
An Open Task Control Model for Quality of Service Adaptation

Baochun Li, Klara Nahrstedt
�

Department of Computer Science
University of Illinois at Urbana-Champaign

b-li@cs.uiuc.edu, klara@cs.uiuc.edu

Abstract

Current distributed multimedia applications demand Quality of Service (QoS) from the supporting system to facil-
itate effective services to the end users. However, within the range of QoS demands specified by the application, lower
level transport facility may not be able to constantly provide the required QoS without perturbations, especially in the
case of wireless communications. In this scenario, we propose a task control model that leverages existing digital pro-
cessing and control theories to introduce adaptation tasks that perform QoS adaptations on a specific QoS metric. We
are also able to configure these adaptation tasks according to a desired adaptation agility of their adaptation behavior.
We show the viability of the approach by some preliminary experiments.

1 Introduction

Emerging state-of-the-art distributed applications pose increasing requirements for the underlying system to pro-
vide high availability, predictability, reliability and timeliness. This technology push justifies the need to study more
dynamic real-time multimedia systems in which system components are heterogeneous and highly distributed, or even
constantly on the move, in the case of wireless communications.

Due to the fact that the relative sensitivity to Quality of Service (QoS) of multimedia applications usually exceed
traditional applications by several orders of magnitude, guaranteeing the satisfaction of the expected Quality of Service
over the course of delivery is not trivial, especially when utilizing currently adopted networking infrastructure, such
as the Internet, to provide such guarantees. Even with the assistance of currently available techniques of providing
QoS guarantees along the transmission path, such as suitable scheduling techniques in intermediate switches, the
performance behavior along the transmission path in these networks cannot be easily guaranteed to be stable, especially
if wireless communication links are involved in the path. This observation calls for the need of proper adaptation
mechanisms in the end systems, so that applications adapt to the dynamics of the underlying environment. This is
most suitable for the type of flexible applications that can tolerate a certain degree of variations in the provided QoS.
Our objective is to develop a QoS architecture that lies in end-to-end system middleware layers and supports graceful
adaptation in heterogeneous and distributed computing environments. We also note that the adaptation not only handles
dynamic changes in resource availability along the transmission path, but also applies to dynamic modifications in user
requirements, which may be specified interactively.

The traditional approach was that the adaptation behavior is integrated within the applications. This approach
does not need to radically modify the existing protocols already implemented and running in current networks, so that
the QoS delivery could be implemented with least modifications. However, there are also some disadvantages to this
approach. First of all, since adaptation capabilities are within individual multimedia applications, different applications
running on the same system may have very different adaptive behavior when QoS variations occur. Some of them may
consume a considerable amount of system resources to perform their desired adaptation behavior, while others may
not perform any adaptations at all. If system resources are limited, some applications may not be able to perform their

�

This research was supported by the Air Force Grant under contract number F30602-97-2-0121, and National Science Foundation Career Grant
under contract number NSF CCR 96-23867.

1

desired adaptations due to insufficient resources. It is therefore desired that there should be a central allocation facility
to control the adaptation behavior of each application, as well as arbitrate and balance the resources required during the
adaptation. Optimally, this central management facility should be located in between the underlying transport protocols
and the applications demanding QoS. Furthermore, the adaptation component integrated into the application is not
generic and reusable, which makes it a burden on the application developer with regards to implementation. Finally,
since the application can only blindly apply its predetermined adaptation policy to all incoming traffic without any
knowledge of the underlying transport layer activities, the adaptation performed may not be optimal for the situation
and may not be modified on the fly.

In this paper, we propose an approach to perform the adaptation behavior in the middleware level which is located
and operated between the transport facilities and applications. The adaptation behavior is configured off-line by the
application itself, so that only the desired degree of adaptation activities is performed. The middleware adaptation
facilities will monitor QoS delivered by underlying transport protocols, perform the desired adaptation behavior, and
deliver the adapted QoS to the specific application. Utilizing this framework, applications only need to specify the
policy of adaptation at a high level, and are shielded from the mechanics of adaptation behavior itself.

A major advantage to this approach is that by creating a software component to solely control the adaptation be-
havior for the entire end system, we could avoid unbalanced or conflicting demands for system resources, which is
inherently a problem if we integrate adaptation behavior into each application. Another advantage by centralizing
adaptation controls is that we could optimize global resource management and allocations by allowing different appli-
cations to share the same resource pool, especially when only limited resources are available, or when future adaptation
activities are predictable. Finally, the approach also enables the middleware level as a whole to interact with underlying
transport protocols, so that the adaptation behavior could be optimized by on-the-fly measurements of QoS delivery,
and be able to react according to the monitored perturbations, providing capabilities of active adaptations.

We will consider the middleware level as a set of adaptation tasks which will be modeled according to the task
control model introduced later. These adaptation tasks interact with the applications and the underlying layers, and
react to perturbations in the provided QoS, so that graceful degradation can be achieved in the case of severe and
unexpected Quality of Service changes.

This paper is structured as follows. Section 2 discusses relevant related work in the area of end system Quality of
Service management and adaptations. Section 3 presents a task model for modeling QoS control in end systems, and
leverages existing theories in digital control systems to model the adaptation behavior. Section 4 discusses in greater
details constructing and configuring passive adaptation tasks. In Section 5 we describe the design and implementation
choices for a proof-of-concept prototype of the adaptation tasks, as well as evaluations for their performance. Section
6 concludes the paper.

