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Abstract —We present Anchor, a general resource management architecture that uses the stable matching framework to decouple
policies from mechanisms when mapping virtual machines to physical servers. In Anchor, clients and operators are able to express a
variety of distinct resource management policies as they deem fit, and these policies are captured as preferences in the stable matching
framework. The highlight of Anchor is a new many-to-one stable matching theory that efficiently matches VMs with heterogeneous
resource needs to servers, using both offline and online algorithms. Our theoretical analyses show the convergence and optimality
of the algorithm. Our experiments with a prototype implementation on a 20-node server cluster, as well as large-scale simulations
based on real-world workload traces, demonstrate that the architecture is able to realize a diverse set of policy objectives with good
performance and practicality.
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1 INTRODUCTION

Due to the multi-tenant nature, resource management be-
comes a major challenge for the cloud. According to a 2010
survey [1], it is the second most concerned problem that
CTOs express after security. Cloud operators have a variety
of distinct resource management objectives to achieve. For
example, a public cloud such as Amazon may wish to use
a workload consolidation policy to minimize its operating
costs, while a private enterprise cloud may wish to adopt a
load balancing policy to ensure quality of service. Further,
VMs of a cloud also impose diverse resource requirements
that need to be accommodated, as they run completely
different applications owned by individual clients.

On the other hand, the infrastructure is usually managed
as a whole by the operator, who relies on a single resource
management substrate. Thus, the substrate must be general
and expressive to accommodate a wide range of possible
policies for different use cases, and be easily customizable
and extensible. It also needs to be fair to orchestrate the
needs and interests of both the operator and clients. This
is especially important for private and federated clouds
[2] where the use of money may not be appropriate to
share resources fairly. Last but not the least, the resource
management algorithm needs to be efficient so that large-
scale problems can be handled.

Existing solutions fall short of the requirements we out-
lined. First, they tightly couple policies with mechanisms.
Resource management tools developed by the industry
such as VMware vSphere [3] and Eucalyptus [4], and by
the open source community such as Nimbus [5] and Cloud-
Stack [6], do not provide support for configurable poli-
cies for VM placement. Existing papers on cloud resource
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management develop solutions for specific scenarios and
purposes, such as consolidation based on CPU usage [7]–
[9], energy consumption [10]–[12], bandwidth multiplexing
[13]–[15], and storage dependence [16]. Moreover, these so-
lutions are developed for the operator without considering
the interest of clients.
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Fig. 1. The Anchor architecture.

We make three contributions in developing a versatile
and efficient resource management substrate in the cloud.
First, we present Anchor, a new architecture that decouples
policies from mechanisms for cloud resource management.
This is analogous to the design of BGP [17], where ISPs
are given the freedom to express their policies, and the
routing mechanism is able to efficiently accommodate them.
Anchor consists of three components: a resource monitor,
a policy manager, and a matching engine, as shown in
Fig. 1. Both the operator and its clients are able to configure
their resource management policies, based on performance,
cost, etc., as they deem fit via the policy manager. When
VM placement requests arrive, the policy manager polls
information from the resource monitor, and feeds it with
the policies to the matching engine. The matching mecha-
nism resolves conflicts of interest among stakeholders, and
outputs a matching between VMs and servers.

The challenge of Anchor is then to design an expressive,
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fair, and efficient matching mechanism as we discussed.
Our second major contribution is a novel matching mech-
anism based on the stable matching framework [18] from
economics, which elegantly achieves all the design objec-
tives. Specifically, the concept of preferences is used to enable
stakeholders to express various policies with simple rank-
ordered lists, fulfilling the requirement of generality and
expressiveness. Rather than optimality, stability is used as
the central solution concept to address the conflicts of inter-
est among stakeholders, fulfilling the fairness requirement.
Finally, its algorithmic implementations based on the classi-
cal deferred acceptance algorithm have been demonstrated to
be practical in many real-world applications [18], fulfilling
the efficiency requirement.

It may be tempting to formulate the matching problem as
an optimization over certain utility functions, each reflect-
ing a policy goal. However, optimization suffers from two
important deficiencies in this case. First, as system-wide ob-
jectives are optimized, the solutions may not be appealing
to clients, whose interest do not necessarily align well with
the operator’s. In this regard, a cloud resembles a resource
market in which clients and the operator are autonomous
selfish agents. Individual rationality needs to be respected for
the matching to be acceptable to all participants. Second,
optimization solvers are computationally expensive due to
their combinatorial nature, and do not scale well.

The novelty of our stable matching mechanism lies in a
rigorous treatment of size heterogeneity in Sec. 4. Specif-
ically, classical stable matching theory cannot be directly
applied here. Each VM has a different “size,” corresponding
to its demand for CPU, memory, and storage resources. Yet
the economics literature assumes that each agent is uni-
form in size. Size heterogeneity makes the problem much
more difficult, because even the very definition of stability
becomes unclear in this case. We formulate a general job-
machine stable matching problem with size heterogeneous
jobs. We clarify the ambiguity of the conventional stability
definition in our model, propose a new stability concept,
develop algorithms to efficiently find stable matchings with
respect to the new definition, and prove convergence and
optimality results.

Our third contribution is a realistic performance evalu-
ation of Anchor. We design a simple policy interface, and
showcase several common policy examples in Sec. 5. We
present a prototype implementation of Anchor on a 20-node
server cluster, and conduct detailed performance evaluation
using both experiments and large-scale simulations based
on real-world workload traces in Sec. 6.

