysis is to design appropriate payoff
functions, so that the equilibrium of the system may achieve
the optimal properties that we desire. Driven by the per-node
goal of maximizing gains, such payoff functions naturally lead
to distributed algorithms that lead to the desired favorable
properties of overlay networks.

I. INTRODUCTION

Application-layer overlay networks are constructed in the
application layer by peer nodes at the edge of a wide-area
network, using the underlying IP network topology to forward
application-layer messages. Distributed algorithms may be
designed to be executed on these peer nodes, so that resources
(such as data, services or computational resources) may be
efficiently shared, without any modifications to the network
protocols. Provisioning data or services in application-layer
overlay networks constitutes one of the most important func-
tions of such networks, which may be simply referred to as
Service Overlay Networks if service provisioning is mandatory.

One critical design objective for distributed algorithms in
service overlay networks is to address the problem of ren-
dezvous between the service providers and the users: the timely
delivery of data and services to those in need, with minimized
topological and message overhead. For example, towards im-
proving the performance of searching for a particular item
in overlay networks, there exist two categories of solutions.
One approach, based on distributed hash tables (e.g., [1]),
associates designated hosts with each data item or service, thus
achieving search performance in the order of log n, n being
the size of the overlay network. The other approach, pioneered
by the work of Cohen et al. [2], requires overlay nodes to
collaboratively replicate either the actual services in demand
or their shortcuts, both of which improve search performance.

However, both approaches rely on a fundamental assump-
tion that the peer nodes (or overlay nodes) in a service
overlay network are cooperative to engage in activities, such
as forwarding queries replicating hotspots or storing pre-
assigned data item, all of which are critical to the efficiency of

the algorithms. In reality, however, nodes belong to different
administrative domains and interests, and are inherently non-
cooperative when it comes to duties that are not of self
interests. This is particularly the case when the duties demand
local resources (energy, bandwidth, and storage) that the nodes
may otherwise conserve for their own uses. Without proper
incentives for self organization, these distributed algorithms
may not be accepted for widespread use. As an example, recent
studies [3] have revealed that there exists the problem of free
riders in popular peer-to-peer file sharing systems (i.e., most
nodes download, but do not share files), demonstrating the
validity of such a concern.

In this paper, we take a game theoretic perspective to
analyze the effects of rationality and selfishness on the design
of distributed algorithms in application overlay networks. The
purpose of deriving such game theoretic models is to study
the feasibility of manipulating rational and selfish per-node
behavior so that favorable (or in some cases, optimal) global
properties may be collectively achieved. In game theoretic
terms, our objective is to design appropriate payoff functions,
such that the derived Nash equilibrium demonstrates certain
desired global properties. For example, by customizing payoff
functions, we may encourage replication or shortcuts in an
overlay topology. In contrast to alternative approaches, a game
theoretic analysis leads to fully distributed and robust algo-
rithms with realistic assumptions of rationality and selfishness.

Particularly, we address one specific open problem: how
do we design optimal replication strategies to maximize the
average query performance? From a game theoretic perspec-
tive, we present a replication game to study the replication
behavior of rational nodes. Each node needs to find the best
strategy to maximize its gain, with the knowledge that other
non-cooperative nodes seek the same. We observe that such
a replication game can be transformed into a pricing game,
which leads to the solution we proposes. Such a solution leads
to our distributed algorithm, which is shown to perform well
using simulations.

The remainder of the paper is organized as follows. We
start with a brief introduction to game theory and pricing
mechanism in Sec. II. In Sec. III, we present our model and
analysis of the replication game. We propose a distributed
algorithm and show simulation results in Sec. IV. Sec. V
concludes the paper.



