APPENDIX A PROOF OF LEMMA 1

The risk-free profit $\Phi(p) = (p-r)d(p)$ is quasiconcave, since p-r is monotonic and thus quasiconcave, d(p)is concave and thus quasiconcave, and the product of two quasiconcave functions are quasiconcave. From (7) and (8), the first-order derivative of the profit loss function $\Lambda(p)$ is $d'(p)m \int_{C-d(p)}^{B} f(u)du$, which is increasing in p. Thus $-\Lambda(p)$ is concave in p. Since $E[R(p)] = \Phi(p) - \Lambda(p)$, it can be readily shown that the sum of a quasiconcave function and a concave function is quasiconcave.

APPENDIX B PROOF OF THEOREM 2

Since $\bar{d}(p)$ includes both inelastic and elastic traffic demand, its elasticity is smaller, i.e. $\bar{\sigma}(p) < \sigma(p)$ for any p. The first-order condition of (15) amounts to

$$\bar{p} = \bar{r} - \frac{\bar{d}(\bar{p})}{\bar{d}'(\bar{p})} \Rightarrow \bar{p} = \frac{\bar{r}}{1 - \bar{\sigma}(\bar{p})^{-1}}$$
(22)

by substituting (2). This implies that $1 < \bar{\sigma}(\bar{p})$. At the optimal spot price p^* , $d(p^*) < C$ always holds as discussed in Sec. 3.3. Thus substituting (2) into (12), and applying the one-sided Chebyshev Inequality (Chebyshev-Cantelli Inequality) to upper bound $\Pr(\epsilon > C - d(p^*))$,

$$p^* < \frac{r}{1 - \sigma(p^*)^{-1}} + ma$$
, where $a = \frac{\theta^2}{\theta^2 + (C - d(p^*) - \mu)^2}$

 μ and θ are the mean and standard deviation of ϵ , respectively. Now assume that $p^* \geq \bar{p}$, which implies

$$\frac{\bar{r}}{1-\bar{\sigma}(\bar{p})^{-1}} < \frac{r+ma\left(1-\sigma(p^*)^{-1}\right)}{1-\sigma(p^*)^{-1}}.$$

 $1 < \bar{\sigma}(\bar{p}) \leq \bar{\sigma}(p^*) < \sigma(p^*)$ by (3), and $0 < 1 - \bar{\sigma}(\bar{p})^{-1} < 1 - \sigma(p^*)^{-1}$. Thus,

$$\bar{r} < r + ma\left(1 - \sigma(p^*)^{-1}\right),$$

which contradicts with condition (16).

APPENDIX C PROOF OF LEMMA 3

Substituting (12) into (7),

$$E[R(p^*)] = (p^* - r)d(p^*) - m \int_{C-d(p^*)}^{B} (d(p^*) - C + u) f(u)du$$

> $(\bar{p} - r)d(\bar{p}) - m \int_{C-d(\bar{p})}^{B} (d(\bar{p}) - C + u) f(u)du$
> $(\bar{p} - r)d(\bar{p}) - (d(\bar{p}) - C + B)m \cdot \Pr\left(\epsilon > C - d(\bar{p})\right)$

The first inequality is due to the optimality of p^* , and the second due to the fact that $d(\bar{p}) - C + B \ge d(\bar{p}) - C$ $C+u. \; p^* < \bar{p},$ thus $E'[R(\bar{p})] < 0$ due to quasiconcavity. From (11)

$$m \cdot \Pr\left(C - d(\bar{p})\right) < \bar{p} + \frac{d(\bar{p})}{d'(\bar{p})} - r$$

 $\bar{p} + \frac{d(\bar{p})}{d'(\bar{p})} = \bar{r}$ from (22). Thus,

$$\begin{split} E[R(p^*)] &> (\bar{p}-r)d(\bar{p}) - (d(\bar{p}) - C + B)(\bar{r} - r) \\ &= (\bar{p} - \bar{r})d(\bar{p}) + (\bar{r} - r)(d(\bar{p}) - d(\bar{p}) + C - B) \\ &= E[\bar{R}(\bar{p})] + (\bar{r} - r)(C - B). \end{split}$$

C > B always holds as discussed in Sec. 3.3.