2 Related Work

Currently there are many ongoing active research projects that focus on the open issues in Quality of Service
management in end systems. Many of them focus on the transport or operating system levels in the end system, while
there also exist research efforts that address the problems related to adaptations or graceful degradations of Quality of
Service.

Recent research interests in mobile computing are addressing the issues in QoS adaptations for mobile transmis-
sions over heterogeneous wireless networks [1] [14]. These research efforts focus on graceful adaptations to dynamic
QoS variations in a mobile environment. Current state-of-the-art mobile environments must deal with scarce and dy-
namically varying resources in the end systems or delivery paths. Applications which execute in such environments
need to adapt to the dynamic operating conditions in order to preserve the illusion of seamlessness for the end user. The
research and development of the Prayer mobile computing environment [9] [10], for example, proposes a framework
for adaptation which provides applications with runtime support for QoS negotiation, monitoring and notification ser-
vices. The work presented in this paper has similar objectives, but leverages existing theories in digital control systems
so that the adaptation mechanism in the middleware level can be more generic and not limited to mobile environments.

Open problems in the area of adaptive playout control mechanisms in destination end systems have also been
explored in previous research efforts. The Adaptive Playout Mechanism for packetized audio applications over wide
area networks, developed at University of Massachusetts [12], focuses on the elimination of end-to-end delay jitter
for audio data transmission over the Internet. Various algorithms proposed in the work are able to explicitly adjust
to the sharp, spike-like increases in packet delay. Since audio data playback is extremely sensitive to delay jitter,

2

delay adaptation in the face of varying networking delays is crucial in preserving audio quality at the destination end
systems. The goal of this work is also similar with the work presented in this paper, though the former only focuses on
delay jitter adaptations during audio transmissions, and our work proposes a generic approach for modeling adaptation
behavior. Similar research work is presented in [7], which also focuses on jitter control of playing back continuous
media streams.

While the above mentioned work deals only with audio transmissions, various playout algorithms for video trans-
missions have also been discussed in previous research efforts, especially in the context of Video-On-Demand appli-
cations. The work at University of Pennsylvania [11], for example, mainly focuses on the playout requirements in
destination end systems, assuming constant rate transmission of video data in Video-On-Demand applications over the
ATM network. The protocol assumes the establishment of constant bit rate (CBR) virtual channel between the video
provider and the viewer’s set-top box, and it needs a certain number of cells be built up in the set-top box buffer space
before the commencement of playback. The build-up, cell transmission rate and set-top buffer size must be chosen
so that there is no starvation or overflow at the set-top box. Our work is analogous in the sense that we also need to
consider proper allocation and utilization of system resources consumed by the end system adaptations. However, our
adaptation algorithm focuses on the elimination of high frequency perturbations using theories for control systems,
while still preserves long term trends of input QoS changes. Though theories in control systems lead to more complex
designs for the adaptation algorithms, it proves to be occupying an insignificant amount of computation.

Open research problems for smoothing bandwidth requirements along the transmission path in the context of
Video-On-Demand applications have also been explored. The work at Ohio State University [2] [3] focuses on band-
width smoothing algorithms operated on the server based on a priori knowledge of the frame sizes in the prerecorded
compressed video. According to different bandwidth optimization needs, various algorithms are applied at the server,
so that the server can reduce burstiness in the stream by prefetching video frames in advance of each burst. The
work operates optimally if frame sizes for the entire video stream are known a priori, even though later results [13]
extend the model to live video streams by applying the algorithms to previous hopping or sliding windows. Our work
mainly focuses on generic adaptation solutions on the client side, and will not be limited to only Video-On-Demand
applications and the delivery of Variable Bit Rate (VBR) video streams.

3 The Task Control Model: A Model for QoS Adaptation in End Systems

3.1 The Task Flow Model for QoS Systems

We propose to use a Task Control Model to model any system delivering QoS, including the transport subsystems
and the end systems, in a generic framework. By task, we refer to an application, a software component, or a module
in an application. that executes so it can deliver a service or result to other system components, namely, other tasks
[5]. With the definition of task in this context, if we consider a set of inter-related tasks that form a larger component,
we are able to model the entire system as a task flow graph, which is, by its nature, a directed acyclic graph. Each node
in the graph represents a task, and each task has a certain set of inputs, denoted by incoming links to the task, and a set
of outputs, denoted by outgoing links. In addition, an edge from node

���
to note

���
indicates that the task

���
uses the

result produced by task
���

as its input. We believe that this task model is generic in nature and can be applied to any
systems that involve QoS delivery. Figure 1 illustrates a generic framework of the task control model and its mapping
to traditional view of the end systems delivering QoS.

For each task, there will be quality parameters and values associated with both input and output of the task. In
addition, at any particular instant, the task will consume a specific amount of resources; and for a task with regular
behavior, the more resources allocated to the task, the better the output quality.

As an example, we consider a distributed video tracking system that acquires live video from a remote site (incon-
venient for human interaction), transmits the video stream to local site in real time, identifies at the local site image
objects with a certain shape in the video stream, and tracks the movements of the objects based on shape identification.
Figure 2 shows the task flow graph of the system. We notice that the surveillance video camera is the only source task.
Its output quality is fixed and characterized by QoS parameters such as image resolution, size, luminance, color depth,
and frame rate. The frame acquisition task is responsible for grabbing frames from the camera, and converting the
signal into a digital format. The output of the frame acquisition task (i.e. the values of its QoS parameters) depends
on the amount of available resources such as processing capabilities and memory allocated. The same applies for the
Network Transmission task, where the available resources, such as bandwidth, significantly affects its output quality.