2 BACKGROUND AND MODEL

2.1 A Primer on Stable Matching

We start by introducing the classical theory of stable match-
ing in the basic one-to-one marriage model [19]. There
are two disjoint sets of agents, M = {m1,m2, . . . ,mn}
and W = {w1, w2, . . . , wp}, men and women. Each agent
has a transitive preference over individuals on the other

side, and the possibility of being unmatched [18]. Prefer-
ences can be represented as rank order lists of the form
p(m1) = w4, w2, . . . , wi, meaning that man m1’s first choice
of partner is w4, second choice is w2 and so on, until at
some point he prefers to be unmatched (i.e. matched to the
empty set). We use ≻i to denote the ordering relationship
of agent i (on either side of the market). If i prefers to
remain unmatched instead of being matched to agent j,
i.e. ∅ ≻i j, j is said to be unacceptable to i, and preferences
can be represented just by the list of acceptable partners.

Definition 1: An outcome is a matching µ : M×W×∅ →
M×W × ∅ such that w = µ(m) if and only if µ(w) = m,
and µ(m) ∈ W ∪ ∅, µ(w) ∈ M∪ ∅, ∀m,w.

It is clear that we need further criteria to distill a “good”
set of matchings from all the possible outcomes. The first
obvious criterion is individual rationality.

Definition 2: A matching is individual rational to all
agents, if and only if there does not exist an agent i who
prefers being unmatched to being matched with µ(i), i.e.,
∅ ≻i µ(i).

This implies that for a matched agent, its assigned part-
ner should rank higher than the empty set in its preference.
Between a pair of matched agents, they are not unaccept-
able to each other.

The second natural criterion is that a blocking set should
not occur in a good matching:

Definition 3: A matching µ is blocked by a pair of agents
(m,w) if they each prefer each other to the partner they
receive at µ. That is, w ≻m µ(m) and m ≻w µ(w). Such a
pair is called a blocking pair in general.

When a blocking pair exists, the agents involved have
a natural incentive to break up and form a new marriage.
Therefore such an “unstable” matching is undesirable.

Definition 4: A matching µ is stable if and only if it is
individual rational, and not blocked by any pair of agents.

Theorem 1: A stable matching exists for every marriage
market.

This can be readily proved by the classic deferred accep-
tance algorithm (DA), or the Gale-Shapley algorithm [19]. It
works by having agents on one side of the market, say
men, propose to the other side, in order of their preferences.
As long as there exists a man who is free and has not yet
proposed to every woman in his preference, he proposes
to the most preferred woman who has not yet rejected
him. The woman, if free, “holds” the proposal instead of
directly accepting it. In case she already has a proposal at
hand, she rejects the less preferred. This continues until
no proposal can be made, at which point the algorithm
stops and matches each woman to the man (if any) whose
proposal she is holding. The woman-proposing version
works in the same way by swapping the roles of man and
woman. It can be readily seen that the order in which men
propose is immaterial to the outcome.

2.2 Models and Assumptions

In a cloud, each VM is allocated a slice of resources from
its hosting server. In this paper, we assume that the size of
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a slice is a multiple of an atomic VM. For instance, if the
atomic VM has one CPU core equivalent to a 2007 Intel
Xeon 1 GHz core, one memory unit equivalent to 512 MB
PC-10600 DDR3 memory, and one storage unit equivalent
to 10 GB 5400 RPM HDD, a VM of size 2 means it effectively
has a 2 GHz 2007 Xeon CPU core, 1 GB PC-10600 DDR3
memory and 20 GB 5400 RPM hard disk. Note that the
actual amount of resources is relative to the heterogeneous
server hardware. Two VMs have the same size as long as
performance is equivalent for all resources.

This may seem an oversimplification and raise concerns
about its validity in reality. We comment that, in practice,
such atomic sizing is common among large-scale public
clouds to reduce the overhead of managing hundreds of
thousands of VMs. It is also valid in production computer
clusters [20], and widely adopted in related work [16], [21]
to reduce the dimensionality of the problem. Appendix A
provides more discussion on the validity of this assump-
tion, especially with different job requirements.

We design Anchor for a setting where the workloads and
resources demands of VMs are relatively stable. Resource
management in the cloud can be naturally cast as a stable
matching problem, where the overall pattern of common
and conflicting interests between stakeholders can be re-
solved by confining our attention to outcomes that are
stable. Broadly, it can be modelled as a many-to-one problem
[19] where one server can enroll multiple VMs but one VM
can only be assigned to one server. Preferences are used as
an abstraction of policies no matter how they are defined.

In traditional many-to-one problems such as college ad-
missions [19], each college has a quota of the number of
students it can take. This cannot be directly applied to our
scenario, as each VM has a different “size” corresponding
to its demand for resources. We cannot simply define the
quota of a server as the number of VMs it can take.

We formulate VM placement as a job-machine stable match-
ing problem with size heterogeneous jobs. Each job has a
size, and each machine has a capacity. A machine can host
multiple jobs as long as the total job size does not exceed its
capacity. Each job has a preference over all the acceptable
machines that have sufficient capacities. Similarly, each
machine has a preference over all the acceptable jobs whose
size is smaller than its capacity. This is a more general
many-to-one matching model in that the college admissions
problem is a special case with uni-size jobs (students).

3 THEORETICAL CHALLENGES OF JOB-
MACHINE STABLE MATCHING

We present theoretical challenges introduced by size het-
erogeneous jobs in this section.

Following convention, we can naturally define a blocking
pair in job-machine stable matching based on the following
intuition. In a matching µ, whenever a job j prefers a
machine m to its assigned machine µ(j) (can be ∅ meaning
it is unassigned), and m has vacant capacity to admit j, or
when m does not have enough capacity, but by rejecting
some or all of the accepted jobs that rank lower than j it

is able to admit j, then j and m have a strong incentive to
deviate from µ and form a new matching. Therefore,

Definition 5: A job-machine pair (j,m) is a blocking pair
if any of the two conditions holds:

(a): c(m) ≥ s(j), j ≻m ∅, and m ≻j µ(j), (1)

(b): c(m) < s(j), c(m) +
∑

j′

s(j′) ≥ s(j),

where j′ ≺m j, j′ ∈ µ(m), and m ≻j µ(j). (2)

c(m) denotes the capacity of machine m, and s(j) denotes
the size of job j.