II. PRELIMINARIES

A. Game theory

We briefly present elements of game theory [4] that we use
in this paper. Game theory is a study of multi-person decision
problems where a conflict of interests exists. For example,
resource sharing and allocation among multiple parties in
the context of computer networks may be formulated as a
game theoretic problem. Such a problem can be modeled
as a game with n players. Each player i possesses a set
of strategies Si, from which it may arbitrarily choose one
strategy si. The payoff function, πi(s1, . . . , sn), of i, is the
payoff to player i if a combination of strategies (s1, . . . , sn)
is chosen by all players. The assumption of selfishness of
players guarantees that, the choices of optimal strategies on
each player lead to the maximization of its payoff πi. In this
paper, we restrict our attention to static games, i.e., the players
simultaneously choose strategies without a particular sequence
of play. We consider static games of complete information,
where the payoff function of each player is considered as
common knowledge among all players.

In static games of complete information, a particular com-
bination of strategies (s∗1, . . . , s

∗
n) is a Nash equilibrium, if it

satisfies

πi(s∗i , s
∗
−i) ≥ πi(si, s

∗
−i) ∀si ∈ Si, (1)

where s∗−i ≡ (s∗1, . . . , s
∗
i−1, s

∗
i+1, . . . , s

∗
n).

There exists a wealth of research results in applying game
theory to problems of congestion control [5] and selfish
routing [6]. Some of the recent work has applied game theory
to examine the free rider problem in popular peer-to-peer
file-sharing systems [7] and encourage packet forwarding in
wireless ad hoc networks that consist of selfish nodes [8].

Perhaps the work of algorithmic mechanism design [9]
and its distributed version [10] are closest to our work.
Algorithmic mechanism design encourages selfish nodes to
behave in a way that leads to a desirable system-wide outcome,
by properly designing associated payoffs and specifications
that are computationally tractable. It would be interesting to
compare our approach with solutions based on mechanism
design, which we leave as future work since it is beyond the
scope of this paper.

B. Pricing

Pricing has been proposed to allocate resources in wired
networks [11] [12] as well as wireless networks [13]. We
briefly review the pricing model from [11] and its results. In
Sec. III, we transform the replication problem into a resource
allocation problem that is mathematically identical to a special
case of such pricing model.

Consider a network consisting of a set of links J , and let
Cj be the finite capacity of link j, for j ∈ J . Let R be the
set of users accessing the network. Associate each user r with
a single route that is a non-empty subset of J . Set Ajr = 1
if j ∈ r, meaning link j lies on route r, and set Ajr = 0
otherwise. This defines a 0-1 routing matrix A = (Ajr, j ∈
J, r ∈ R).

Suppose that when a rate xr is allocated to user r, the user
will receive utility Ur(xr), where Ur(·) satisfies the following
assumption:

Assumption 1: Ur(xr) is increasing, strictly concave and
continuously differentiable over the range xr ≥ 0.

Let U = (Ur(·), r ∈ R) and C = (Cj , j ∈ J), and suppose
that the network seeks a rate allocation x = (xr, r ∈ R) that
solves the following optimization problem:

SYSTEM(U, A, C)

max
∑

r∈R Ur(xr) (2)

subject to Ax ≤ C

over x ≥ 0.

In this paper, we are more interested in a special case, listed
below as SYSTEM’(U,A,C), where the network consists of only
one single link k. In this case, users compete for the link
capacity Ck.

SYSTEM’(U, A, C)

max
∑

r∈R Ur(xr) (3)

subject to
∑

r∈R xr ≤ Ck

over x ≥ 0.

In [11], Kelly et al. have proposed a price-based mechanism
that can drive such selfish users to achieve optimal resource
allocations. In our special case, assume that each user r is
charged for the single link at a price u for each received packet,
then each user r will attempt to maximize its payoff Ur(xr)−
uxr. In this special case, we rephrase Theorem 1 in [11] as
follows.

Theorem 1: There exists a price u∗ that leads to a unique
allocation vector (x∗

r , r ∈ R), which is the optimal solution to
SYSTEM’(U, A, C).