3

Multiple Applications

QoS adaptation, mapping
Middleware support for

Operating Systems

Low level networks

QoS-aware or unaware networks

Client End Host

Operating Systems

Middleware

Networks

and tradeoff decisions

Middleware framework
with application
independent design
and application-specific
policies

Figure 1a: A Traditional View of the Middleware’s Role in QoS Networks

Application Middleware
Lower level
Transmission Middleware Application

Figure 1b: Viewing the Middleware’s Role from a Task Flow Graph

Figure 1: A generic framework for the task control model

Video Camera Frame Grabber

Live video input

Network
Transmission
of Digital
Live Video
Datavideo capturing

Remote Site

Visual Tracking
Runtime Module

User requirements
about frame
acquisition: image
quality, size, color
depth, frame rate,
sharpness, etc.

Local site

Identification

Visual tracking

Figure 2: The visual tracking system: an example of the task control model

3.2 The Task Control Model for QoS Systems

The tasks introduced in the above model are in most cases flexible tasks, in the sense that if sufficient resources
are not provided the tasks can still generate a specific output, even though the quality of the output is degraded due
to lack of available resources. These flexible tasks justify the need to gracefully respond to unpredictable changes
and oscillations in dynamic QoS requirements and resource availabilities for each task. This calls for the need of
adaptation.

Under the task flow model introduced above, we propose to leverage existing theories in digital control systems to
model the behavior of adaptation for the flexible tasks. Given the objective to improve the adaptability of individual
tasks or the entire system, we can introduce specific adaptation tasks into the system, which integrates adaptation
algorithms into additional tasks. Unlike ordinary tasks, these tasks are solely responsible for adaptation.

We can characterize adaptive behavior of these tasks into two major categories. One category, which we refer to as
passive adaptation tasks, includes adaptive algorithms that only change certain QoS parameters of the input quality,
so that the adapted quality will be improved by the adaptation. These passive adaptation tasks can be best illustrated
as a simple additional task whose only responsibility is to provide a filter in between two consecutive original tasks in
the system, and to improve the input quality of the next major task. Since the adaptation tasks have to contend with
original tasks for limited resources, it is a tradeoff between improved adaptability and resource availability. The role
of these adaptation tasks is illustrated in Figure 3.

Flexible Task

Resources

Task characterization
without adaptation behavior

Flexible Task
input

ResourcesAllocated resources

Task characterization with adaptation behavior

output
outputinput

Adaptation adapted

inputtask

Figure 3: Applying passive adaptation tasks to tasks in need of adaptation

Examples of passive adaptation include various playout algorithms for video playback in the end systems. These
playout algorithms only improve QoS of the incoming video streams in terms of specific QoS parameters such as delay
jitter in frame arrival times, thus they actually serve as additional tasks utilizing preallocated resources such as buffer

4

spaces to control the QoS parameters of the input quality to the main task.
Applying passive adaptation may prove to be sufficient in some general cases to adapt to changes in input quality.

However in the cases of extremes such as long, persistent lack of resources or presence of extremely low input qualities,
theoretically we need to provide an infinite amount of resources to the passive adaptation task in order to provide
acceptable input quality for the main task. This calls for the need of the other category, which is referred to as active
adaptation.

Active adaptation represents the class of various more aggressive adaptation attempts, in which the individual task
that desires adaptation will coordinate with other flexible tasks in the task flow graph, in order to adapt to the changes
that affect the entire system. Examples include the utilization of QoS tradeoff algorithms, feedback mechanisms, QoS
renegotiation algorithms, and modification of resource allocation regulations in order to keep acceptable QoS for the
individual tasks. In the example of video playback tasks, active adaptation tasks could coordinate with other related
tasks in the system to change the compression ratio or various quantization parameters in the video streams, so that
less resources are needed for the execution of the task.

Naturally, we can model the active adaptation problem in a task flow graph as a digital control problem. In this
context, the individual task that adaptation is targeted can be treated as the plant to be controlled, and the active
adaptation task can be treated as the controller. The mapping is illustrated in Figure 4. This mapping makes it possible
to leverage existing theories in digital control systems to analyze the stability and performance of the adaptation tasks
and the entire system.

Controller Delivery System
Control

Signal

Reference
Input

[Server Middleware] [Transmission Network]

Monitor

Disturbance

[Client Middleware]

Output

Feedback Path

r(t) Controller
 c(s)

Plant
G(s)

d(t)
e(t) u(t)

disturbance
error

control
input

output y(t)

Feedback Path

Figure 4a: A block diagram in a classic control system Figure 4b: The Task Control Model used for QoS adaptation

Figure 4: A mapping between block diagrams in control systems and the task control model

By introducing categories of adaptation, it is also important to solve the problem that in what circumstances we
need to activate passive adaptation and in what else we need active adaptation. Apparently, if QoS delivery is stable,
we do not need any adaptation at all. On the other extreme, if QoS delivery is in a severe situation we need to
activate multiple active adaptation techniques concurrently. In situations in between the two extremes, we need to
decide between passive and active adaptation and choose between different active adaptation schemes. This calls for
determining and dividing QoS into different QoS regions, where in each region one specific adaptation scheme is
applied.

A major advantage of the task control model is that it is an open model suitable of modeling a wide variety of
QoS systems, and not limited to a specific type. This is because that any systems consist of functional components,
and the task of each component is to operate on some input, and to generate some output, while consuming a specific
amount of available resources. The task control model itself generalizes this observation, and provides a context for
the application of existing control theories.

