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Abstract—Lately, for geo-distributed data centers, a workload management approach that routes user requests to locations with

cheaper and cleaner electricity has been developed to reduce energy consumption and cost. We consider two key aspects that

have not been explored in this approach. First, through empirical studies, we find that the energy efficiency of cooling systems

depends critically on the ambient temperature, which exhibits significant geographical diversity. Temperature diversity can be used

to reduce the cooling energy overhead. Second, energy consumption comes from not only interactive workloads driven by user

requests, but also delay tolerant batch workloads that run at the back-end. The elastic nature of batch workloads can be exploited

to further reduce the energy cost.

In this paper, we propose to make workload management temperature aware. We formulate the problem as a joint optimization of

request routing for interactive workloads and capacity allocation for batch workloads. We develop a distributed algorithm based on

an m-block alternating direction method of multipliers (ADMM) algorithm that extends the classical 2-block algorithm. We prove

the convergence and rate of convergence results under general assumptions. Through trace-driven simulations, we find that our

approach consistently provides 15%–20% cooling energy reduction, and 5%–20% overall cost reduction over existing methods.

Index Terms—Data centers, energy, workload management, cooling efficiency, distributed optimization, ADMM

✦

1 INTRODUCTION

Geo-distributed data centers are the powerhouses be-
hind many Internet-scale services. They are deployed
across the globe to provide better latency and redun-
dancy. These data centers run hundreds of thousands
of servers, consume megawatts of power with massive
carbon footprint, and incur millions of dollars of elec-
tricity cost [14], [27]. Thus, the topic of reducing their
energy consumption and cost has received significant
attention [6], [10], [11], [13], [14], [21], [22], [27], [28],
[31].

Energy consumption of individual data centers can
be reduced with more efficient hardware and inte-
grated thermal management [6], [10], [13], [31]. Re-
cently, important progress has been made on a new
workload management approach that instead focuses on
the overall energy cost of geo-distributed data centers.
It exploits the geographical diversity of electricity
prices by optimizing the request routing algorithm to
route user requests to locations with cheaper and
cleaner electricity [14], [21], [22], [27], [28].

In this paper, we consider two key aspects of geo-
distributed data centers that have not been explored
in the existing literature.

First, cooling systems, consuming 30% to 50% of
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the total energy [26], [31], are often modeled with a
constant and location-independent energy efficiency
factor in existing work. This tends to be an over-
simplification in reality. Through a study of a state-
of-the-art production cooling system (Sec. 2), we find
that temperature has direct and profound impact on
cooling energy efficiency. This is especially true with
outside air cooling technology, which has seen increas-
ing adoption in mission-critical data centers [1]–[3]. As
we will show, its partial PUE (power usage effective-
ness), defined as the sum of server power and cooling
overhead divided by server power, varies from 1.30 to
1.05 when temperature drops from 35 ◦C to -3.9 ◦C .

Through an extensive empirical analysis of daily and
hourly climate data for 13 Google data centers, we
also find that temperature varies significantly across
both time and location, which is intuitive to under-
stand. These observations suggest that data centers
at different locations have distinct and time-varying
cooling energy efficiencies. This establishes a strong
case for making workload management temperature
aware, where such temperature diversity can be used
along with price diversity in making request routing
decisions to reduce the overall cooling energy.

Second, energy consumption comes not only from
interactive workloads driven by user requests, but
also from delay-tolerant batch workloads, such as
indexing and data mining jobs, that run at the back-
end. Such a mixed nature of data center workloads,
verified by measurement studies [29], provides more
opportunities to utilize the energy cost diversity. The
key observation is that batch workloads are elastic
to resource allocations, whereas interactive workloads
are highly sensitive to latency and have more pro-
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found impact on revenue [20]. Thus at times when
one location is comparatively cost efficient, we can
increase the capacity for interactive workloads by
reducing the resources reserved for batch jobs. More
requests can then be routed to and processed at this
location, and the cost saving can be more substantial.
We thus advocate a holistic workload management
approach, where capacity allocation between interactive
and batch workloads is dynamically optimized with
request routing. Such dynamic capacity allocation is
also technically feasible because batch jobs run on
large-scale distributed systems.

Towards temperature aware workload management,
we first propose a general framework to capture the
important trade-offs involved (Sec. 3). We model both
energy cost and utility loss, which corresponds to
performance-related revenue reduction. We develop
an empirical cooling efficiency model based on a pro-
duction system. The problem is formulated as a joint
optimization of request routing and capacity alloca-
tion. The technical challenge is to develop a distributed
algorithm for the large-scale optimization with tens of
millions of variables for a production geo-distributed
cloud. Dual decomposition with subgradient methods
are often used to develop distributed optimization al-
gorithms. They, however, require delicate adjustments
of step sizes, which makes convergence difficult to
achieve for large-scale problems.

We draw upon the alternating direction method of
multipliers (ADMM), a simple yet powerful algorithm
that recently has found practical use in many large-
scale distributed convex optimization problems [9].
It works for problems whose objective and variables
can be divided into two disjoint parts, by iteratively
optimizing one part of the objective with one block of
variables only. Our formulation, as we shall explain
in Sec. 3, has three blocks of variables instead of two,
and falls into the more general and difficult case of m-
block (m ≥ 3) ADMM. Little is known about m-block
ADMM until recently with two exceptions [15], [18].
[15] establishes the convergence of m-block ADMM for
strongly convex objective functions; [18] further shows
the linear convergence of m-block ADMM under the
assumption that the relation matrix is full column
rank, which is, however, not the case in our formation.
This motivates us to refine the framework in [18] so
that it can be applied to our setup.

