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APPENDIX A
CORRELATION OF TEMPERATURE

We find that correlation of temperature among data centers that are
usually far apart from each other is rather mild. Figure 1 shows a
scatter plot of pairwise temperature correlation coefficients for all
13 locations. A few pairs are negatively correlated, and most lie in
between the 0.6 and -0.6 correlation lines.
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Fig. 1: The relationship between correlation coefficients of hourly
temperatures and latitude for 13 Google data center locations.

APPENDIX B
THE PPUE FUNCTION
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Fig. 2: Model fitting of pPUE as a function of the outside

temperature T for Emerson’s DSE
TM

CRAC [5]. Small circles
denote empirical data points.

The curve can be calibrated given access to more data from
measurements. For the purpose of this paper, our approach yields
a tractable model that captures the overall CRAC efficiency for the
entire spectrum of its operating modes. This is the one of the earliest
empirical models for CRACs with both outside air and mechanical
cooling, which has been increasingly adopted in the industry. Our
model is also useful for future studies on data center cooling energy.

APPENDIX C
DISCUSSION OF THE UTILITY MODEL

Our utility loss model is simplified and resembles (at best) part
of the ground truth. Empirical verification of the model against
measurement data will certainly increase the value of this work.
That being said, we would like to clarify that in this paper,
our main purpose is to provide a general methodology (for
companies like Google to perform workload management) rather
than developing particular mathematical models for performance
analysis. Therefore, we use the fundamental concept of utility as
in economics and game theory, and follow the basic approach
of making this utility loss function as general as possible by
only imposing some “natural” requirements, such as concavity.
To provide concrete examples, and also to conduct performance
evaluation, we provide two exemplary definitions of this function
in the paper.

For the utility loss model of interactive requests, we consider
three factors, Di the demand of user i, {Lij} the latency between
user i and different data centers j, and {αij} the request routing
decision for user i. The reason is that for interactive services,
latency is arguably the most important performance metric for users.
Amazon found every 100ms of latency costs them 1% in revenues.
Google found an extra 0.5s in search page generation time dropped
traffic by 20%. This anecdotal evidence provides strong support for
our assumption. A user’s latency is clearly affected by the three
parameters that we consider here. Thus our model captures the most
important factors related to user’s utility of accessing the service.

APPENDIX D
DATA LOCALITY

Adding data locality constraints to the problem does not affect the
complexity of solving it. At a glance, for each user, a constraint needs
to be added to specify the set of data centers that have this user’s
data, and the number of constraints is equal to the number of users.
However the problem remains convex, and the same decomposition
technique can be applied to obtain per-user problems, with an
additional locality constraint. Now, the only difference is that there
is a locality constraint that limits the set of data centers requests can
be directed to. Clearly this will not affect the complexity at all.

APPENDIX E
PROOF OF INEQUALITY (18)
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where the last inequality follows from the definition of the matrix
norm.
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then ‖∇xi
Lρ(xk; yk)‖2 ≤ θ‖xk − xk+1‖2 for all i, which implies

that
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APPENDIX F
PROOF OF INEQUALITY (17)
This inequality is proved in Lemma 2.2 under three assumptions in
pp.5 of [7]. Since these assumptions are valid in our case as well,
we omit the detailed proof here.

APPENDIX G
PROOF OF INEQUALITY (16)
We first introduce two lemmas that bound the changes in ∆k
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and
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where the last inequality follows from the fact that x̄k minimizes
Lρ(x; yk−1).

Lemma 2:
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where the last inequality follows from (2).
We next bound the term Lρ(xk+1; yk)−Lρ(xk; yk−1). Note that
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Adding all the inequalities above together, we obtain
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If we choose γ = mini{νi/2}, then we have

Lρ(x
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or equivalently,
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Adding (5) and (6), we obtain
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Substituting this in the first term of (4), we get
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Now we are ready to prove the inequality (16) in the main text.
Adding (2) and (3) gives

V k−V k−1 ≤ ̺‖Axk−b‖22−γ‖xk+1−xk‖22−2̺(Axk−b)T (Ax̄k+1−b).
(7)

Since Axk −Ax̄k+1 = (Axk − b)− (Ax̄k+1 − b), we have
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Substituting this in (7) yields
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(8)

Note that
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where (9) follows from the definition of the matrix norm, (10) follows
from (17) in the main text, and (11) follows from (18) in the main
text.