This paper focuses on the modeling of passive adaptation tasks. For this purpose, we quantify various QoS parame-
ters of input quality, and model them as digital signals which are able to fully express the variations of QoS parameters
in the time domain. The advantage of modeling QoS metrics into digital signals that vary in the time domain is that we
can thus leverage existing theories in digital control systems to precisely model the passive adaptation task as a digital
filter to the main task. We could therefore analyze and configure the adaptation task in the frequency domain, which
proves to be more expressive of properties such as adaptation agility. Work for active adaptation will be presented in
other papers.

4 Modeling Passive Adaptation Tasks

4.1 A Simplified Model for Passive Adaptation

As stated in the previous section, in order to provide the functionality of passive adaptation, our solution is to
introduce components referred to as Passive Adaptation Tasks. These components reside in the end system middleware

5

level, and serve as an intervening medium between the application that receives QoS and the underlying transport
mechanisms that provides QoS. In order to accurately model the behavior of the passive adaptation tasks, we need
to be able to quantitatively measure various QoS metrics that adaptation will be based on. Furthermore, in order to
precisely model the configurable properties of the adaptation tasks, we need to formalize the concept of adaptation
agility. We address these issues in this section.

4.1.1 Modeling Quality of Service Metrics

Before we address the issue of modeling passive adaptation and configurable parameters, we first need to present
a simplified model for Quality of Service metrics. The objective of the model is to measure various QoS metrics in a
quantitative way, so that each metric can be monitored in real time by an assisting task referred to as monitor tasks.

A Quality of Service metric, in its restrictive sense, measures the delivery performance of a continuous stream
of data units. In its broader sense, Quality of Service metrics can denote any kind of quality parameters in any
measurement units, for instance consistency, completeness or accuracy in a typical query to a digital library. We will
only address the restrictive sense of QoS metrics in this paper. However, we believe that our conclusions drawn from
examinations on the restrictive sense of QoS metrics are generic and may also apply to any broader contents of Quality
of Service.

We represent a stream as an ordered sequence of
������� ��� ��	�

, where
� �

denotes a distinct data unit, which may in
reality be a frame of video data, a packet of data transferred over packet switching networks, or a protocol independent
message carried by any transport facility. I is the set of data unit indices, while a stream

�
is an ordered sequence of

data units. Also, we define
�

as the domain of time instants, which are normally represented by real numbers, and �
as the domain of real numbers.

For each
� �

, we assign a distinct Quality of Service Signature
 � , where ����� :

 � ����� ����� ����� � � �!� ��� � � � � �"� � � �$# (1)

where
� �

and
� �

represent the sending time at the original source of transmission and receiving time at the desti-
nation of the data unit

� �
, respectively.

Once the above notions are defined, we are able to define the ordered sequence of QoS signatures. We formally de-
fine the ordered sequence %'& �(�
 � �*),+ 	 & as the Quality of Service Profile of sequence S. Furthermore, the predicates-/. � ��0 � % & # and 132 �40 � % & # denote the indices of the first and last QoS signatures in % & , respectively. For example, the
expression

�*5 �7698;:;<>=@?�A
represents the receiving time of the first data unit in the stream

�
, while the expression

�CB7D 8;:;<7=E?�A
denotes the sending time of the last data unit in the stream

�
. We will also use the expression % &GF HJI to represent

the subset of QoS signatures in % & that satisfy the condition C, where C may be any conditional equation. Given the
above definitions, a Quality of Service metric consists of a measure computed from the Quality of Service Profiles of
one or multiple streams. Formally, it represents a mapping function:

KML��ON�PRQ�ST � (2)

where
P

is the domain of QoS profiles, n represents the dimension of the QoS metric, and R is the domain of real
numbers. For example, in the one-dimensional category, the value of

KML�� � %U& # is the result of computing the QoS
metric QoS on the Quality of Service Profile %V& . If in reality we are interested in the Quality of Service delay, we will
compute

�CW 1�2CX � %$& # based on the QoS profile %'& of the stream
�

.
Even though the QoS metrics can be defined as such, it is generally difficult to obtain these metrics strictly as

the definitions specified, due to constraints by practical measurement limitations. We thus introduce the notion of
approximated Quality of Service metrics, which makes it practical to measure and monitor QoS metrics in various
implementations. Though these definitions can only approximate formally presented definitions shown above, they
are normally sufficient for most cases.

For approximated QoS metrics, we define a mapping function:

KML��ZY'N �\[��[P Q ST � (3)

where
P

is the domain of QoS profiles, n is the dimension of the metric, R is the domain of real numbers, and T
represents the time domain. To be more specific, if we define] � and ^ � to be time instants so that

6

Notation Definition Example���
an data unit of index � a data packet or message�
the set of data unit indices integers�
a stream of data units:

���	� �
���
�����
a regular data stream� � sending time of an data unit

�
�
sending at time 1� � receiving time of an data unit

�
�
receiving at time 2� � Quality of Service Signature: � � ��� � ��� � �
��� � ��� � ����� � �"! �$#
�

%'&
Quality of Service Profile:

%'& �(� � �)�+* + � &,.- �/��0 � %'& � the index of the first data unit in stream S132 ��0 � %4& � the index of the last data unit in stream S% &65 798
the subset of QoS signatures in