In particular, in Sec. 4 we construct a novel proof
for the m-block ADMM algorithm in [18] to show
that by replacing the full-rank assumption with some
mild assumptions on the objective functions, we can
obtain the same convergence and rate of convergence
results as in [18]. Our contribution is important in that
it extends the applicability of the m-block ADMM to
the more general case where the full-rank assumption
does not hold. For our problem, we further develop a
distributed algorithm in Sec. 5, which is amenable to
a parallel implementation in data centers.

We finally conduct extensive trace-driven simula-
tions with an empirical cooling efficiency model, elec-
tricity prices, and temperature data to realistically
assess the potential of our approach (Sec. 6). We
find that temperature aware workload management is
consistently able to deliver a 15%–20% cooling energy
reduction and a 5%–20% overall cost reduction for geo-
distributed data centers compared to existing methods.
The distributed ADMM algorithm converges quickly
within 70 iterations, while a dual decomposition ap-
proach with subgradient methods fails to converge
within 200 iterations.

2 BACKGROUND AND MOTIVATION

Before making a case for temperature aware workload
management, we introduce some background of data
center cooling, and empirically assess the geographical
diversity of temperature.

2.1 Data center Cooling

Data center cooling is provided by the computer room
air conditioners (CRACs) placed on the raised floor
of the facility. The CRACs cool down the hot air
exhausted from server racks by forcing it to travel
through a cooling coil. Heat is often extracted by
chilled water in the cooling coil, and the returned
hot water is cooled through mechanical refrigeration
cycles in an outside chiller plant continuously. The
compressor of a chiller consumes a massive amount
of energy, and accounts for the majority of the overall
cooling cost [31]. The result is an energy-gobbling
cooling system that typically consumes a significant
portion (∼30%) of the total data center power [31].

2.2 Outside Air Cooling

To improve energy efficiency, various so-called free
cooling technologies that operate without mechanical
chillers have recently been adopted. In this paper, we
focus on a more economically viable technology called
outside air cooling that uses an air-side economizer to
direct cold outside air into the data center to cool down
servers. The hot exhaust air is simply rejected out.
The advantage of outside air cooling can be signifi-
cant: Intel ran a 10-month experiment using 900 blade
servers, and reported that 67% of the cooling energy
can be saved with only slightly increased hardware
failure rates [19]. Companies like Google [1], Facebook
[2], and HP [3] have been operating their data centers
with up to 100% outside air cooling, which reduces
the average PUE to below 1.2 and saves millions of
dollars on an annual basis.

The energy efficiency of outside air cooling heavily
depends on ambient temperature among other factors.
When temperature is lower, less air is needed for
heat exchange, and the air handler fan speed can
be reduced. Thus, a CRAC with an air-side econo-
mizer usually operates in three modes: mechanical,



XU ET. AL.: TEMPERATURE AWARE WORKLOAD MANAGEMENT IN GEO-DISTRIBUTED DATA CENTERS 3

hybrid, and outside air. Table 1 shows the empirical
COP1 and partial PUE (pPUE)2 of a state-of-the-art
CRAC with an air-side economizer. Clearly, as ambient
temperature drops, the CRAC relies more on outside
air cooling, and switches the operating mode from
mechanical to hybrid and then outside air. As a result
the COP improves six-fold from 3.3 to 19.5, and the
pPUE decreases from 1.30 to 1.05. Due to the sheer
amount of energy a data center draws, the numbers
imply huge monetary savings for the energy bill.

Outdoor ambient Cooling mode COP pPUE
35◦C(90◦F) Mechanical 3.3 1.30

21.1◦C(70◦F) Mechanical 4.7 1.21
15.6◦C(60◦F) Hybrid 5.9 1.17
10◦C(50◦F) Outside air 10.4 1.1

-3.9◦C(25◦F) Outside air 19.5 1.05

TABLE 1: Efficiency of Emerson’s DSE
TM

cooling system with an
EconoPhase air-side economizer [12]. Return air is set at

29.4◦C(85◦F).

With the increasing use of outside air cooling, this
finding motivates our proposal to make workload
management temperature aware. Our idea also applies
to data centers using mechanical cooling, because as
shown in Table 1, the chiller energy efficiency also
depends on outside temperature, albeit milder.

2.3 An Empirical Climate Study

Our idea hinges upon the geographical diversity of
temperature. We substantiate this claim with an em-
pirical analysis of historical climate data.

We use Google’s data center locations for our study
[4]. Google has 6 data centers in the U.S., 1 in South
America, 3 in Europe, and 3 in Asia. We acquire his-
torical temperature data from various data repositories
of the National Climate Data Center [5] for all 13
locations, covering the entire one-year period of 2011.
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Fig. 1: Daily average temperature at three Google data center
locations [5]. Time is in UTC.