Depending on whether a blocking pair satisfies condition
(1) or (2), we say it is a type-1 or type-2 blocking pair. For
example, in a setting shown in Fig. 2, the matching A −
(a), B − ∅ contains two type-1 blocking pairs (b,B) and
(c,B), and one type-2 blocking pair (c, A).

Definition 6: A job-machine matching is strongly stable if
it does not contain any blocking pair.

3.1 Non-existence of Strongly Stable Matchings

It is clear that both types of blocking pairs are undesirable,
and we ought to find a strongly stable matching. However,
such a matching may not exist in some cases. Fig. 2 shows
one such example with three jobs and two machines. It
can be verified that every possible matching contains either
type-1 or type-2 blocking pairs.
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c, a, b

b, c
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Fig. 2. A simple example where there is no strongly stable
matching. Recall that p() denotes the preference of an
agent.

Proposition 1: Strongly stable matching does not always
exist.

Note that the definitions of type-1 and type-2 blocking
pair coincide in classical problems with uni-size jobs. The
reason why they do not remain so in our model is the
size complementariness among jobs. In our problem, the
concept of capacity denotes the amount of resources a ma-
chine can provide, which may be used to support different
numbers of jobs. A machine’s preferable job, which is more
likely to be admitted in order to avoid type-2 blocking
pairs, may consume less resources, and creates a higher
likelihood for type-1 blocking pairs to happen on the same
machine.

The non-existence result demonstrates the theoretical
difficulty of the problem. We find that it is hard to even
determine the necessary or sufficient conditions for the
existence of strongly stable matchings in a given problem
instance, albeit its definition seems natural. Therefore, for
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mathematical tractability, in the subsequent parts of the
paper, we work with the following relaxed definition:

Definition 7: A matching is weakly stable if it does not
contain any type-2 blocking pair.

For example in Fig. 2, A−(c), B−(b) is a weakly but not
strongly stable matching, because it has a type-1 blocking
pair (b, A). Thus, weakly stable matchings are a superset
that subsumes strongly stable matchings. A matching is
thus called unstable if it is not weakly stable.

3.2 Failure of the DA Algorithm

With the new stability concept, the first theoretical chal-
lenge is how to find a weakly stable matching, and does it
always exist? If we can devise an algorithm that produces
a weakly stable solution for any given instance, then its
existence is clear. One may think that the deferred ac-
ceptance (DA) algorithm can be applied for this purpose.
Jobs propose to machines following the order in their
preferences. We randomly pick any free job that has not
proposed to every machine on its preference to propose
to its favorite machine that has not yet rejected it. That
machine accepts the most favorable offers made so far up
to the capacity, and rejects the rest. Unfortunately, we show
that this may fail to be effective. Appendix B.1 shows such
an example.

Two problems arise when applying the classical DA
algorithm here. First, the execution sequence is no longer
immaterial to the outcome. Second, it may even produce
an unstable matching. This creates considerable difficul-
ties since we cannot determine which proposing sequence
yields a weakly stable matching for an arbitrary problem.

Examined more closely, the DA algorithm fails precisely
due to the size heterogeneity of jobs. Recall that a machine
will reject offers only when its capacity is used up. In the
traditional setting with jobs of the same size, this ensures
that whenever an offer is rejected, it must be the case
that the machine’s capacity is used up, and thus any offer
made from a less preferred job will never be accepted, i.e.
the outcome is stable. However, rejection due to capacity
is problematic in our case, since a machine’s remaining
capacity may be increased, and its previously rejected job
may become favorable again.

3.3 Optimal Weakly Stable Matching

There may be many weakly stable matchings for a problem
instance. The next natural question to ask is then, which
one should we choose to operate the system with? Based
on the philosophy that a cloud exists for companies to ease
the pain of IT investment and management, rather than
the other way around, it is desirable if we can find a job-
optimal weakly stable matching, in the sense that every job
is assigned its best machine possible in all stable matchings.

The original DA algorithm is again not applicable in this
regard, because it may produce type-1 blocking pairs even
when the problem admits strongly stable matchings. Thus,
our second challenge is to devise an algorithm that yields

the job-optimal weakly stable matching. This quest is also
theoretically important in its own right.

However, as we will show in Sec. 4.2, the complexity of
solving this challenge is high, which may prevent its use in
large-scale problems. Thus in many cases, a weakly stable
matching is suitable for practical purposes.

4 A NEW THEORY OF JOB-MACHINE STABLE
MATCHING

In this section we present our new theory of job-machine
stable matching that addresses the above challenges.

4.1 A Revised DA Algorithm

We first propose a revised DA algorithm, shown in Table 1,
that is guaranteed to find a weakly stable matching for a
given problem. The key idea is to ensure that, whenever a
job is rejected, any less preferable jobs will not be accepted
by a machine, even if it has enough capacity to do so.