% &
that satisfies

7 % &65 � �;:<# 8='>/� � %4& �
QoS metric computed on

%'& ��?@132�AB� %'& �
='>/� � � 0�C � 0ED � %'& � approximated QoS metric computed on

%F& ��?@132�A � � 0�C � 0GD � %'& �

Table 1: A simplified model for Quality of Service metrics

] � � ^ � �] � � � � ^ � � � (4)

where
.

is an index number. We can then define a time interval F] ��� ^ � I as

0 � F] � � ^ � I if and only if] �IH 0 H ^ � (5)

As an example, in the one-dimensional category, the value of
KML�� Y �]IJ � ^KJ � %J& # is the result of computing the

approximated QoS metric
KML�� Y

on QoS profile %'& , over the time interval F]LJ � ^KJ I , where]IJ � ^KJ � � . In reality if
we are interested in the QoS metric delay, we use

��W 132�X Y �] � � ^ ��� %$& # to compute the average delay of the QoS Profile
% & in the time interval F] � � ^ � I . We may establish multiple time intervals referred to as sampling intervals during the
course of QoS delivery, so that we can evaluate an ordered sequence of Quality of Service metric values during each
of these time intervals. We will discuss these problems in later sections.

For easier references, we summarize the above notations and definitions in Table 1.
Given above, we are able to define the common Quality of Service metrics such as system rate, generating rate,

delay, loss and jitter [8]. As an example, we give a definition for the QoS metric System Rate.
System rate is generally referred to as bandwidth or throughput in a network transmission context. It denotes a

QoS metric that measures the delivery speed or efficiency of any QoS quantitative data units. Given the definitions for
QoS metrics in the previous section, system rate measures the mean number of data units per time unit received during
the duration of a stream. For this purpose, it is useful to define the function M/N 2
O 0 .;0 X N %U& F HJI STQP

that counts the
quantity of data units in a QoS profile %M& F HJI under the condition C, or, equivalently, a subset of the stream S. For
example, M/N 2.O 0 .;0 X � %$& F 0 J H 2 H 0ER I # is the number of data units in S that are received within the time interval F 0 J � 0ER I .
The formal definition of system rate is:

� 2 0 W 8 N�P ST �
� 2 0 W 8 � % & # � M/N 2.O 0 . 0 X � % &GF H 6 I #� B7D 8;:;<>=@?�ATS ��5 � 6 8;:;<7=E?�A (6)

where condition H 6 can be defined as:

H 6 � �*5 �7698;:;<>= ? A H!� � HO� B7D 8;:;<7= ? A � � � � � (7)

As stated previously, it is generally not convenient to measure system rate defined above. We may then define
approximated system rate so that it can be measured practically. Given a time interval F] � � ^ � I defined in Equation (4)
and (5), the definition of approximated system rate can be easily derived as follows:

� 2 0 W Y8 N � [� [P ST �
� 2 0 W�Y8 �] � � ^ � � % & # � M/N/2.O 0 .;0 X � % &EF H Y6 I #

^ � S] � (8)

where condition H Y6 can be defined as:
H Y6 �] � H!� � H ^ � (9)

7

4.1.2 Modeling Passive Adaptation

The discussions proposed previously provide sufficient grounds for the elaboration of a model suitable for model-
ing the behavior of passive adaptation.

As illustrated in Figure 5, monitor tasks measure the raw QoS metrics of an input stream of data units, while
passive adaptation tasks perform the actual adaptation and produce a series of adapted values in a specific QoS metric,
which can then be converted reversely and fed into the main task.

raw QoS

metrics

input

stream

adapted

input

output
Adaptation taskMonitor task conversion

reverseadapted

QoS metrics

Allocated resources

Flexible
Task

Figure 5: The role of a passive adaptation task

Generally, a passive adaptation task is an operator or filter on a particular stream that controls and modifies its
QoS profile. Formally, it is defined as � N�P ST P

, where � � % & # is any transformation performed on % & .
As a simple example, � � ��� � � � � � � � # ������� � � � ����� L O ��0 � � is an task that delays the receiving time of all data units

in a stream by a constant const. This task can be understood as a delaying task, whose only transformation applied on
the QoS profile is to delay the receiving time by a specified amount.

To the extent of this paper, we will only address a specific subset of the passive adaptation tasks defined above,
namely, those tasks whose behavior only transforms a specific QoS metric, such as system rate, of a particular QoS
profile. The result of the transformation is a series of values based on the measuring unit of this metric. By utilizing
the definitions for QoS metrics or approximated QoS metrics, we can easily compute values for these metrics based
on a sequence of QoS signatures in a specific QoS profile. Furthermore, based on the definitions, we can also develop
mechanisms to reversely convert the known values of QoS metrics to QoS signatures, in which the known values of
QoS metrics are the result of the transformation made by the adaptation task.