Substituting this in the first term of (8), we obtain

V k − V k−1 ≤ (̺τ2η2‖A‖22 − γ)‖xk+1 − xk‖22 − ̺‖Ax̄k+1 − b‖22
= −̺‖Ax̄k+1 − b‖22 − ϑ‖xk+1 − xk‖22,

where ϑ = γ − ̺τ2η2‖A‖2
2

. Note that, when the stepsize ̺ is small
enough, we have ϑ > 0, which gives (16) in the main text.
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APPENDIX H
PER-DATACENTER SUB-PROBLEM IS A SOCP
Note that (23) in the main text can be rewritten as the following
quadratic program:

min aTj Fjaj + hT
j aj

s.t. aj � 0,

where Fj = (ρ/2)
(

I|I| + eT e
)

with e = (1, . . . , 1), and hj is a

column vector with hji = EjPj+λk
j +ϕk

ij+ρ(βk
j +γk

j −Cj−αk+1

ij ).
Clearly, Fj captures the quadratic terms and hj captures the linear
terms in the objective function.

Since Fj is symmetric and positive-definite, Fj can be decom-
posed as Fj = GT

j Gj (known as the Cholesky decomposition),
where Gj is an upper triangular matrix with positive diagonal
entries. In particular, Gj is invertible. Let gj = (1/2)(G−1

j )T hj .
Then the objective function can be expressed as

‖Gjaj + gj‖22 − gTj gj .

Thus, the quadratic program is equivalent to the following second-
order cone program (SOCP)

min ‖Gjaj + gj‖2
s.t. aj � 0.

Since SOCP can be efficiently solved (using, for example, interior
point methods), our per-datacenter sub-problem admits fast algo-
rithms.

APPENDIX I
MORE DISCUSSIONS ON OUR DISTRIBUTED 4-
BLOCK ADMM IN SEC. 5
For more speed-up, our algorithm can be terminated before conver-
gence is achieved. This is a feature of ADMM as it is not sensitive
to step sizes, and usually finds a solution with modest accuracy
within tens of iterations [4]. An early-braking mechanism may be
safely applied to terminate the algorithm after a certain number
of iterations without unpredictable performance loss. This further
highlights the practicality of the algorithm. The message passing
overhead is low for data center interconnects that are designed to
handle bulky data transfers [2].

Convergence of our algorithm. It only remains to show that the
convergence result in Sec. 4 holds for our problem. Based on Theo-
rem 1, it suffices to examine if the three assumptions hold for our
problem. Assumption 2 clearly holds for convex and differentiable
utility loss functions. Assumption 1 requires the objective function
to be strongly convex, which may or may not hold depending on
the specific form of the utility loss functions. When the utility loss
of capacity allocation Vj(βj) is modeled by a log function as in (3)
in the main text, V (β) =

∑

j Vj(βj) is strongly convex, because its
Hessian matrix

∇2V (β) = r
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satisfies ∇2V (β) − νI|I| � 0, where ν = minj{r/C2
j }. When the

utility loss of request routing Ui(αi) is modeled by a quadratic
function of the average latency as in (2) of the main text, Ui(αi) is
not strongly convex. Nevertheless, Ui(αi) can be well approximated
by

Ūi(αi) = Ui(αi)− ǫ
∑

j

(

αij

Di

)

log

(

Di

αij

)

for some sufficiently small ǫ > 0. It is easily verified that Ūi(αi)
is strongly convex with constant ǫ/Di. Moreover, there is an engi-
neering advantage of such an approximation. Note that the entropy

of a request routing scheme αi is given by
∑

j

(

αij

Di

)

log
(

Di

αij

)

.

The larger the entropy is, the better the request routing in terms of
the diversity. Thus, the second term in Ūi(αi) tends to increase the
entropy, which in turn improves the diversity.

APPENDIX J
MORE ON SIMULATION SETUP

We use the 2011 annual average day-ahead on peak prices [6] at
the local markets as the power prices Pj for the 6 U.S. locations1.
For non-U.S. locations, the power price is calculated based on the
retail industrial power price available on the local utility company
websites with a 50% wholesale discount. Table 1 lists the power
prices at each location.

Council Bluffs, IA 42.73 Berkeley County, SC 44.44
The Dalles, OR 32.57 Lenoir, NC 40.68

Mayes County, OK 36.41 Douglas County, GA 39.97
Quilicura, Chile 75.69 St. Ghislain, Belgium 50.50
Hamina, Finland 43.84 Dublin, Ireland 50.62

Hong Kong 36.12 Taiwan 31
Singapore 66.72

TABLE 1: Power prices ($USD/MWh) at different locations.

To calculate the utility loss of interactive workloads, we rely
on iPlane [8], a system that collects wide-area network statistics
from Planetlab vantage points, to obtain the latency matrix L. Since
the Wikipedia traces do not contain client side information, we
emulate the geographical diversity of user requests by splitting
the total interactive workloads among users following a normal
distribution. We set the number of users |I| = 105, and choose
105 IP prefixes from a RouteViews [1] dump. We then extract the
corresponding round trip times from iPlane logs, which contain
traceroutes made to IP addresses from Planetlab nodes. We only
use latency measurements from Planetlab nodes that are close to
our data center locations to resemble the user-data center latency.