TABLE 1
Revised DA

1: Input: c(m), p(m), ∀m ∈ M, s(j), p(j), ∀j ∈ J
2: Initialize all j ∈ J and m ∈ M to free
3: while ∃j who is free, and p(j) 6= ∅ do
4: m = j’s highest ranked machine in p(j)
5: if c(m) ≥ s(j) then
6: j and m become matched, c(m) = c(m)− s(j)
7: else
8: Find all j′ matched to m so far such that j′ ≺m j

9: repeat
10: m sequentially rejects each j′ by setting it to free, in

the order of p(m)
11: c(m) = c(m) + s(j′), best rejected = j′

12: until c(m) ≥ s(j) or all j′ are rejected
13: if c(m) ≥ s(j) then
14: j and m become matched, c(m) = c(m)− s(j)
15: else
16: j becomes free, best rejected = j

17: for j′′ ∈ p(m), j′′ ≺m best rejected do
18: Remove m from p(j′′), j′′ from p(m)
19: Return: the final matching, and remaining capacity

c(m), ∀m ∈ M

The algorithm starts with a set of jobs J and a set of
machines M. Each job and machine are initialized to be
free. Then the algorithm enters a propose-reject procedure.
Whenever there are free jobs that have machines to propose
to, we randomly pick one, say j, to propose to its current
favorite machine m in p(j), which contains all the machines
that have not yet rejected it. If m has sufficient capacity, it
holds the offer. Otherwise, it sequentially rejects offers from
less preferable jobs j′ until it can take the offer, in the order
of its preference. If it still cannot do so even after rejecting
all the j′s, j is then rejected. Whenever a machine rejects a
job, it updates the best rejected variable, and at the end all
jobs ranked lower than best rejected are removed from its
preference. The machine is also removed from preferences
of all these jobs, as it will never accept their offers.

A pseudo-code implementation is shown in Table 1. We
can see that the order in which jobs propose is immaterial,
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similar to the original DA algorithm. Moreover, we can
prove that the algorithm guarantees that type-2 blocking
pairs do not exist in the result.

Theorem 2: The order in which jobs propose is of no
consequence to the outcome in Revised DA.

Theorem 3: Revised DA, in any execution order, pro-
duces a unique weakly stable matching.

Proof: The proof of uniqueness is essentially the same
as that for the classical DA algorithm in the seminal paper
[19]. We prove the weak stability of the outcome by contra-
diction. Suppose that Revised DA produces a matching
µ with a type-2 blocking pair (j,m), i.e. there is at least
one job j′ worse than j to m in µ(m). Since m ≻j µ(j), j
must have proposed to m and been rejected. When j was
rejected, j′ was either rejected before j, or was made unable
to propose to m because m is removed from the preferences
of all the jobs ranked lower than j. Thus j′ = ∅, which
contradicts with the assumption.

Theorem 3 also proves the existence of weakly stable
matchings, as Revised DA terminates within O(|J |2) in
the worst case.

Theorem 4: A weakly stable matchings exists for every
job-machine matching problem.

The significance of Revised DA is multi-fold. It solves
our first technical challenge in Sec. 3.2, and is appealing
for practical use. The complexity is low compared to opti-
mization algorithms. Further, it serves as a basic building
block, upon which we develop an iterative algorithm to
find the job-optimal weakly stable matching as we shall
demonstrate soon. Lastly, it bears the desirable property of
being insensitive to the order of proposing, which largely
reduces the complexity of algorithm design.

Revised DA may still produce type-1 blocking pairs,
and the result may not be job-optimal as defined in Sec. 3.3.
In order to find the job-optimal matching, an intuitive idea
is to run Revised DA multiple times, each time with type-
1 blocking jobs proposing to machines that form blocking
pairs with them. The intuition is that, type-1 blocking jobs
can be possibly improved at no expense of others. However,
simply doing so may make the matching unstable, because
when a machine has both type-1 blocking jobs leaving from
and proposing to it, it may have more capacity available
to take jobs better than those it accepts according to its
capacity before the jobs leaving. Readers may refer to
Appendix B.2 for an example.

4.2 A Multi-stage DA Algorithm

We now design a multi-stage DA algorithm to iteratively
find a better weakly stable matching with respect to jobs.
The algorithm proceeds in stages. Whenever there is a type-
1 blocking pair (j,m) in the result of previous stage µt−1,
the algorithm enters the next stage where the blocking
machine m will accept new offers. The blocking job j is
removed from its previous machine µt−1(j), so that it can
make new offers to machines that have rejected it before.
µt−1(j)’s capacity is also updated accordingly. Moreover,
to account for the effect of job removal, all jobs that can

potentially form type-1 blocking pairs with µt−1(j) if j

leaves (there may be other machines that j form type-1
blocking pairs with) are also removed from their machines
and allowed to propose in the next stage (corresponding to
the while loop in step 7). This ensures that the algorithm
does not produce new type-2 blocking pairs during the
course, as we shall prove soon. At each stage, we run
Revised DA with the selected set of proposing jobs J ′,
and the entire set of machines with updated capacity
c
pre
t (m). The entire procedure is shown in Table 2.

TABLE 2
Multi-stage DA

1: Input: c(m), p(m), ∀m ∈ M, s(j), p(j), ∀j ∈ J .
2: µ0 = ∅, t = 0, stop = false, J ′ = ∅
3: while stop == false do
4: t = t+ 1, µ′ = µt−1

5: for m ∈ M do
6: c

pre

t (m) = ct−1(m)
7: while Ω 6= ∅, where Ω is the set of jobs that form type-1

blocking pairs from µ′ with c
pre

t (m) do
8: for j ∈ Ω do
9: Add j′ to J ′.

10: if µ′(j) != ∅ then
11: c

pre

t (µ′(j)) = c
pre

t (µ′(j)) + s(j).
12: j′ is free and removed from the matching µ′.
13: if J ′ == ∅ then
14: break
15: (µt, ct(m)) = Revised DA(cpret (m), p(m),
16: s(j), p(j), µ′,J ′)
17: if µt == µt−1 then
18: stop = true
19: Return µt

We now prove important properties of Multi-stage
DA, namely its correctness, convergence, and job-optimality.

4.2.1 Correctness

First we establish the correctness of Multi-stage DA.

Theorem 5: There is no type-2 blocking pair in the
matchings produced at any stage in Multi-stage DA.

Proof: This can be proved by induction. As the base
case, we already proved that there is no type-2 blocking
pair after the first stage in Theorem 3.