Since the adaptation tasks are implemented in the end systems, after any transformation on the QoS metrics, they
are only able to modify the receiving time of each QoS signature, leaving the sending time unaffected. The behavior
of these tasks is thus defined to transform the receiving time

� �
to
���� in all QoS signatures of a QoS profile according

to a predefined set of transformation rules. Formally:

� N�P ST P
% � & � � � %J& # ����� � � � � �� � � � - L ��� � � � � � ��� � %$& (10)

Taking the metric approximated system rate as an example, if we apply Equation (8) to an ordered sequence of time
intervals] � and ^ � , a series of discrete-time ordered sequence of values

� 2 0 W Y8 F . I can be computed based on the QoS
profile % & . For the most frequently used case of consequent time intervals where ^ � �] �
	 J , we can take a sequence
of
� 2 0 W Y8 F . I and convert it to a QoS profile % & whose system rate is identical or approximated by the sequence

� 2 0 W Y8 F . I .
Formally:

M/N 2.O 0 . 0 X � %J& F]IJ H!� � H] � I # �
�
�
�
� J
� ^ � S] � # � 2 0 W Y8 F � I �] � � ^ ��� %$& # (11)

In any Quality of Service signature
� � � ������ � in the Quality of Service Profile % � & F]IJ H � � H ^ Q I defined in

Equation (10), we have:

� �J � � J
� �� � � ���� J � ^ � S] �

M/N 2.O 0 .;0 X � % � & F] � HO� �� H ^ � I #
� � ���� J � �� 2 0 W Y8 F . I �] � � ^ � � % � & #

� . -] �IH � �� H ^ � (12)

We now have sufficient grounds to apply theories in digital control systems to model the transformation process.
Because of the limitations in measurements, the original values

� 2 0 W Y8 F . I are a series of discrete-time values, or signals,
rather than continuous-time signals. Formally, the original values of QoS metrics

� 2 0 W Y8 F . I can be represented by a

8

function �
� O �J# , where T is a constant sampling interval and n is an integer in the range

� O J � O R # such that
S�� H O J

and O R H � .
The transformation process defined above is illustrated by the block diagram in Figure 6. Input �

� O �J# and output
X � O �J# are generally referred to as the excitation and response signals of the transformation, respectively. In their
original senses, input �

� O �J# is the original ordered sequence of
� 2 0 W Y8 F . I of a specific QoS profile, and output X � O �J#

is the transformed response series
� 2 0 W � Y8 F . I , corresponding to the transformed QoS profile % � & according to Equation

(12).

x(nT) Transformation Process y(nT)
(response)(excitation)

Passive Adaptation Task

Figure 6: Applying adaptation process to the raw QoS metrics

Obviously, the response is related to the excitation by some rule of correspondence. We can indicate this fact
notationally as:

X � O �J# ��� � � O �J# (13)

where
�

is an operator. Equation (13) can be treated as a generic definition for passive adaptation tasks.
Like other digital systems, passive adaptation tasks can be classified with respect to time-invariance, causality,

linearity and recursiveness [15]. In this paper, we only address the analysis and configuration of a subset of tasks
that are time-invariant, causal, linear, and non-recursive. We characterize this subset with difference equations [6].
Assuming the above, we can express Equation (13) as a Nth-order linear difference equation as Equation (14), where
� � O �J# is represented alternatively as �

� O # :

X � O # �
��
� ��� 2 � � � O S . # (14)

4.2 Configurable Passive Adaptation

4.2.1 Modeling Adaptation Agility

Passive adaptations, as formally presented in the previous section, are in essence some form of transformations,
so that the quality of a specific metric may improve. The series of QoS metric values are modeled by discrete-time
values, or signals, and the transformation can be modeled by difference equations as in Equation (14).

One of the important factors that should be configurable for adaptation tasks is adaptation agility. First introduced
in [14], it is defined as the ability of adaptation tasks to promptly respond to sudden and unexpected perturbations in
the time domain. If the agility of an adaptation task is high, it means that the task frequently and promptly reacts to
short term fluctuations. On the other hand, a system shows low agility if it only reacts to long term moving trends in
the changes of a specific metric, and eliminates most of the short term fluctuations. Obviously, systems of low agility
are often desired for most applications, as short term fluctuations naturally need to be eliminated. However, a system
that has very low agility may consume too much temporary resources such as buffer spaces in order to transparently
adapt to most of the fluctuations in the excitation signals and keep the response undisturbed, the amount of temporary
resources may not be readily available on the end system. This tradeoff decision should be left to the application as an
important part of the QoS specification. An illustration for the concept of adaptation agility is shown in Figure 7.

Utilizing theories in control systems, It is easy to quantitatively express the frequency spectrum of the excitation
signal and the frequency response of the transformation by analyzing the adaptation process in the frequency domain,
and by applying a Discrete Fourier Transform without energy loss of the signal.

Once we are able to model signals and transformations in the frequency domain, we can model the adaptation
functionality that filters the rapid perturbations and high frequency short-term fluctuations from the long-term trends
of changes in the excitation signal. This filtering capability can be best expressed in the frequency domain as a
low pass filter, the transformation of which screens the incoming frequency spectrum and only passes low frequency
components, eliminating all high frequency components of the signal. The time-domain effects of this transformation
is that all the high frequency short-term perturbations are eliminated to stress the long-term low frequency changes,
which is precisely the desired adaptation effects for the passive adaptation tasks.

9

 adaptor with a higher agility adaptor with a lower agility

original input in the time domainoriginal input in the time domain

Figure 7: Adaptation agility for configurable passive adaptation tasks

H(
1.0

ΩΩΩ offoff-

Ω)

stopbandpassband

Figure 8: An ideal low-pass passive adaptation task with cut-off frequency
��� 5*5

Given above, the adaptation agility of an passive adaptation task can be defined as the cut-off frequency
� � 5*5

of
the frequency response of the transformation, illustrated in Figure 8. Defined as such, we can therefore configure the
adaptation task to provide a specific agility specified by the application.