III. THE REPLICATION GAME

A. Problem formulation: replication game

We consider a service overlay network with n identical
nodes and m distinct items (data items or services) to be
queried. With respect to these items, the query rate distribution
is a vector (q1, . . . , qm) with

∑m
i=1 qi = 1, known to all

nodes. The query rate qi is the fraction of all queries that
are issued for a specific item i. For a particular item i,
each node may choose whether or not to replicate i with a
probability xi, which leads to a vector (x1, . . . , xm). We do
not consider details such as multi-hop application-layer routing
in unstructured networks, and assume all nodes may reach
each other. For simplicity of presentation, we assume that
there exists an omniscient observer which takes responsibility
of randomly querying the nodes. In each round of queries,
the omniscient observer randomly selects a node, until the
requested item is found. The average query path length is the
number of overlay nodes selected in such a query process. It is
slightly more complex to assume that a regular overlay node
performs the queries.

We model the replication problem in the overlay network as
a static game of complete information with n identical players.
Since all nodes are identical, if a Nash equilibrium exists in



this game, it must be symmetric. We further assume each
item is of unit size and each node has a capacity of ρ units.
Therefore, the strategy of each player in such a replication
game is vector (x1, · · · , xm), which is subject to

∑m
i=1 xi ≤ ρ.

B. Optimal replication

We proceed to examine the case when the best possible,
or optimal, average query performance is achieved. From the
system’s perspective, i.e., assume that the system is a single
entity, the system chooses to replicate items with a vector
of probabilities (p1, · · · , pm) with

∑m
i=1 pi = 1. To achieve

optimal replication, Cohen et al. [2] show that we have to
solve the following maximization problem:

min
m∑

i=1

qi

pi
(4)

subject to
m∑

i=1

pi = 1, (5)

pi ≥ 0, i = 1, . . . ,m.

The solution to such maximization problem is a square-root
replication that is defined and proved in Theorem 2.

Theorem 2: The optimal service replication distribution is
the square-root replication that satisfies

pi =
√

qi∑m
i=1

√
qi

(6)

for all i = 1, . . . , m.

Proof: Let

h(p̄) =
m∑

i=1

qi

pi
, (7)

g(p̄) = 1 −
m∑

i=1

pi (8)

Using the method of Lagrange multiplier, we solve the
equation as follows:

∇h(p̄) = λ∇g(p̄) (9)

where λ is a Lagrange multiplier.
From the equation, we have[
∂h(p̄)

∂p1
,
∂h(p̄)

∂p2
, · · · , ∂h(p̄)

∂pm

]T

= λ

[
∂g(p̄)

∂p1
,
∂g(p̄)

∂p2
, · · · , ∂g(p̄)

∂pm

]T

Then,[
− q1

p2
1

,− q2

p2
2

, · · · ,− qm

p2
m

]T

= −λ [1, 1, · · · , 1]T

that leads to
q1

p2
1

=
q2

p2
2

= · · · =
qm

p2
m

= λ

We thus have

pi =
√

qi∑m
i=1

√
qi

.

�	

C. Problem Transformation: A Pricing Game

In the replication game, if all nodes choose the same strate-
gies (x1, . . . , xm), the expected query performance in terms
of the number of queried overlay nodes will be ρ

∑m
i=1 qi/xi.

To obtain the Nash equilibrium (x∗
1, . . . , x

∗
m), we must solve

the following optimization problem:

min
m∑

i=1

qi

xi
(10)

subject to
m∑

i=1

xi ≤ ρ, (11)

xi ≥ 0, i = 1, . . . ,m.

We observe that the above optimization problem is equiv-
alent to a pricing game with m players, which has been
reviewed in Sec. II. In such a pricing game, each player
corresponds to an item and the corresponding utility function
is

Ui(xi) = − qi

xi
(12)

It is clear that Ui(·) satisfies Assumption 1.
The pricing game is mathematically identical to the special

case of the pricing model in Sec. II. Furthermore, we observe
that such a specific pricing game leads to a service replication
distribution, which is both optimal and unique with respect to
the resource allocation in each node’s capacity. We validate
such an observation by formally proving it in Theorem 3.

Theorem 3: If each node is running a pricing game given
above, the resulting allocation vector (x∗

1, · · · , x∗
m) is the best

strategy for each node to replicate items, which leads to the
square-root replication strategy globally.