Figure 1 plots the daily average temperatures for
three select locations. Geographical diversity exists
despite the clear seasonal pattern shared among all
locations. Diversity is more salient for locations in
different hemispheres (e.g. Chile). We also observe a

1. COP, coefficient of performance, is defined for a cooling device
as the ratio between cooling capacity and power.

2. pPUE is defined as the sum of cooling capacity and cooling
power divided by cooling capacity. Nearly all the power delivered to
servers translates to heat, which matches the CRAC cooling capacity.

significant amount of day-to-day volatility, suggesting
that the availability and capability of outside air cool-
ing constantly varies across regions, and there is no
single location that is always cooling efficient.

We then examine short-term temperature volatility.
As shown in Figure 2, the hourly temperature vari-
ations are more dramatic and highly correlated with
time-of-day, which is intuitive to understand. Further,
the highs and lows do not occur at the same time for
different regions due to time differences.
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Fig. 2: Hourly temperature variations at three Google data center
locations [5]. Time is in UTC.

The analysis reveals that for globally deployed data
centers, local temperature at individual locations ex-
hibits both time and geographical diversity. Thus, a
carefully designed workload management scheme is
both important and necessary to dynamically adjust
data center operations to the ambient conditions, and
to save energy costs. We also study the correlations
of temperature across data centers as shown in Ap-
pendix A, and find it rather mild. Correlation struc-
tures do not impact problem formulation and algo-
rithm design, as long as the temperature differences
result in tangible pPUE differences and warrant a
temperature-aware approach.

3 MODEL

We introduce our model and formulation of the tem-
perature aware workload management problem here.

3.1 System Model

We consider a discrete time model where the length
of a time slot matches the time scale at which request
routing and capacity allocation decisions are made,
e.g., hourly. We consider a provider that runs a set of
data centers J in different regions. Each data center
j ∈ J has a fixed capacity Cj in terms of the number
of servers. To model data center operating costs, we
consider energy cost and utility loss as detailed below.

3.2 Energy Cost and Cooling Efficiency

We focus on servers and the cooling system in our en-
ergy model. For servers, we adopt the empirical model
from [13] that calculates the individual server power
consumption as an affine function of CPU utilization,
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Pidle +
(

Ppeak − Pidle

)

u. Pidle is the server power when
idle, Ppeak is the server power when fully utilized, and
u is the CPU load. This model is especially accurate
for calculating the aggregated power of a large number
of servers [13]. It was reported in [13] with measure-
ments from thousands of production servers that, the
single activity signal of CPU utilization produces very
accurate power estimation results. The reason is that
CPU and memory are the main contributors to the
dynamic power, and other components either have
small dynamic ranges or their power usage correlates
well with CPU. Thus it is unnecessary to use more
complex models. Many related studies also adopt the
same power model [14], [21], [22], [27], [28].

Thus, assuming that workloads are perfectly dis-
patched and servers have a uniform utilization as
in the literature [14], [21], [22], [27], [28], the server
power of data center j can be modeled as CjPidle +
(

Ppeak − Pidle

)

Wj , where Wj denotes the total work-
load in terms of the number of servers required.

For the cooling system, we take an empirical ap-
proach based on energy efficiency data of production
CRACs. As noted in Sec. 2.2, a production CRAC au-
tomatically switches modes according to the ambient
condition. Therefore, we study CRACs as a black box,
with outside temperature as the input, and its overall
energy efficiency as the output.

Specifically, we use partial PUE (pPUE)3. As in
Sec. 2.2, pPUE is defined as

pPUE =
Server power + Cooling power

Server power
.

A smaller value indicates a more efficient system
with less overhead. We apply regression techniques to
the empirical pPUE data of the Emerson CRAC [12]
introduced in Table 1. We find that the best fitting
model—which minimizes the square error among all
polynomial models—describes pPUE as a quadratic
function of the outside temperature:

pPUE = 7.1705× 10−5T 2 + 0.0041T + 1.0743

A plot of the function with the original data points can
be found in Appendix B.

Given the outside temperature Tj , the total data
center energy as a function of the workload Wj can
be expressed as

Ej(Wj) = (CjPidle +
(

Ppeak − Pidle

)

Wj) · pPUE(Tj) · t,
(1)

where t is the duration of one time slot. Here we
implicitly assume that Tj is known a priori and do
not include it as the function variable. This is valid
since short-term weather forecast is fairly accurate and
accessible.

A data center’s electricity price is denoted as Pj .
In reality, electricity can be purchased from local

3. The conventional PUE metric reflects the energy efficiency of
the entire facility.

day-ahead or hour-ahead forward markets at a pre-
determined price [27]. Thus, we assume that Pj is
known a priori and remains fixed for the duration of
a time slot. The total energy cost, including server and
cooling power, is simply PjEj(Wj).

3.3 Utility Loss

Request routing. The concept of utility loss captures
the lost revenue due to the user-perceived latency
for request routing decisions. Latency is arguably the
most important performance metric for most cloud ser-
vices. We focus on the end-to-end propagation latency,
which largely accounts for the user-perceived latency
[24]. The provider obtains the propagation latency
Lij between user i and data center j through active
measurements [23] or other means.

