Appendix

Proof of Theorem 3: The proof is based on the Chernoff Bound. For $v_{i} \in[0,1]$ independent random variables, let $S=\sum_{i} v_{i}, \nu=E\left[\sum_{i} v_{i}\right]$, then

$$
P[S \leq(1-\delta) \nu] \leq e^{-\frac{\delta^{2} \nu}{2}} .
$$

Let $\Phi_{i}^{1}=\sum_{c_{1}} \tilde{x}_{i}^{c_{1}} w_{i, j(i)}^{c_{1}}, \Phi_{i}^{2}=\sum_{c_{2}} \tilde{y}_{i}^{c_{2}} w_{j(i), P}^{c_{2}}, \Phi_{j}^{2}=\sum_{c_{2}} \tilde{y}_{j}^{c_{2}} w_{j}^{c_{2}}$. All $\Phi_{i}^{1}, \Phi_{i}^{2}, \Phi_{j}^{2}$ are sums of R.V's $\in[0,1]$. With $E\left[\Phi_{i}^{2}\right]=\hat{a}_{i}, E\left[\Phi_{j}^{2}\right]=\hat{b}_{j}$, we have the following

$$
P\left[\Phi_{i}^{2} \geq(1-\delta) \hat{a}_{i}\right] \geq 1-e^{-\frac{\delta^{2} \hat{a}_{i}}{2}}, P\left[\Phi_{j}^{2} \geq(1-\delta) \hat{b}_{j}\right] \geq 1-e^{-\frac{\delta^{2} \hat{b}_{j}}{2}} .
$$

Note that the aggregate marginal utility (flow) in the first time slot is obtained from the flow in the rounded solution in the second slot. Assume $\sum_{c_{2}} \tilde{y}_{i}^{c_{2}} w_{j(i), P}^{c_{2}} \geq(1-\delta) \hat{a}_{i}$. Since $E\left[\Phi_{i}^{1} \mid \Phi_{i}^{2}\right]=\tilde{a}_{i}=\Phi_{i}^{2} /(1-\delta) \geq \hat{a}_{i}$, it can be shown that

$$
P\left[\Phi_{i}^{1} \geq(1-\delta) \hat{a}_{i} \mid \Phi_{i}^{2}\right] \geq 1-e^{-\frac{\delta^{2} \hat{a}_{i}}{2}} .
$$

Now to ensure a net flow of at least $(1-\delta) \hat{a}_{i}$ at every PU and $(1-\delta) \hat{b}_{j}$ at every SU with high probability, we need:

$$
\begin{aligned}
& P\left[\Phi_{i}^{1}, \Phi_{i}^{2}\right.\left.\geq(1-\delta) \hat{a}_{i}\right] \\
& P\left[\Phi_{j}^{2} \geq(1-\delta) e^{-\frac{\delta^{2} \hat{a}_{i}}{2}}\right)^{2}=\left(1-\frac{1}{K^{R}}\right)^{2} \\
& \geq\left(1-e^{-\frac{\delta^{2} \hat{b}_{j}}{2}}\right)^{2}=\left(1-\frac{1}{K^{R}}\right)^{2} .
\end{aligned}
$$

This results in $\delta=\sqrt{\frac{2 \ln \left(K^{R}\right)}{\hat{a}_{i}}}=\sqrt{\frac{2 \ln \left(K^{R}\right)}{\hat{b}_{j}}}$. Then the approximation bound B is given by

$$
\begin{equation*}
B=1-\sqrt{2 \ln \left(K^{R}\right)} \frac{\sum_{i} \sqrt{\hat{a}_{i}}+\sum_{j} \sqrt{\hat{b}_{j}}}{\sum_{i} \hat{a}_{i}+\sum_{j} \hat{b}_{j}} \tag{1}
\end{equation*}
$$

$\frac{\sum_{i} \sqrt{\widehat{a}_{i}}+\sum_{j} \sqrt{\hat{b}_{j}}}{\sum_{i} \hat{a}_{i}+\sum_{j} \hat{b}_{j}}$ is maximized when $\hat{a}_{i}=\hat{b}_{j}=\hat{a}=\frac{\sum_{i} \hat{a}_{i}+\sum_{j} \hat{b}_{j}}{2 N_{S}}$. By the normalized weight assumption $\sum_{i} \hat{a}_{i}+$ $\sum_{j} \hat{b}_{j} \leq K^{R}$. If $c=\frac{\max _{i}\left\{w_{i, j}^{c_{1}}(i), w_{j i}^{c_{2}},, P\right.}{\min _{i, j}\left\{w_{i, j(i)}^{c_{i}^{1}}, w_{j(i), P}^{c_{2}^{2}}\right\}} \geq 1$, then $\sum_{i} \hat{a}_{i}+\sum_{j} \hat{b}_{j} \geq \frac{K^{R}}{c}$. Substituting into (1), we have the following with high probability

$$
B \geq 1-\sqrt{\frac{4 c N_{S}}{K^{R}} \ln \left(K^{R}\right)} .
$$