4.2.2 Configuring Adaptation Agility

Once the theories in digital control systems are applied, there are numerous ways to configure and design the
passive adaptation tasks so that they conform to a certain agility requirement. One of the simplest approach that works
on non-recursive difference equations is the application of Discrete Fourier Transform and its inverse transform, which
may be found in some references on digital filters [6]. In order to improve the quality of the generated result after
Inverse Fourier Transform, we may need to use more complex windowing functions such as the well known von Hann
window or the Hamming window [6]. Since the configuration process operate in the frequency domain, we need to
convert the result back to time domain in the form of difference equations. After configuring the passive adaptation
tasks, they can be activated to perform the specified adaptation agility.

5 Experiments on Passive Adaptation Tasks

5.1 The Design of Experimental Framework

In order to explore the validity and performance of the proposed passive adaptation tasks, we developed a proof-
of-concept prototype, and analyzed the adaptation performance of the prototype in the context of Video-On-Demand
(VOD) applications. The framework is illustrated in Figure 9.

Transport

Network

Middleware

Application

Network Transmission

Adapted
QoS

Provided
Raw QoS

Video-On-Demand

Operating Systems

Delivery Network

Server [Repository]

Layers:
Video-On-Demand
Client [MPEG Player]

Operating Systems

Delivery Network

Adaptation task

Monitor task

Adaptation task

Monitor task

Figure 9: The proof-of-concept prototype framework

In VOD clients, we integrated the passive adaptation tasks and monitor tasks between the VOD applications and
the underlying transport protocols. In the current context. The VOD server serves as a central video repository that

10

satisfies the requests made from the possibly remote clients, and the client is designed as a simple video player that is
capable of video playback based on the information retrieved from the server. we also integrated a QoS configurator,
which will configure the passive adaptation tasks according to a specific agility requirement.

For the purpose of fast prototyping and achieving capabilities to execute on heterogeneous environments, we used
the Java language [4] for the implementation of the adaptation tasks. The Video-On-Demand application testbed,
though, was implemented in a combination of C and Java languages, in which the MPEG-2 decompression engine
was implemented in ANSI C due to the nature of MPEG-2 decompression complexity, and the display controls were
implemented in Java. The whole testbed was implemented in the Windows NT environment, but can also be compiled
to run in Unix environments thanks to the portability of the ANSI C codec source and the interpretive property of the
Java language.

In order to simulate the fluctuations in the performance of the networking environment, we implemented a simu-
lator that simulates the vibrations of the bandwidth factor over the connection. Due to the bandwidth fluctuations, the
QoS metric system rate that can be measured by the monitor tasks will also change accordingly. The initial experiments
with adaptation tasks were applied on these fluctuations with regards to the system rate of data arrivals.

5.2 Experimental Results

We experimented with the configuration of some non-recursive low-pass adaptation tasks, using the Fourier Trans-
form approach for configuration. As an example, we present the experiment results in this section with typical config-
uration parameter sets, and apply the configured adaptation task to excitation signals that the monitor task generated
based on network performance generated by the network simulator.

Using the Fourier Transform configurator, we successfully configured a 101-term low-pass passive adaptation with
an adaptation agility of

��� �
 , which is defined as cut-off frequency
� � 5*5

in 4.2.2. For better configuration results, we
chose the Hamming windowing function to truncate the original result of Inverse Fourier Transform. The number of
terms in the non-recursive adaptation task determines the precision that the actual frequency response approximates the
ideal case illustrated in Figure 8. We chose to configure a 101-term low-pass adaptation task to achieve an acceptable
precision of approximation, while not sacrificing the adaptation overhead. The result of a configured adaptation task
is expressed in the form of difference equations.

We now apply the configured adaptation task to actual QoS metrics generated by the network QoS simulator.
Figure 10(a) illustrates one sequence of the simulator output for a total length of 600 seconds, where system rate
values are illustrated in the unit of kilobits per second. Figure 10(b) illustrates the generated adaptation result of the
configured passive adaptation task.

0

10

20

30

40

50

60

100 200 300 400 500 600

S
ys

te
m

 r
at

e
(K

bp
s)

Running time (seconds)

Raw QoS

(a) Raw QoS metric sequence generated by the
monitor task

0

10

20

30

40

50

60

100 200 300 400 500 600

S
ys

te
m

 r
at

e
(K

bp
s)

Running time (seconds)

Adapted QoS

(b) Adapted QoS metric sequence generated by
the passive adaptation task

Figure 10: Adaptation behavior of the 101-term non-recursive passive adaptation task

As shown in Figure 10(b), the results of the adaptation behavior are as we expected and encouraging. We can
calculate the standard deviation of the excitation and response signals, shown in Table 2.

We are also interested in the buffer space requirements of the configured non-recursive adaptation task. Naturally,
the actual requirement will not be predictable a priori, and will be decided by both the difference equation of the task

11

Evaluation metric Excitation Response
Standard Deviation 7.252160 Kbps 5.838508 Kbps

Table 2: An evaluation of the adaptation effectiveness for non-recursive passive adaptation tasks

and the raw QoS sequence monitored. In our preliminary experiment, the buffer space requirements as a function
of time is illustrated in kilobytes in Figure 11. As shown in the figure, the peak buffer space requirement in our
experimental context is around 350KB, which is affordable for most current systems.