We use αij to denote the volume of requests routed
to data center j from user i ∈ I, and Di to denote
the demand of each user that can be predicted [25].
Here, a user is an aggregated group of customers
from a common geographical region, which may be
identified by a unique IP prefix. The lost revenue
from user i then depends on the average propagation
latency

∑

j αijLij/Di through a generic delay utility
loss function Ui. Ui can take various forms depending
on the cloud service. Our algorithm and proof work
for general utility loss functions as long as Ui is
increasing, differentiable, and convex.

We comment that differentiability and convexity are
standard assumptions made in the literature [14], [21],
[22], [27], [28] to make the problems tractable. While
the empirical utility loss functions may not necessarily
satisfy these assumptions, convexification procedures
may be applied to approximate them. We also note
that user utility loss may depend on other factors,
such as a competitor’s latency performance. We choose
not to consider them to avoid additional modeling
assumptions and complexity. Appendix C has more
discussion on the utility loss model.

As a case study, here we use a quadratic function to
model user’s increased tendency to leave the service
with increased latency.

Ui (αi) = qDi





∑

j∈J

αijLij/Di





2

, (2)

where q is the delay price that translates latency to
monetary terms, and αi = (αi1, . . . , αi|J |)

T . Utility loss
is clearly zero when latency is zero between the user
and the data center.

Capacity allocation. We denote the utility loss of
allocating βj servers for batch workloads as a differ-
entiable, decreasing, and convex function Vj(βj), since
allocating more resources increases the performance of
batch jobs. Unlike interactive services, batch jobs are
delay tolerant and resource elastic. To model the utility
loss of resource allocation, since the loss is zero when
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the capacity is fully allocated to batch jobs, an intuitive
definition can be of the following form:

Vj(βj) = r(logCj − log βj), (3)

where r is the utility price that converts the loss to
monetary terms. Observe that it captures the intu-
ition that increasing resources results in a decreasing
marginal reduction of utility loss.

3.4 Problem Formulation

We now formulate the temperature aware workload
management problem. For a given request routing
scheme α, the total cost associated with interactive
workloads can be written as

∑

j∈J

Ej

(

∑

i∈I

αij

)

Pj +
∑

i∈I

Ui (αi) . (4)

For a given capacity allocation decision β, the total cost
associated with batch workloads is:

∑

j∈J

Ej(βj)Pj +
∑

j∈J

Vj(βj). (5)

The optimization can be formulated as:

minimize (4) + (5) (6)

subject to: ∀i :
∑

j∈J

αij = Di, (7)

∀j :
∑

i∈I

αij ≤ Cj − βj , (8)

α, β � 0, (9)

variables: α ∈ R
|I|×|J |, β ∈ R

|J |.

(6) is the objective function that jointly considers the
cost of request routing and capacity allocation. (7) is
the workload conservation constraint to ensure the
user demand is satisfied. (8) is the data center capacity
constraint, and (9) is the nonnegativity constraint.

We assume that requests can be directed to any
data center in the formulation. In practice, typically
a request can only be routed to a few locations
where the associated data is available, i.e. data lo-
cality constraints. This can be readily accommodated
as additional constraints in the formulation. From an
optimization point of view, the only difference is that
the convex constraint set is different. For more details
see Appendix D.

3.5 Transforming to the ADMM Form

Problem (6) is a large-scale convex optimization prob-
lem. The number of users, i.e., unique IP prefixes,
is O(105)–O(106) for production systems. Hence, our
problem can have tens of millions of variables and
millions of constraints. In such a setting, a distributed
algorithm is preferable to fully utilize the computing
resources of data centers. Traditionally, dual decom-
position with subgradient methods [8] are often used
for this purpose. However, they suffer from the curse

of step sizes. For the final output to be close to the
optimum, we need to strategically pick the step size
at each iteration, leading to the well-known problem
of slow convergence with large problem sizes.

Alternating direction method of multipliers is a simple
yet powerful algorithm that is able to overcome the
drawbacks of dual decomposition methods, and is
well suited to large-scale distributed convex optimiza-
tion. Though developed in the 1970s [7], ADMM has
recently received renewed interest, and found practical
use in many large-scale distributed convex optimiza-
tion problems in statistics, machine learning, etc. [9].
Before illustrating our new convergence proof and dis-
tributed algorithm that extend the classical framework,
we introduce the basics of ADMM, followed by a
transformation of (6) to the ADMM form.

ADMM solves problems in the form

min f1(x1) + f2(x2) (10)

s.t. A1x1 +A2x2 = b,

x1 ∈ C1, x2 ∈ C2,

with variables xℓ ∈ R
nℓ , where Aℓ ∈ R

p×nℓ , b ∈ R
p,

fℓ’s are convex functions, and Cℓ’s are non-empty
polyhedral sets. Thus, the objective function is separable
over two sets of variables, which are coupled through
an equality constraint.

We can form the augmented Lagrangian [17] by
introducing an extra L-2 norm term ‖A1x1+A2x2−b‖22
to the objective:

Lρ(x1, x2; y) = f1(x1)+f2(x2)+yT (A1x1+A2x2− b)

+ (ρ/2)‖A1x1 +A2x2 − b‖22.

Here, ρ > 0 is the penalty parameter (L0 is the stan-
dard Lagrangian for the problem). Clearly the problem
with the penalty term is equivalent to the original
problem (10), since for any feasible xℓ the penalty
term added to the objective is zero. The benefits of
introducing the penalty term are improved numerical
stability and faster convergence in practice [9].

