APPENDIX A
 Proof of Lemma 1

The risk-free profit $\Phi(p)=(p-r) d(p)$ is quasiconcave, since $p-r$ is monotonic and thus quasiconcave, $d(p)$ is concave and thus quasiconcave, and the product of two quasiconcave functions are quasiconcave. From (7) and (8), the first-order derivative of the profit loss function $\Lambda(p)$ is $d^{\prime}(p) m \int_{C-d(p)}^{B} f(u) \mathrm{d} u$, which is increasing in p. Thus $-\Lambda(p)$ is concave in p. Since $E[R(p)]=\Phi(p)-\Lambda(p)$, it can be readily shown that the sum of a quasiconcave function and a concave function is quasiconcave.

Appendix B

Proof of Theorem 2

Since $\bar{d}(p)$ includes both inelastic and elastic traffic demand, its elasticity is smaller, i.e. $\bar{\sigma}(p)<\sigma(p)$ for any p. The first-order condition of (15) amounts to

$$
\begin{equation*}
\bar{p}=\bar{r}-\frac{\bar{d}(\bar{p})}{\bar{d}^{\prime}(\bar{p})} \Rightarrow \bar{p}=\frac{\bar{r}}{1-\bar{\sigma}(\bar{p})^{-1}} \tag{22}
\end{equation*}
$$

by substituting (2). This implies that $1<\bar{\sigma}(\bar{p})$. At the optimal spot price $p^{*}, d\left(p^{*}\right)<C$ always holds as discussed in Sec. 3.3. Thus substituting (2) into (12), and applying the one-sided Chebyshev Inequality (Chebyshev-Cantelli Inequality) to upper bound $\operatorname{Pr}\left(\epsilon>C-d\left(p^{*}\right)\right)$,
$p^{*}<\frac{r}{1-\sigma\left(p^{*}\right)^{-1}}+m a$, where $a=\frac{\theta^{2}}{\theta^{2}+\left(C-d\left(p^{*}\right)-\mu\right)^{2}}$.
μ and θ are the mean and standard deviation of ϵ, respectively. Now assume that $p^{*} \geq \bar{p}$, which implies

$$
\frac{\bar{r}}{1-\bar{\sigma}(\bar{p})^{-1}}<\frac{r+m a\left(1-\sigma\left(p^{*}\right)^{-1}\right)}{1-\sigma\left(p^{*}\right)^{-1}}
$$

$1<\bar{\sigma}(\bar{p}) \leq \bar{\sigma}\left(p^{*}\right)<\sigma\left(p^{*}\right)$ by (3), and $0<1-\bar{\sigma}(\bar{p})^{-1}<$ $1-\sigma\left(p^{*}\right)^{-1}$. Thus,

$$
\bar{r}<r+m a\left(1-\sigma\left(p^{*}\right)^{-1}\right)
$$

which contradicts with condition (16).

Appendix C

PROOF OF LEMMA 3

Substituting (12) into (7),

$$
\begin{aligned}
& E\left[R\left(p^{*}\right)\right]=\left(p^{*}-r\right) d\left(p^{*}\right)-m \int_{C-d\left(p^{*}\right)}^{B}\left(d\left(p^{*}\right)-C+u\right) f(u) \mathrm{d} u \\
& \quad>(\bar{p}-r) d(\bar{p})-m \int_{C-d(\bar{p})}^{B}(d(\bar{p})-C+u) f(u) \mathrm{d} u \\
& >(\bar{p}-r) d(\bar{p})-(d(\bar{p})-C+B) m \cdot \operatorname{Pr}(\epsilon>C-d(\bar{p}))
\end{aligned}
$$

The first inequality is due to the optimality of p^{*}, and the second due to the fact that $d(\bar{p})-C+B \geq d(\bar{p})-$