0

50

100

150

200

250

300

350

400

100 200 300 400 500 600

B
uf

fe
r

sp
ac

e
re

qu
ire

m
en

t (
K

B
)

Running time (seconds)

Buffer space requirements

Figure 11: Buffer space requirements for the configured passive adaptation task

With regards to computational overhead for the configuration and adaptation processes, In spite of the slower speed
of the interpreted Java program that we experimented with, we are able to record a typical computational overhead of
2 milliseconds for each round of adaptation, and a maximum overhead of no more than 3 milliseconds, tested on a
light loaded Pentium 200Mhz processor. While adaptations are only needed intermittently and the time interval is not
likely to be less than one second, the computational overhead for the adaptation process can be safely ignored. The
configuration process is not necessary to meet real time needs, however it also occupies an insignificant computational
overhead. As we recorded, a typical configuration process for our passive adaptation tasks takes 161 milliseconds to
complete, which can also be safely ignored in most situations.

6 Conclusion

In order to provide stable and smooth Quality of Service to a wide range of distributed applications, and in the sce-
nario that severe short term fluctuations that frequently occur in the QoS provided by the transport facility, especially
in the heterogeneous wireless networks with mobile users constantly on the move, we propose to introduce an open
task control model so that it is straightforward to map the existing theories in digital control systems, and to incorpo-
rate adaptation tasks into the task control model, which are responsible for performing adaptations on a specific QoS
metric measured by monitor tasks.

One of the major contribution of the task control model is its openness and generic nature. Since the model is
not specific to a particular system or platform, adaptation functionalities can be integrated into a wide variety of end
systems, eliminating the need of designing a specific adaptation technique for each type of end systems. It is also
possible to apply digital control theories to these systems, treating the task to be controlled as the plant, and the
adaptation task as a controller.

We also believe that the adaptation tasks should be configurable. One of the configurable parameters is adaptation
agility, which represents the ability and extent of an adaptation task to promptly respond to perturbations in the raw
QoS from lower layers. We were able to model adaptation agility using the cut-off frequency of the desired frequency
response, and to configure the adaptation tasks in the frequency domain with a desired adaptation agility.

Preliminary experiments of the adaptation tasks using our prototype system proved that the adaptations were
effective in delivering adapted QoS to the distributed applications, in our case, a Video-On-Demand application.
While sacrificing an insignificant amount of end-to-end delay time in order to accommodate the phase shift between
response and excitation signals, the adaptation tasks were able to deliver a smoother and graceful degradation to the
application in the event that sudden and unexpected Quality of Service degradations occurred significantly in a short

12

period of time. The adaptation was accomplished at an insignificant cost of computational overhead and an affordable
cost of buffer spaces, especially when taking into consideration the advantage of possible sharing of a common pool
of elastic buffers.

To conclude, we are able to approach QoS adaptations from a different perspective, and to precisely model QoS
metrics and the adaptation tasks in the context of a task control model and digital control theory. Our initial results
are promising with respect to the adaptation performance on a specific QoS metric, with affordable costs and minor
overhead.

References

[1] V. Bharghavan. Challenges and Solutions to Adaptive Computing and Seamless Mobility over Heterogeneous
Wireless Networks. to appear in the International Journal on Wireless Personal Communications: Special Issue
on Mobile and Wireless Networking, 1997.

[2] W. Feng. Rate-constrained bandwidth smoothing for the sdelivery of stored video. IS&T-SPIE Multimedia
Computing and Networking 1997, 1997.

[3] W. Feng and J. Rexford. A Comparison of Bandwidth Smoothing Techniques for the Transmission of Prerecorded
Compressed Video. IEEE INFOCOM 97, 1997.

[4] D. Flanagan. Java in a Nutshell. O’Reilly & Associates, Inc., 1996.

[5] D. Hull, A. Shankar, K. Nahrstedt, and J. Liu. An end-to-end qos model and management architecture. Proceed-
ings of IEEE Workshop on Middleware for Distributed Real-time Systems and Services, December 1997.

[6] D. Manolakis J. Proakis. Digital signal processing, principles, algorithms, and applications. Prentice Hall, 1996.

[7] S. Jha and M. Fry. Continuous Media Playback and Jitter Control. Proceedings of IEEE International Conference
on Multimedia Computing and Systems (Multimedia ’96), 1996.

[8] B. Li. Adaptive Behavior of Quality of Service in Distributed Multimedia Systems. Master’s thesis, University
of Illinois at Urbana-Champaign, 1997.

[9] S. Lu and V. Bharghavan. Adaptive Resource Management Algorithms for Indoor Mobile Computing Environ-
ments. ACM SIGCOMM ’96, 1996.

[10] S. Lu and V. Bharghavan. Adaptive Resource Reservation for Indoor Wireless LANs. IEEE GLOBECOM ’96,
1996.

[11] J. M. McManus and K. W. Ross. Video on Demand over ATM: Constant-Rate Transmission and Transport. IEEE
Journal on Selected Areas in Communications, June 1996.

[12] R. Ramjee, J. Kurose, D. Towsley, and H. Schulzrinne. Adaptive Playout Mechanisms for Packetized Audio
Applications in Wide-Area Networks. IEEE INFOCOM ’94, 2, 1994.

[13] J. Rexford, S. Sen, J. Dey, W. Feng, J. Kurose, J. Stankovic, and D. Towsley. Online Smoothing of Live, Variable-
Bit-Rate Video. the International Workshop on Network and Operating Systems Support for Digital Audio and
Video, 1997.

[14] M. Satyanarayanan, B. Noble, P. Kumar, and M. Price. Application-Aware Adaptation for Mobile Computing.
Operating Systems Review, 29, 1995.

[15] S. Shinners. Modern Control System Theory and Design. John Wiley and Sons, Inc., 1992.

13