ADMM solves the dual problem with the iterations:

xt+1

1 := argmin
x1∈C1

Lρ(x1, x
t
2; y

t),

xt+1

2 := argmin
x2∈C2

Lρ(x
t+1

1 , x2; y
t),

yt+1 := yt + ρ(A1x
t+1

1 +A2x
t+1

2 − b).

Note the step size for the dual update is simply the
penalty parameter ρ. Thus, x1 and x2 are updated in
an alternating or sequential fashion, which accounts
for the term alternating direction. Separating the min-
imization over variables is precisely what allows for
decomposition when fℓ is separable, which will prove
to be useful in our algorithm design.

The optimality and convergence of 2-block ADMM
can be guaranteed under mild technical assumptions
[7]. In practice, it is often the case that ADMM con-
verges to modest accuracy within a few tens of itera-
tions [9], which makes it attractive in practical use.
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Our formulation (6) has a separable objective func-
tion. However, the request routing decision α and
capacity allocation decision β are coupled by an in-
equality constraint rather than an equality constraint
as in ADMM problems. Thus we introduce a slack
variable γ ∈ R

|J |, and transform (6) to the following

minimize (4) + (5) + I
R

|J |
+

(γ) (11)

subject to: (7), (9),

∀j :
∑

i

αij + βj + γj = Cj , (12)

variables: α ∈ R
|I|×|J |, β ∈ R

|J |, γ ∈ R
|J |.

Here, I
R

|J |
+

(γ) is an indicator function defined as

I
R

|J |
+

(γ) =

{

0, γ � 0,
+∞, otherwise.

(13)

The new formulation (11) is equivalent to (6), since
for any feasible α and β, γ � 0 holds, and the indicator
function in the objective values to zero. Clearly, it is in
the ADMM form, with a key difference that it has three
sets of variables in the objective function and equality
constraint (12). The convergence of the generalized m-
block ADMM, where m ≥ 3, has long remained an
open problem. Though it seems natural to directly
extend the classical 2-block algorithm to the m-block
case, such an algorithm may not converge unless
some additional back-substitution step is taken [16].
Recently, some progresses have been made by [15],
[18] that prove the convergence of m-block ADMM
for strongly convex objective functions and the linear
convergence of m-block ADMM under a full-column-
rank relation matrix. However, the relation matrix in
our setup is not full column rank. Thus, we need a
new proof for the linear convergence under a general
relation matrix, together with a distributed algorithm
inspired by the proof.

4 THEORY

This section first introduces a generalized m-block
ADMM algorithm inspired by [15], [18]. Then a new
convergence proof is presented, which replaces the full
column rank assumption with some mild assumptions
on the objective function, and further simplifies the
proof in [18]. The notations and discussions in this
section are made intentionally independent of the
other parts of the paper in order to present the proof
in a mathematically general way.

4.1 Algorithm

We consider a convex optimization problem

min
m
∑

i=1

fi(xi) (14)

s.t.
m
∑

i=1

Aixi = b

with variables xi ∈ R
ni (i = 1, . . . ,m), where fi :

R
ni → R (i = 1, . . . ,m) are closed proper convex

functions; Ai ∈ R
l×ni (i = 1, . . . ,m) are given matrices;

and b ∈ R
l is a given vector.

We form the augmented Lagrangian

Lρ(x1, . . . , xm; y) =

m
∑

i=1

fi(xi) + yT (

m
∑

i=1

Aixi − b)

+ (ρ/2)‖

m
∑

i=1

Aixi − b‖22. (15)

As in [18], a generalized ADMM algorithm has the
following:

xk+1

i = argmin
xi

Lρ(x
k+1

1 , . . . , xk+1

i−1
, xi, x

k
i+1, . . . , x

k
m; yk),

i = 1, . . . ,m,

yk+1 = yk + ̺(

m
∑

i=1

Aix
k+1

i − b),

where ̺ > 0 is the step size for the dual update. Note
that the step size ̺ is different from the penalty param-
eter ρ in the generalized m-block ADMM algorithm,
for otherwise it may not converge [16].

4.2 Assumptions

We present two assumptions on the objective func-
tions, based on which we are able to show the conver-
gence of the generalized m-block ADMM algorithm.

Assumption 1: The objective functions fi (i =
1, . . . ,m) are strongly convex.

Note that strong convexity is quite reasonable in
engineering practice. This is because a convex function
f(x) can be always well-approximated by a strongly
convex function f̄(x). For instance, if we choose f̄(x) =
f(x)+ǫ‖x‖22 for some sufficiently small ǫ > 0, then f̄(x)
is strongly convex.

Assumption 2: The gradients ∇fi (i = 1, . . . ,m) are
Lipschitz continuous.

Assumption 2 says that, for each i, there exists some
constant κi > 0 such that for all x1, x2 ∈ R

ni ,

‖∇fi(x1)−∇fi(x2)‖2 ≤ κi‖x1 − x2‖2,

which is again reasonable in practice, since κi can be
made sufficiently large.

4.3 Convergence

In this section, we prove the convergence of the gener-
alized ADMM algorithm. We outline the main idea of
the analysis here. Some technical details are deferred
in the Appendix for better readability.