Given there is no type-2 blocking pair after stage t, we
need to show that after stage t+ 1, there is still no type-2
blocking pair. Suppose after t+1, there is a type-2 blocking
pair (j,m), i.e., ct+1(m) < s(j), ct+1(m)+

∑
j′ s(j

′) ≥ s(j),
where j′ ≺m j, j′ ∈ µt(m),m ≻j µt+1(j). If c

pre
t+1(m) ≥

s(j), then j must have proposed to m and been rejected
according to the algorithm. Thus it is impossible for m to
accept any job j′ less preferable than j in t+ 1.

If cpret+1(m) < s(j), then j did not propose to m in t+ 1.
Since there is no type-2 blocking pairs after t, j′ must be
accepted in t + 1. Now since c

pre
t+1(m) < s(j), the sum of

the remaining capacity and total size of newly accepted
jobs after t + 1 must be less than c

pre
t+1(m), i.e. ct+1(m) +∑

j′′ s(j
′′) ≤ c

pre
t+1(m) < s(j), where j′′ denotes the newly

accepted jobs in t+1. This contradicts with the assumption
that ct+1(m) +

∑
j′ s(j

′) ≥ s(j) since {j′} ⊆ {j′′}.
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If c
pre
t+1(m) = 0, then m only has jobs leaving from it.

Since there is no type-2 blocking pair after t, clearly there
cannot be any type-2 blocking pair in t+ 1.

Therefore, type-2 blocking pairs do not exist at any stage
of the algorithm. The uniqueness of the matching result at
each stage is readily implied from Theorem 3.

4.2.2 Convergence

Next we prove the convergence of Multi-stage DA. The
key observation is that it produces a weakly stable match-
ing at least as good as that in the previous stage from the
job’s perspective.

Lemma 1: At any consecutive stages t and t + 1 of
Multi-stage DA, µt+1(j) �j µt(j), ∀j ∈ J .

Proof: Refer to Appendix C.1.
Therefore, the algorithm always tries to improve the

weakly stable matching it found in the previous stage,
whenever there is such a possibility suggested by the
existence of type-1 blocking pairs. However, Lemma 1 also
implies that a job’s machine at t+ 1 may remain the same
as in the previous stage. In fact, it is possible that the entire
matching is the same as the one in previous stage, i.e.
µt+1 = µt. This can be easily verified using the example
of Fig. 2. After the first stage, the weakly stable matching
is A − (c), B − (b). First b wishes to propose to A in the
second stage. Then we assign b to ∅ and B has capacity
of 1 again. c then wishes to propose to B too. After we
remove c from A and update A’s capacity, a now wishes to
propose to A. Thus at the next stage, the same set of jobs
a, b, c will propose to the same set of machines with same
capacity, and the result will be the same matching as in the
first stage. In this case, Multi-stage DA will terminate
with the final matching that it cannot improve upon as its
output (step 17-18 of Table 2). We thus have:

Theorem 6: Multi-stage DA terminates in finite time.
Note that in each stage, Multi-stage DA may result

in new type-1 blocking pairs, and the number of type-1
blocking pairs is not monotonically decreasing. Thus its
worst case run time complexity is difficult to analytically
derive. In Sec. 6.3 we evaluate its average case complexity
through large-scale simulations.

4.2.3 Job-Optimality

We now prove the most important result regarding
Multi-stage DA:

Theorem 7: Multi-stage DA always produces the job-
optimal weakly stable matching when it terminates, in the
sense that every job is at least as good in the weakly stable
matching produced by the algorithm as it would be in any
other weakly stable matching.

Proof: We provide a proof sketch here. A detailed proof
can be found in Appendix C.2. The algorithm terminates at
stage t when either there is no type-1 blocking pair, or there
is type-1 blocking pair(s) but µt = µt−1. For the former
case, we show that our algorithm only permanently rejects
jobs from machines that are impossible to accept them in all
weakly stable matchings, when the jobs cannot participate
any further. The outcome is therefore optimal. For the latter

TABLE 3
Anchor’s policy interface.

Functionality Anchor API Call
create a policy group g = create()

add/delete server add/delete(g_o,s)
add/delete VMs add/delete(g_c,v)

set ranking factors conf(g,factor1,...)
set placement constraints limit(g_c,servers)
colocation/anti-colocation colocate(tenants,i,g_c)

case, we can also show that it is impossible for jobs that
participated in t to obtain a better machine.

Finally, we present another fact regarding the outcome
of our algorithm.

Theorem 8: Multi-stage DA produces a unique job-
optimal strongly stable matching when it terminates with
no job proposing.
The proof can be found in Appendix C.3.

4.3 An Online Algorithm

We have thus far assumed a static setting with a fixed
set of jobs and machines. In practice, requests for job
(VM) placement arrive dynamically, and we need to make
decisions on the fly. It may not be feasible to re-run the
matching algorithm from scratch every time when there is
a new job. We further develop an online algorithm based
on Revised DA that handles the dynamic case efficiently.
Interested readers can find the detailed algorithm design
and evaluation results in Appendix D and F.3, respectively.

5 SHOWCASES OF RESOURCE MANAGEMENT
POLICIES WITH THE POLICY ENGINE

We have presented the underlying mechanism of Anchor
that produces a weakly stable matching between VMs of
various sizes, as jobs, and physical servers, as machines.
We now introduce Anchor’s policy engine which constructs
preference lists according to various resource management
policies. The cloud operator and clients interact with the
policy engine through an API as shown in Table 3.

In order to reduce management overhead, we use policy
groups that can be created with the create() call. Each
policy group contains a set of servers or VMs that are
entitled to a common policy. In fact some of the recent
industry products have adopted similar ideas to help
companies manage their servers in the cloud [22]. The
policy is configured by the conf() call that informs the
policy engine what factors to be considered for ranking the
potential partners in a descending order of importance. The
exact definition of ranking factors varies depending on the
specific policy as we demonstrate in the following. With
policy groups, only one common preference list is needed
for all members of the group. Membership is maintained
by add() and delete() calls. colocate() and limit()
are used to set colocation/anti-colocation and placement
constraints as we discuss in Appendix E.