APPENDIX K
LATENCY PERFORMANCE

Figure 3 shows the average latency of all approaches with the
settings described in Sec. 6.2.
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APPENDIX L
SENSITIVITY TO SEASONAL CHANGES

One natural question is, since the results above are obtained in
winter times (January), would the benefits be less significant during
summer times when cooling is more expensive? In other words,
are the benefits sensitive to the seasonal changes? We thus run our
Optimal approach with Baseline at each day of May, which represents
typical Spring/Fall weather, and August, which represents typical
Summer weather, respectively. Figure 4 shows the average overall
cost savings achieved in different seasons. We observe that the cost
savings, ranging from 5% to 20%, are consistent and insensitive to
seasonal changes. The reason is that our approach depends on: 1)
the geographical diversity of temperature and cooling efficiency; 2)
the mixed nature of data center workloads, both of which exist
at all times of the year no matter which cooling method is used.
Temperature aware workload management is thus expected to offer
consistent cost benefits.

1. The U.S. electricity market is consisted of multiple regional
markets. Each regional market has several hubs with their own
pricing. We thus use the price of the specific hub that each U.S.
data center locates in.
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Fig. 5: Convergence results of our distributed ADMM algorithm compared against subgradient methods.

APPENDIX M
ALGORITHM CONVERGENCE

We evaluate the convergence of our distributed ADMM algorithm
in this section. As a benchmark, a dual decomposition approach is
used to tackle the original optimization (6) in the main text, with
the standard Lagrangian

L(α, β;λ) =
∑

j

E(
∑

i

αij)Pj +
∑

i

Ui(αi)

+
∑

j

(E(βj)Pj + Vj(βj)) +
∑

j

λj(
∑

i

αij + βj − Cj).

It can be readily seen that minimizing L(α, β;λ) can be separately
done over α and β since the energy cost function E is linear. The α-
and β-minimization problems can also be decomposed into per-user
and per-data center sub-problems. The dual variable λ is updated
with subgradient methods [3] as follows:

λk+1

j = max
{

0, λk
j + ̺k

(

∑

i

αij + βj − Cj

)}

,

where ̺ is the step size. We optimize the step size ̺k = 10−6/
√
k

according to the diminishing step size rule [3]. For our distributed
ADMM algorithm, the penalty parameter ρ = 3 × 10−7, and the
step size ̺ = 10−6.

The stopping rules of the algorithms are set as follows. ADMM
algorithms are usually stopped when the primal and dual residuals
are smaller than certain tolerance thresholds [4]. The calculations of
primal and dual residuals and the tolerance thresholds are identical
to those in [4], and we omit details here. For dual decomposition
with subgradient methods, it is terminated when ‖αk+1 − αk‖2

2
<

10−2‖αk‖2
2

, or when the number of iterations exceeds 200. Other
parameter setup, including the scale of the problems, is the same as
in previous simulations.

Figure 5a plots the empirical cumulative distribution function
(CDF) of convergence iterations for the 24 runs using our traces.
We find that the dual decomposition approach with subgradient
methods cannot converge within 200 iterations in all runs. Thus
we only show the CDF for our algorithm. Observe that distributed
ADMM converges within 73 iterations in all runs, and the fastest
run uses 53 iterations only. The convergence of distributed ADMM
thus significantly outperforms the traditional subgradient methods.
Figure 5b depicts a sample path of the convergence of the primal
residual for the two algorithms. We point out the scales of the
primal residuals for the two algorithms are different, since the
distributed ADMM solves the 4-block formulation (19) in the main
text while the subgradient method solves the original formulation
(6) in the main text. We can see that the curve of distributed ADMM
decreases smoothly and reaches below the tolerance threshold after
61 iterations. The subgradient method suffers from oscillations after
70 iterations, and fails to decrease below the threshold.

Finally, Figure 5c shows the performance of early-braking for our
distributed ADMM algorithm. We plot the solutions of the algorithm
after 50 and 40 iterations, respectively. Clearly, the optimality gap
of stopping after 40 iterations is larger than stopping after 50
iterations. A more interesting observation is that the optimality gap
is strikingly small — only 10−3 relative to the optimum. There are
times when the optimality gap becomes negative. This is caused
by (primal or dual) infeasible solutions produced by early-braking
during demand peak periods. The feasibility gap is rather small,
though, and can be readily fixed.

The results demonstrate that the distributed ADMM algorithm
converges quickly, and is better suited to large-scale convex opti-
mization problems. The early-braking mechanism can further im-
prove the convergence in practice with negligible performance loss.
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