Define the primal and dual optimality gaps as

∆k
p = Lρ(x

k+1; yk)− d(yk),

∆k
d = d∗ − d(yk),
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respectively. By the definition of d(y), ∆k
p ≥ 0. Simi-

larly, ∆k
d ≥ 0. Define

V k = ∆k
p +∆k

d.

We will see that V k is a Lyapunov function for the
algorithm, i.e., a nonnegative quantity that decreases
in each iteration.

Our proof relies on three technical lemmas.
Lemma 1: There exists a constant ϑ > 0 such that

V k ≤ V k−1 − ̺‖Ax̄k+1 − b‖22 − ϑ‖xk+1 − xk‖22, (16)

in each iteration, where x̄k+1 = argminx Lρ(x; y
k).

Proof: See Appendix G.
Lemma 2: For any given δ > 0, there exists a con-

stant τ > 0 (depending on δ) such that for any (x, y)
satisfying ‖x‖ + ‖y‖ ≤ 2δ, the following inequality
holds

‖x− x̄(y)‖ ≤ τ‖∇xLρ(x; y)‖, (17)

where x̄(y) = argminx Lρ(x; y).
Proof: See Appendix F.

Lemma 3: There exists a constant η > 0 such that

‖∇xLρ(x
k; yk)‖2 ≤ η‖xk − xk+1‖2. (18)

Proof: See Appendix E.
By Lemma 1, we have

∞
∑

k=0

(

̺‖Ax̄k+1 − b‖22 + ϑ‖xk+1 − xk‖22
)

≤ V 0.

Hence, ‖Ax̄k+1 − b‖22 → 0 and ‖xk+1 − xk‖22 → 0,
as k → ∞. Suppose that the level set of ∆p + ∆d is
bounded. Then by the Bolzano-Weierstrass theorem,
the sequence {xk, yk} has a convergent subsequence,
i.e.,

lim
k∈R,k→∞

(xk, yk) = (x̃, ỹ),

for some subsequence R, where (x̃, ỹ) denotes the limit
point. By using Lemma 2 and Lemma 3, we can show
that the limit point (x̃, ỹ) is an optimal primal-dual
solution. Hence,

lim
k∈R,k→∞

V k = lim
k∈R,k→∞

∆k
p +∆k

d = 0.

Since V k decreases in each iteration, the convergence
of a subsequence of V k implies the convergence of V k,
and we have

lim
k→∞

∆k
p +∆k

d = 0.

This further implies that ∆k
p and ∆k

d converge to 0.
To sum up, we have the following convergence

theorem for the generalized ADMM algorithm.
Theorem 1: Suppose Assumptions 1,and 2 hold and

that the level set of ∆p + ∆d is bounded. Then both
the primal gap ∆k

p and the dual gap ∆k
d converge to

0.
Remark 1: By some additional argument, we can show

that the sequence {∆k
p +∆k

d} converges to zero Q-linearly,
and that both ∆k

p and ∆k
d converge to zero R-linearly.

The key step is to show that {∆k
p + ∆k

d} contracts
geometrically, i.e.,

∆k+1
p +∆k+1

d ≤ µ(∆k
p +∆k

d)

for some µ ∈ (0, 1). Since the key step can be established
by using a similar argument in the proof of Theorem 3.1 in
[18], we omit the proof here due to space constraint.

Remark 2: The linear convergence of m-block ADMM is
difficult, if not impossible, to show under the framework
of [15]. Thus, our result extends the result in [15] from
convergence to linear convergence.

5 A DISTRIBUTED ALGORITHM

We now develop a distributed solution algorithm
based on the generalized ADMM algorithm in Sec. 4.1.
Directly applying the algorithm to our problem (11)
will lead to a centralized algorithm. The reason is that
when the augmented Lagrangian is minimized over α,

the penalty term
∑

j

(

∑

i αij + βj + γj −Cj

)2

couples

αij ’s across i, and the utility loss
∑

i Ui(αi) couples
αij ’s across j. The joint optimization of utility loss
and the quadratic penalty is particularly difficult to
solve, especially when the number of users is large,
since Ui(αi) can take any general form. If they can be
separated, then we will have a distributed algorithm
where each Ui(αi) is optimized in parallel, and the
quadratic penalty term is optimized efficiently with
existing methods.

Towards this end, we introduce a new set of auxil-
iary variables aij = αij , and re-formulate the problem
(11) as follows:

minimize
∑

j

Ej(
∑

i

aij)Pj +
∑

i

Ui(αi) + (5) + I
R

|J |
+

(γ)

subject to: (7), (9),

∀j :
∑

i

aij + βj + γj = Cj ,

∀i, j : aij = αij ,

variables: a, α ∈ R
|I|×|J |, β, γ ∈ R

|J |. (19)

This is a 4-block ADMM problem, where aij re-
places αij in the objective function and constraint (12)
when the coupling happens across users i. This is
the key step that enables the decomposition of the
α-minimization problem. The augmented Lagrangian
can then be readily obtained from (15). By omitting
the irrelevant terms, we can see that at each iteration
k + 1, the α-minimization problem is

min
∑

i

Ui(αi)−
∑

j

∑

i

(

ϕijαij −
ρ

2
(α2

ij − 2αija
k
ij)

)

s.t. ∀i :
∑

j

αij = Di, αi � 0, (20)

where ϕij is the dual variable for the equality con-
straint aij = αij . This is clearly decomposable over
i into |I| per-user sub-problems since the objective
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function and constraint are separable over i. The per-
user sub-problem is of a much smaller scale with only
|J | variables and |J | + 1 constraints, and is easy to
solve even though it is a non-linear problem for a
general Ui.