It is also possible for the operator to configure policies on
behalf of its clients if they do not explicitly specify any. This
is done by enrolling them to the default policy group.
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5.1 Cloud Operators

We begin our discussion from the operator’s perspective.

Server consolidation/packing. Operators usually wish to
consolidate the workload by packing VMs onto a small
number of highly occupied servers, so that idle servers
can be powered down to save operational costs. To realize
this policy, servers can be configured to prefer a VM
with a larger size. This can be done using conf(g_o,
1/vm_size), where g_o is the operator’s policy group.
For VMs in the default policy group, their preference is
ranked in the descending order of server load. One may
use the total size of active VMs as the metric of load
(conf(g_c, 1/server_load)), where g_c is the client’s
policy group. Alternatively, the number of active VMs can
also serve as a heuristic metric (conf(g_c, 1/num_vm)).

Notice that consolidation is closely related to packing,
and the above configuration resembles the first fit decreasing
heuristic widely used to solve packing problems by itera-
tively assigning the largest item to the first bin that fits.

Load balancing. Another popular resource management
policy is load balancing, which distributes VMs across
all servers to mitigate performance degradation due to
application dynamics over time. This can be seen as the
opposite of consolidation. In this case, we can configure
the server preference with conf(g_o, vm_size), imply-
ing that servers prefer smaller VMs in size. VMs in the
default policy group are configured with conf(g_c,
server_load), such that they prefer less utilized servers.
This can be seen as a worst fit increasing heuristic.

5.2 Cloud Clients

From the perspective of cloud clients, other than choosing
to join the default policy group and follow the operator’s
configuration, they can also express their unique policies.

Resource hunting. Depending on the resource demand
of applications, VMs can be CPU, memory, or bandwidth-
bound, or even resource-intensive in terms of multiple re-
sources. Though resources are sliced into fixed slivers, most
modern hypervisors support dynamic resizing of VMs. For
example, the hypervisor may allow a temporarily burst of
CPU usage for a VM provided that doing so does not affect
colocated VMs. For memory, with a technique known as
memory ballooning, the hypervisor is able to dynamically
reduce the memory footprints of idle VMs, so that memory
allocation of heavily loaded VMs can be increased.

Thus, clients may configure their policies according to
the resource usage pattern of their VMs, which is un-
known to the operator. CPU-bound VMs can be added
to a CPU-bound policy group, which is configured with
a call to conf(g_c, 1/server_freecpu). Their prefer-
ences are then ranked in the descending order of server’s
time average available CPU cycles. Similarly, memory-
bound and bandwidth-bound policy groups may be config-
ured with the call conf(g_c, 1/server_freemem) and
conf(g_c, 1/server_freebw), respectively.

Anchor supports additional policies besides what we list
here, including colocation/anti-colocation, tiered services,

etc. Due to space limit, readers are directed to Appendix E
for more details.

6 IMPLEMENTATION AND EVALUATION

We investigate the performance of Anchor with both testbed
implementation and large-scale simulations based on real-
world workload traces.

6.1 Setup

Prototype implementation. Our prototype consists of about
1500 LOC written in Python. It is based on Oracle Virtual-
Box 3.2.10 [23]. The VirtualBox management API is utilized
to obtain resource usage statistics. More details can be
found in Appendix F.1.

Our evaluation of Anchor is based on a prototype data
center consisting of 20 Dual Dual-Core Intel Xeon 3.0 GHz
machines connected over gigabit ethernet. Each machine
has 2 GB memory. Thus, we define the atomic VM to have
1.5 GHz CPU and 256 MB memory. Each server has a
capacity of 7 in terms of atomic VM (since the hypervisor
also consumes server resources). All machines run Ubuntu
8.04.4 LTS with Linux 2.6.24-28 server. A cluster of Dual
Intel Xeon 2.4 Ghz servers are used to generate workload
for some of the experiments. One node in the cluster is
designated to run the Anchor control plane, while others
host VMs. Our VMs, if not otherwise noted, run Ubuntu
8.10 server with Apache 2.2.9, PHP 5.2.6, and MySQL 5.0.67.

Trace-driven simulation. To evaluate Anchor at scale,
we conduct large-scale simulation based on real-world
workload traces from RICC (RIKEN Integrated Cluster of
Clusters) [20] in Japan. RICC is composed of 4 clusters, and
was put into operation in August 2009. The data provided
in the trace is from the “massively parallel cluster,” which
has 1024 Fujitsu RX200S5 Cluster nodes, each with 12 GB
memory and two 4-core CPUs, for a total of 12 TB memory
and 8192 cores. The trace file contains workload during
the period of Sat May 01 00:04:55 JST 2010, to Thu Sep
30 23:58:08 JST 2010.

6.2 Efficiency of Resource Allocation

We evaluate the efficiency of Anchor resource allocation,
by allowing clients to use the resource hunting policy in
Sec. 5.2. We enable memory ballooning in VirtualBox to
allow the temporary burst of memory use. CPU-bound
VMs are configured to run a 20 newsgroups Bayesian clas-
sification job with 20,000 newsgroups documents, based on
the Apache Mahout machine learning library [24]. Memory-
bound VMs run a Web application called Olio that allows
users to add and edit social events and share with others
[25]. Its MySQL database is loaded with a large amount of
data so that performance is memory critical. We use Faban,
a benchmarking tool for tiered web applications, to inject
workload and measure Olio’s performance [26].