Proof: According to Theorem 1, there exists a pricing
mechanism that leads to the unique optimal allocation vector
(x∗

1, · · · , x∗
m) for such a pricing game. Furthermore, if all

nodes choose such an allocation vector as their replication
strategy, it is a Nash equilibrium, since at such point the system
achieves the global optimal replication distribution, which is
the square-root replication distribution. �	

To achieve such a pricing strategy, we need to design
specific payoff functions for the players in the pricing game.

D. Pricing game: designing payoff functions

In the pricing game, we propose to design the payoff
function of each player i as

πi(xi) = Ui(xi) − uxi, u > 0 (13)

where Ui(x) is defined in Eq. (12), and u is a cost
coefficient.

Our goal is to appropriately design the payoff functions —
or more precisely, u — such that the resulting equilibrium
converges to the optimal allocation for the pricing game.

In addition, for i = 1, . . . ,m, we define the function Di

such that Di(u) is the optimal solution, x∗, to the maximiza-
tion problem



max
x≥0

{Ui(x) − ux} (14)

Or, equivalently,

Di(u) = arg max
x≥0

{Ui(x) − ux}, u ≥ 0 (15)

An example of the function Di(u) is illustrated in Fig. 1(a).

D(u)

u

D(u)

u

^

ρ

u*
(a) (b)

Fig. 1. (a) The function D(u); (b) the function D̂(u).

According to Theorem 1, there exists a unique solution
(x∗

1, . . . , x
∗
m). In addition, there exists a parameter u∗ such

that

x∗
i = Di(u∗) (16)

Further, we define D̂(u) as the function

D̂(u) =
m∑

i=1

Di(u) (17)

As shown in Fig. 1 (b), we have

D̂(u∗) = ρ (18)

The payoff function can be designed as follows:

1) To define the payoff function, we first define a utility
function Ui(x) which satisfies Assumption 1. In our
case, this step has been done in Eq. (12).

2) Since Ui(x) is increasing, strictly concave and twice
differentiable, if we combine Eq. (15) and x∗

i = Di(u),
where x∗

i is the optimal allocation vector, we can solve
the function Di(u).

3) D̂(u) can be solved by its definition in Eq. (17).
4) u∗ can be obtained by solving u∗ = D̂−1(ρ), where

D̂−1(ρ) is the inverse of D̂(·).
With this procedure, the payoff function of each player i

may then be defined.
We illustrate the above results using an example. For

simplicity of presentation, we assume that

Di(u) = ci − aiu, u ≥ 0

By the definition in Eq. (17), we have

D̂(u) =
m∑

i=1

ci − u

m∑
i=1

ai, u ≥ 0

Combining the above equation with Eq. (18), we can obtain
u∗

i as

u∗ =
∑m

i=1 ci − ρ∑m
i=1 ai

and therefore determine payoff function πi.
According to our analysis, given the payoff function we

have designed for the pricing game, a selfish and rational
player will adopt the optimal allocation to maximize its payoff.
Furthermore, Theorem 3 shows that such optimal allocation
in each node leads to the square-root replication globally. We
conclude that, our game theoretic approach may be used to
design distributed algorithms and achieve the global property
of optimal query performance.

IV. DISTRIBUTED ALGORITHM AND

PERFORMANCE EVALUATION

A. Algorithm design

In Sec. III, we assume that each node can be fully manip-
ulated and possess the knowledge of utility function Ui(·);
therefore, according to our analysis, the system will achieve
the desired Nash equilibrium that conforms to a square-root
replication distribution. It is of interests for us to extend it into
a setting that may be more realistic and more flexible, so that
we can apply it to other overlay applications.

Assume that we have an overlay application that runs on
each node. This application consists of m threads, with each
thread in charge of an item. Each thread can be programmed
to have a specific payoff function and to behave selfishly to
attempt to maximize its own payoff. On the other hand, we
expect that each node has no need to know payoff functions
of those threads. Therefore, if we change payoff functions
of those threads, we can address various global optimization
problems in overlay networks.

A mechanism has been proposed by Kelly et al. in [11]
to address such a problem. We adapt such mechanism to the
special case in Sec. II. The SYSTEM’(U, A, C) problem can
be decomposed into two simpler problems: one for users and
one for the network.