Some may now wonder if the auxiliary variable a is
hard to solve for. The a-minimization problem is

min
∑

j

(

ρ
∑

i

aij(β
k
j + γk

j − Cj + 0.5aij − αk+1

ij )

+ Ej

(

∑

i

aij

)

Pj +
∑

i

aij(λ
k
j + ϕk

ij) +
ρ

2
(
∑

i

aij)
2

)

s.t. a � 0, (21)

where λj is the dual variable for the capacity constraint
(8). This is decomposable over j into |J | per-data cen-
ter sub-problems. Moreover, each per-data center sub-
problem is a standard quadratic program. Though it is
large-scale, it can be transformed into a second-order
cone program and solved efficiently (see Appendix H).
β- and γ-minimization steps are clearly decompos-

able over j. The entire procedure is summarized below.
Distributed 4-block ADMM.
Initialize a, α, β, γ, λ, ϕ to 0. For k = 0, 1, . . . , repeat

1) α-minimization: Each user solves the following sub-problem
for αk+1

i :

min Ui(αi)−
∑

j

(

ϕijαij −
ρ

2
(α2

ij − 2αija
k
ij)

)

s.t.
∑

j

αij = Di, αi � 0. (22)

2) a-minimization: Each data center solves the following sub-
problem for ak+1

j = (ak+1

1j , . . . , ak+1

|I|j
)T :

min Ej

(

∑

i

aij

)

Pj +
∑

i

aij(λ
k
j + ϕk

ij) +
ρ

2
(
∑

i

aij)
2

+ ρ
(

∑

i

aij(β
k
j + γk

j − Cj + 0.5aij − αk+1

ij )
)

s.t. aj � 0. (23)

3) β-minimization: Each data center solves the following sub-
problem for βk+1

j :

min Ej(βj)Pj + Vj(βj) + λk
j βj

+
ρ

2

(

∑

i

ak+1

ij + βj + γk
j − Cj

)2

s.t. βj ≥ 0.

4) γ-minimization:

γk+1

j = max

{

0, Cj −
λj

ρ
−

∑

i

ak+1

ij − βk+1

j

}

, ∀j.

5) Dual update: Each data center updates λj for the capacity
constraint (8):

λk+1

j = λk
j + ̺

(

∑

i

ak+1

ij + βk+1

j + γk+1

j − Cj

)

.

Each user updates ϕij for the equality constraint aij = αij :

ϕk+1

ij = ϕk
ij + ̺(ak+1

ij − αk+1

ij ), ∀j.

The distributed nature of our algorithm allows for
an efficient parallel implementation in data centers. In
step 1, the per-user sub-problem (22) can be solved in

parallel on each server. Since (22) is a small-scale con-
vex optimization as discussed above, the complexity
is low. A multi-threaded implementation can further
speed up the algorithm with multi-core hardware. The
penalty parameter ρ and utility loss function Ui can be
configured at each server before the algorithm runs.
Step 2 and 3 involve solving |J | per-data center sub-
problems respectively, which can also be implemented
in parallel with only |J | servers.

Due to space limit, more discussions about the al-
gorithm including its convergence, are in Appendix I.

6 EVALUATION

We perform trace-driven simulations to realistically
assess the potential of temperature aware workload
management.

6.1 Setup

We rely on the Wikipedia request traces [30] to repre-
sent the interactive workloads of a cloud service. The
dataset we use contains, among other things, 10% of
all user requests issued to Wikipedia from the 24-hour
period of January 1–2, 2008 UTC. The workloads are
normalized to a number of servers, assuming that each
request requires 10% of a server’s CPU. The traces
reflect the diurnal pattern of real-world interactive
workloads. The prediction of workloads can be done
accurately [25], and we do not consider prediction
error here. The optimization is solved hourly.

We consider Google’s infrastructure [4] as in Sec. 2.3.
Each data center’s capacity Cj is uniformly distributed
between 10K to 20K servers. The empirical CRAC
efficiency model developed in Sec. 3.2 is used to derive
the total energy consumption of all 13 locations under
different temperatures. We use empirical power prices
from the U.S. and other markets as detailed in Ap-
pendix J. The servers have peak power Ppeak = 200 W,
and consume 50% power at idle. These numbers rep-
resent state-of-the-art data center hardware [13], [27].

To calculate the utility loss of interactive workloads,
we rely on latency measurements from iPlane [23].
More details can be found in Appendix J. We set the
number of users |I| = 105. We use utility loss functions
defined in (2) and (3). The delay price q = 4 × 10−6,
and the utility loss price for batch jobs r = 500.

6.2 Benchmarks

We benchmark our ADMM algorithm, referred to as
Optimal, against three strategies, which use different
amounts of information in managing workloads.