Our experiment comprises of 2 servers (S1, S2) and 2
VMs (VM1 and VM2). S1 runs a memory-bound VM of size
5, and S2 runs a CPU-bound VM of the same size before
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allocation. VM1 is CPU-bound with size 1 while VM2
is memory-bound with size 2. Assuming servers adopt a
consolidation policy, we run Anchor first with the resource
hunting policy, followed by another run with the default
consolidation policy for the two VMs. In the first run,
Anchor matches VM1 to S1 and VM2 to S2, since VM1
prefers S1 with more available CPU and VM2 prefers S2
with more memory. Other VM placement schemes that
consider the resource usage pattern of VMs will yield the
same matching. In the second run, Anchor matches VM2 to
S1 and VM1 to S2 for consolidation.
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Fig. 3. VM1 CPU usage on
S1 when using the resource
hunting policy.
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Fig. 4. VM1 CPU usage on
S2 when using the consolida-
tion policy.

We now compare CPU utilization of VM1 in these two
matchings as shown in Fig. 3 and 4, respectively. From
Fig. 3, we can see that as VM1 starts the learning task
at around 20 seconds, it quickly hogs its allocated CPU
share of 12.5%, and bursts to approximately 40% on S1
(80%-40%). Some may wonder why it does not saturate
S1’s CPU. We conjecture that the reason may be related to
VirtualBox’s implementation that limits the CPU allocated
to a single VM. In the case it is matched to S2, it can only
consume up to about 30% CPU, while the rest is taken by
S2’s pre-existing VM as seen in Fig. 4. We also observe that
the learning task takes about 600 seconds to complete on
S2, compared to only 460 seconds on S1, which implies a
performance penalty of 30%.

We next look at the memory-bound VM2. Fig. 5 shows
time series of memory allocation comparison between the
two matchings. Recall that VM2 has size 2, and should be
allocated 512 MB memory. By the resource hunting policy,
it is matched to S2, and obtains its fair share as soon as it
is started at around 10 seconds. When we start the Faban
workload generator at 50 seconds, its memory allocation
steadily increases as an effect of memory ballooning to cope
with the increasing workload. At steady state it utilizes
about 900 MB. On the other hand, when it is matched to
S1 by the consolidation policy, it only has 400 MB memory
after startup. The deficit of 112 MB is allocated to the other
memory hungry VM that S1 is running. VM2 gradually
reclaims its fair share as the workload of Olio database
rises, but cannot get any extra resource beyond that point.

Client resource hunting policy also serves to the benefit
of the operator and its servers. Fig. 6 shows S1’s resource
utilization. When resource hunting policy is used, i.e. when
S1 is assigned VM1, its total CPU and memory utilization
are aligned at around 60%, because VM1’s CPU-bound
nature is complementary to the memory-bound nature
of S1’s existing VM. However, when S1 is assigned the
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Fig. 5. VM2 memory usage
on S1 and S2.
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Fig. 6. S1 CPU and memory
usage.

memory-bound VM2 by the consolidation policy, its mem-
ory utilization surges to nearly 100% while CPU utilization
lags at only 50%. A similar observation can be made for S2.

Result: Anchor enables efficient resource utilization of the
infrastructure and improves performance of its VMs, by allowing
individual clients to express policies specific to its resource needs.

6.3 Anchor’s Performance at Scale

Now we evaluate the performance and scalability of Anchor
using both experiments and trace-driven simulations. We
first conduct a small-scale experiment involving placing
10 VMs to 10 servers using both the consolidation and
load balancing policies. The results, as can be found in
Appendix F.2, show that Anchor is effective in realizing
specified policies in a small-scale setup.

We then conduct a medium-scale experiment involving
all of our 20 machines. We orchestrate a complex scenario
with 4 batches of VMs, each with 20 VMs whose sizes is
drawn uniformly randomly in [1, 4]. Servers are initially
empty with a capacity of 7. VMs are uniformly randomly
chosen to use either consolidation, CPU-bound, or memory-
bound resource hunting, and servers adopt a consolidation
policy for placement.

Since the stakeholders have different objectives, we use
the rank percentile of the assigned partner as the per-
formance metric that reflects one’s “happiness” about the
matching. A 90% happiness then means that the partner
ranks better than 90% of the total population. For servers,
their happiness is the average of the matched VMs. From
the experiment we find that VMs obtain their top 10%
partner on average while servers only get their top 50%
VMs. The reason is that the number of VMs is too small
compared to servers’ total capacity, and most of VMs’
proposals can be directly accepted.

The scale of previous experiments is limited due to the
hardware constraint of our testbed. To verify Anchor’s effec-
tiveness in a practical cloud scenario with large numbers
of VMs and servers, we perform large-scale trace-driven
simulations using the RICC workload traces as the input
to our Revised DA and Multi-stage DA algorithms.
According to [20], the allocation of CPU and memory of
this cluster is done with a fixed ratio of 1.2 GB per core,
which coincides well with our atomic VM assumption. We
thus define an atomic VM to be of 1 core with 1.2 GB
memory. Each RICC server, with 8 cores and 12 GB memory
as introduced in Sec. 6.1, has a capacity of 8. The number
of servers is fixed at 1024.
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We assume that tasks in the trace run in VMs, and they
arrive offline before the algorithms run. We consider the dy-
namic scenario with our online algorithm in Appendix F.3.
For large tasks that require more than one server, we break
them down into multiple smaller tasks, each of size 8,
that can run on a single server. We then process each task
scheduling request in the trace as VM placement request(s)
of various sizes. We use the first 200 tasks in the trace,
which amounts to more than 1000 VM requests.

However, the trace does not have detailed information
regarding the resource usage history of servers and tasks,
making it difficult for us to generate various preferences
needed for stable matching. To emulate a typical opera-
tional cloud with a few policy groups, we synthesize 8
policy groups for servers and 10 for VMs, the preference
of each group being a random permutation of members of
the other side. The results are averaged over 100 runs.
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Fig. 7. VM happiness in a
static setting.
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Fig. 8. Server happiness in a
static setting.