Assume that each user r is given the price per packet u.
Then r chooses to pay wr per unit time and receives xr given
by xr = wr

u . The utility maximization problem for each user
r is as follows.

USER(Ur; u)

max Ur(wr

u ) − wr (19)

over wr ≥ 0.

The network tries to maximize the function
∑

r∈R wr log xr

as follows.
NETWORK(A, C; w)

max
∑

r∈R wr log xr (20)

subject to
∑

r∈R xr ≤ Ck

over x ≥ 0.

Note that, solving NETWORK(A, C; w) does not require the
network to know the utilities U .



Kelly et al. [11] show that there always exist vectors
(w∗

r , r ∈ R), (x∗
r , r ∈ R), and u∗ that solve USER(Ur; u)

and NETWORK(A, C; w); furthermore, the vector (x∗
r , r ∈ R)

is the unique solution to SYSTEM’(U, A, C).
Based on the aforementioned design guidelines, we extend

the iterative algorithm proposed by Kelly et al. in [11].
In this proposed distributed algorithm, listed below, time is
discretized into consecutive stages.

Algorithm running in each thread
1. At each stage k, each thread i receives the price u(k−1) that
thread i was charged in the previous step k − 1.
2. Chooses a new x

(k)
i :

x
(k)
i = Di(u(k−1))

3. Reports x
(k)
i to the Node.

Algorithm running on each node
1. Receives xi from all threads
2. Updates the price u by setting

u(k) =
[
u(k−1) + α

( m∑
i=1

x
(k)
i − ρ

)]+

where α is a small step size parameter and
[
z
]+ = max{z, 0}.

3. Reports u(k) to all threads.

B. Simulation results

We have conducted simulation experiments to evaluate our
proposed distributed algorithm, using a packet-level event-
based C++ simulator. We verify that the algorithm, locally
executed on each selfish node, may indeed achieve the desired
global replication distribution.

In this set of simulations, we have 1000 nodes in the overlay
network, and 10 distinct items. All nodes have the same
capacity of 5, and all items are of same size of 1. The step
size parameter α is set to 0.025. The four columns in Table I
show the item number, query distribution, the desired optimal
replication, and the achieved allocation vector at equilibrium.

TABLE I

REPLICATION DISTRIBUTION IN A HOMOGENEOUS NETWORK

i qi pi xi i qi pi xi

1 0.01 0.035 0.175 6 0.1 0.111 0.555
2 0.02 0.049 0.245 7 0.1 0.111 0.555
3 0.02 0.049 0.245 8 0.2 0.157 0.785
4 0.05 0.078 0.390 9 0.2 0.157 0.785
5 0.05 0.078 0.390 10 0.25 0.175 0.875

Since all nodes are identical, we simply choose one node to
plot. We plot the allocation vector (x1, · · · , xm) as well as the
price u for the first 50 time units, as it rapidly converges to
the stable equilibrium, in most cases within the first 30 time
units. We observe that xi, listed in Table I, is proportional to
the desired pi, validating the conclusion given by Theorem 3.
According to Fig. 2, our algorithm1 is effective and efficient

1Note that in our simulation, for the sake of simplicity, we do not enforce
the constraint that xi should be less than 1, which does not influence the
equilibrium these trajectories converge at.

to achieve optimal replication strategy even when all nodes
are assumed selfish.
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Fig. 2. Trajectories of replication probabilities (left) and price (right).

V. CONCLUDING REMARKS

In this paper, we have presented a game theoretic view of the
open and fundamental problems in service overlay networks,
where cooperative overlay nodes to implement distributed
algorithms are no longer assumed. Rather, we assume that the
nodes are inherently non-cooperative, and attempt to maximize
gains based on their self interests. In this context, we have
extensively analyzed the replication problem. We show that,
even with the relaxed (and more realistic) assumptions, if
appropriate payoff functions are designed and given, it is still
possible for overlay nodes to reach an equilibrium that may
collectively achieve favorable, or in some cases, optimal global
properties that we desire.
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