The first benchmark, called Baseline, is a temperature
agnostic strategy that separately considers capacity al-
location and request routing. It first allocates capacity
to batch jobs by minimizing the back-end total cost
with (5) as the objective. The remaining capacity is
used to solve the request routing optimization with (4)
as the objective. Only the electricity price diversity is
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Fig. 3: Cooling energy savings. Time is in UTC.
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Fig. 4: Utility loss reductions. Time is in UTC.

used, and cooling energy is calculated with a constant
pPUE of 1.2. Though naive, such an approach is
widely used in current Internet services. It also allows
an implicit comparison with prior work [14], [21], [22],
[27], [28].

The second benchmark, called Capacity Optimized,
improves upon Baseline by jointly solving capacity
allocation and request routing, but still ignores the
cooling energy efficiency diversity. This demonstrates
the impact of capacity allocation.

The third benchmark, called Cooling Optimized, im-
proves upon Baseline by exploiting the temperature
and cooling efficiency diversity in minimizing cost, but
does not adopt joint management of the interactive
and batch workloads. This demonstrates the impact
of being temperature aware.

We run the four benchmarks with our 24-hour traces
at each day of January 2011, using the empirical hourly
temperature data we collected in Sec. 2.3. The dis-
tributed ADMM algorithm is used to solve them until
convergence is achieved. The results are thus averaged
over 31 runs.

6.3 Cooling energy savings

We examine the effectiveness of our approach by com-
paring the cooling energy consumption first. Figure 3
shows the results.

In particular, Figure 3a shows that overall, Optimal
saves 15%–20% cooling energy compared to Baseline. A
breakdown of the saving shown in the same figure re-
veals that dynamic capacity allocation provides 10%–
15% saving, and cooling efficiency diversity provides
5%–10% saving, respectively. Note that the cost saving
is achieved with cutting-edge CRACs whose efficiency
has been substantially improved already. The results

confirm that our approach further optimizes the cool-
ing efficiency and cost of geo-distributed data centers.

Figure 3b and 3c show a detailed breakdown of
cooling energy cost. Cooling cost attributed to inter-
active workloads, as in Figure 3b, exhibits a diurnal
pattern and peaks between 2:00 and 8:00 UTC (21:00
to 3:00 EST, 18:00 to 0:00 PST), implying that most
of the Wikipedia traffic originates from the U.S. The
four strategies perform fairly closely, while Baseline
and Capacity optimized consistently incur more cooling
energy cost due to their cooling agnostic nature.

Cooling cost attributed to batch workloads is shown
in Figure 3c. Baseline incurs the highest cost since it
underestimates the energy cost, and runs more batch
workloads than necessary. Cooling optimized improves
Baseline by taking into account cooling efficiency di-
versity and reducing batch workloads as a result.
Both strategies fail to exploit the trade-off with in-
teractive workloads. Thus their cooling cost closely
follows the daily temperature trend in that it gradually
decreases from 0:00 to 12:00 UTC (19:00 to 7:00 EST)
and then slowly increases from 12:00 to 20:00 UTC
(7:00 to 15:00 EST). Capacity optimized adjusts capacity
allocation with request routing, and further reduces
batch workloads in order to allocate more resources for
interactive workloads. Optimal combines temperature
aware cooling optimization with holistic workload
management, and has the lowest cooling cost with
least batch workloads. Though this increases the back-
end utility loss, the overall effect is a net reduction
of total cost since interactive workloads enjoy lower
latency as will be observed soon.

6.4 Utility loss reductions

Another component of data center cost is utility loss.
From Figure 4a, the relative reduction follows the
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interactive workloads and also has a visible diurnal
pattern. Optimal and Capacity optimized provide the
most significant utility loss reductions from 5% to
25%, while Cooling optimized provides a modest 5%
reduction compared to Baseline. To study the reasons
for the varying degrees of reductions, Figure 4b and 4c
show the respective utility loss of interactive and batch
workloads. We observe that interactive workloads in-
cur most of the utility loss, reflecting its importance
compared to batch workloads. Baseline and Cooling
optimized have much higher utility loss from interac-
tive workloads as shown in Figure 4b, because of the
separate management of two workloads. The average
latency performances under these two strategies are
also worse as demonstrated in Appendix K.

Capacity optimized and Optimal outperform the two
by allocating more capacity to interactive workloads at
cost-efficient locations while reducing batch workloads
(recall Figure 3c). This is especially effective during
peak hours as shown in Figure 4b. Capacity optimized
and Optimal do have higher utility loss from batch
workloads as seen in Figure 4c. However since in-
teractive workloads attribute to the majority of the
provider’s utility and revenue, the overall effect of
joint workload management is positive.

We also evaluate performance of all approaches in
different seasons. The results indicate that temperature
aware workload management offers consistent cost
benefits throughout the year. More details can be
found in Appendix L. Evaluation of the convergence of
our algorithm is in Appendix M, where we show our
distributed ADMM algorithm converges much faster
than subgradient methods.

7 CONCLUSION

We propose temperature aware workload manage-
ment, which explores geographical diversity of tem-
peratures and cooling efficiency, together with dynam-
ical capacity allocation between batch and interactive
workloads. We formulate the joint optimization un-
der a general framework with an empirical cooling
efficiency model. To solve large-scale problems for
production systems, we rely on a distributed m-block
ADMM algorithm. Extensive simulations highlight
that temperature aware workload management saves
15%–20% cooling energy and 5%–20% overall energy
cost, and distributed ADMM is practical to solve large-
scale workload management problems with only tens
of iterations.
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