As a benchmark, we implement a First fit algorithm
widely used to solve large-scale VM placement problems in
the literature [8], [9], [12]. Since the servers have different
preferences but First fit algorithm assumes a uniform
ranking of VMs, the algorithm sorts the VMs according
to the preference of the most popular policy group first,
and places a VM to the best server according to the VMs
preference that has enough capacity.

Fig. 7 and 8 show the results with error bars for both
Revised DA and Multi-stage DA with different scales.
As expected, we observe that, as the problem scales up,
VMs are allocated to lower ranked servers and their hap-
piness decreases, and servers are allocated with higher
ranked VMs, due to the increased competition amongst
VMs. Also note that Multi-stage DA is only able to
improve the matching from the VM perspective by 15% on
average as shown in Fig. 7, at the cost of decreased server
happiness as shown in Fig. 8. The performance difference
between Revised DA and Multi-stage DA for VMs are
thus small.

Compared to the benchmark First fit, our algorithms
provide significant performance improvement for servers.
Both Revised DA and Multi-stage DA consistently im-
prove the server happiness by 60% for all problem sizes.
This demonstrates the advantage of our algorithms in
coordinating the conflicting interests between the operator
and the clients using stable matching. Specifically, First
fit only uses a single uniform ranking of VMs for all
servers, while our stable matching algorithms allow servers
to express their own preferences. Further, First fit will
not match a VM to a server whose capacity is insufficient,

i.e. there will be no rejection from servers, while Online
DA allows rejections if a VM is preferable than some of the
server’s VMs during its execution. Clearly this improves
the happiness of both VMs and servers.
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Fig. 9. Running time in the
static setting.

3 4 5 6 7 8 9 10
0

25

50

75

100

Number of VMs (100)

Ite
ra

tio
ns

 (
10

00
)

 

 

Revised DA
Multi−stage DA

Fig. 10. Number of iterations
in the static setting.

Fig. 9 and 10 show the time complexity of the algorithms.
It is clear that the running time of Multi-stage DA is
much worse than the simple Revised DA, and grows more
rapidly. The same observation is made for the number
of iterations, where Multi-stage DA takes more than
95000 iterations to finish while Revised DA takes only
11824 iterations with 1000 VMs. Another observation we
emphasize here is that the average case complexity of
Revised DA is much lower than its worst case complex-
ity O(|J |2) in Sec. 4.1, while Multi-stage DA exhibits
O(|J |2) complexity on average. Thus Revised DA scales
well in practice, while Multi-stage DA may only be used
for small or medium scale problems.
Revised DA takes 10 seconds to solve problems with

1000 VMs and 1024 servers, which is acceptable for prac-
tical use. As expected, both algorithms are slower than
the simple First fit algorithm, whose running time is
negligible (0.01s–0.06s). First fit is not iterative so we
do not include it in Fig. 10 for the number of iterations
comparison.

Result: Revised DA is effective and practical for large-scale
problems with thousands of VMs, and offers very close-to-optimal
performance for VMs.

7 RELATED WORK

This work is related to research in the following fields.
Stable Matching. A large body of research in economics

has examined variants of stable matching [19] (see [18],
[27] and references therein). Algorithmic aspects of stable
matching have also been studied in computer science [28],
[29]. However, the use of stable matching in networking
is fairly limited. [16] uses the DA algorithm to solve the
coupled placement of VMs in datacenters. Our recent work
[30], [31] advocate stable matching as a general framework
to solve networking problems. To our knowledge, all these
works assume a traditional uni-size job model, while we
study a more general size-heterogeneous model.

VM Placement. VM placement on a shared infrastructure
has been extensively studied. Current industry solutions
from virtualization vendors such as VMware vSphere [3]
and Eucalyptus [4], and open-source efforts such as Nimbus
[5] and CloudStack [6], only provide a limited set of pre-
defined placement policies. Existing papers develop specif-
ically crafted algorithms and systems for specific scenarios,
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such as consolidation based on CPU usage [7]–[9], energy
consumption [10]–[12], bandwidth multiplexing [13]–[15],
and storage dependence [16]. They are thus complementary
to Anchor, as the insights and strategies can be incorporated
as policies to serve different purposes without the need to
design new algorithms from the ground up.

OpenNebula [32], a resource management system for
virtualized infrastructures, is the only related work to our
knowledge that also decouples management policies with
mechanisms. It uses a simple first fit algorithm based a
configurable ranking scheme to place VMs, while we use
the stable matching framework that addresses the conflict
of interest between the operator and clients.

There is a small literature on online VM placement.
[33]–[35] develop systems to predict the dynamic resource
demand of VMs and guide the placement process. [15]
considers minimizing the long-term routing cost between
VMs. These works consider various aspects to refine the
placement process and are orthogonal to our work that ad-
dresses the fundamental problem of VM size heterogeneity.

Our work is also related to the literature on job schedul-
ing. More details can be found in Appendix G.

8 CONCLUDING REMARKS

We presented Anchor as a unifying fabric for resource
management in the cloud, where policies are decoupled
from the management mechanisms by the stable matching
framework. We developed a new theory of job-machine
stable matching with size heterogeneous jobs as the under-
lying mechanism to resolve conflict of interests between the
operator and clients. We then showcased the versatility of
the preference abstraction for a wide spectrum of resource
management policies for VM placement with a simple
API. Finally, the efficiency and scalability of Anchor are
demonstrated using a prototype implementation and large-
scale trace-driven simulations.

Many other problems can be cast into our model. For
instance, job scheduling in distributed computing platforms
such as MapReduce, where jobs have different sizes and
share a common infrastructure. Our theoretical results are
thus potentially applicable to scenarios beyond those de-
scribed in this paper. As future work, we plan to extend
Anchor for the case where resource demands vary, and VMs
may require to be re-placed, where specific considerations
for VM live migration [21] are needed.
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