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Abstract—In this paper, we advocate the use of stable matching
framework in solving networking problems, which are tradi-
tionally solved using utility-based optimization or game theory.
Born in economics, stable matching efficiently resolves conflicts
of interest among selfish agents in the market, with a simple and
elegant procedure of deferred acceptance. We illustrate through
one technical case study how it can be applied in practical
scenarios where the impeding complexity of idiosyncratic factors
makes defining a utility function difficult. Due to its use of
generic preferences, stable matching has the potential to offer
efficient and practical solutions to networking problems, while its
mathematical structure and rich literature in economics provide
many opportunities for theoretical studies. In closing, we discuss
open questions when applying the stable matching framework.

I. I NTRODUCTION

Matching is perhaps one of the most important functions of
markets. The stable marriage problem, introduced by Gale and
Shapley in their seminal work [1], is arguably one of the most
interesting and successful abstractions of such markets. There
are men and women, looking for partners, as shown in Fig. 1.
Each has a ranking, orpreference, over agents of the opposite
gender. Given marriages that assign each man to a woman, the
following is certainly not desirable with respect to individual
rationality: there exists a pair of man and woman who both
prefer each other to their assigned partners. Such a pair is
unstablein the sense that they have a clear incentive to break
up from the current marriage and marry each other instead.
Therefore, a good marriage does not induce any such unstable
pairs: it isstable. When the problem is extended beyond a one-
to-one setting (such as in the college admissions problem [1]),
it is more generally referred to asstable matching.

Matching problems also exist pervasively in networking,
ranging from assigning channels to users and flows in wireless
scheduling, to mapping video segments to servers in video-on-
demand streaming systems. In many cases, network elements
are controlled by some central entity, and a metric of utility
may be easily defined. The problem can then be formed into
an optimization problem that can be systematically solved in
a centralized or distributed manner, without paying respect to
individual rationality.

However, as technologies evolve and networks become com-
plex, optimization becomes monolithic, sometimes even in-
ept, to be used in practice. Its effectiveness hinges upon the
availability of complete and accurate information, which may
not be realistic in practical settings. Parameter values serving
as inputs may be distorted by delayed, noisy, or inaccurate
measurements, which may lead to a significant “drift” in a
computed optimal solution from the actual optimum. Further,
an optimization algorithm needs to enumerate combinationsof

agents from both sides to find the optimal solution, which is
computationally expensive.
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Fig. 1. A simple example of the marriage market. The matching shownis a
stable matching.

Many large-scale networked systems, such as peer-to-peer
networks, consist of numerous autonomous components. The
interests of these selfish agents are not aligned, and individual
rationality needs to be taken into account. While game theoryis
widely adopted in such scenarios, its existing use often relies on
some rigorous definition of utility. Oftentimes it is difficult to
quantize and unify the effects of various factors into a single
utility function, not to mention the stringent requirementof
complete information that is implicitly assumed. In practice,
these techniques are not widely adopted due to these difficulties
though theoretically sound.

In this paper, we advocate the use of stable matching as
a general framework to tackle networking problems, where
preferences are used to model each agent’s interest, and stability
serves as the solution concept instead of optimality. As a case
study, we present a problem related to content-eyeball ISP
peering, and illustrate how it can be modelled and solved as
a variant of stable matching problems. The use of the stable
matching framework is a substantial and likely controversial
shift from utility-based optimization or game-theoretic solution
methods. Merits of the stable matching framework lie in the
competitiveness of outcomes, generality of the preferences,
efficiency and simplicity of its algorithmic implementations,
and most importantly, its overall practicality. Stable matchings
are in the core of the market that cannot be improved upon
by a coalition of agents [2]. The generic preferences embrace
many heterogeneous and complex considerations that different
agents may have. The classical deferred acceptance algorithm
can be applied in a centralized manner with little complexity. In
addition, we propose a new decentralized mechanism that yields
exactly the same outcome without centralized coordinationat
the helm.



We do not claim that we are the first to use stable matching
in networking. There exist papers — though very few — that
used the concept of stable matching, as we shall discuss soon.
In contrast, the contribution of this paper lies in an explicit
and general discussion of the stable matching theory and its
application in networking with concrete case studies, and in
provoking a broader understanding of its theoretic merit and
practical value as another tool from economics. Broadly, stable
matching can be applied in scenarios where coincidences and
conflicts of interest among agents need to be resolved, but
their considerations are difficult to be modelled quantitatively. It
naturally fits into cases when agents’ individual rationality has
to be respected. Alternatively, it also applies to cases with no
hints of selfish agents, but optimization is clearly not possible
or desirable.

II. BACKGROUND AND RELATED WORK

We start by introducing the basic theory of stable matching
in the one-to-one marriage model, as shown in Fig. 1. There are
two disjoint sets of agents,M = {m1,m2, . . . ,mn} andW =
{w1, w2, . . . , wp}, men and women. Each agent has a complete
and transitive preference over individuals on the other side,
and the possibility of being unmatched [3]. Preferences canbe
represented as rank order lists of the formpm1

= w4, w2, . . . , ∅,
meaning that manm1’s first choice of partner isw4, second
w2 and so on, until at some point he prefers to remain single
(i.e. matched to the void set). We use>i to denote the ordering
relationship of agenti (on either side of the market). Ifi prefers
to remain single than being matched toj, i.e. ∅ >i j, then j

is said to beunacceptableto i, andi’s preference only include
the acceptable partners. Preferences arestrict if each agent is
not indifferent between any two acceptable partners.

Definition 1: An outcome of the market is amatchingµ :
M × W → M × W such thatw = µ(m) if and only if
µ(w) = m, andµ(m) ∈ W ∪ ∅, µ(w) ∈M∪ ∅, ∀m,w.

This implies that the outcome matches agents on one side to
those on the other side, or to the empty set. Agents’ preferences
over outcomes are determined solely by their preferences for
their own partners in the matching.

It is clear that we need further criteria to distill a good set
of matchings from all the possible outcomes. The first obvious
criterion is individual rationality.

Definition 2: A matching isindividual rational to all agents,
if and only if there does not exist an agenti who prefers being
unmatched to being matched withµ(i), i.e., ∅ >i µ(i).

The second natural criterion is that ablocking setshould not
occur in a good matching:

Definition 3: A matchingµ is blockedby a pair of agents
(m,w) if they each prefer each other to the partner they receive
at µ. That is,w >m µ(m) and m >w µ(w). Such a pair is
called ablocking setin general.
If there is a blocking set in the matching, the agents involved
have an incentive to break up and form new marriages. There-
fore such an “unstable” matching is not desirable.

Definition 4: A matching µ is stable if and only if it is
individual rational, and is not blocked by any pair of agents.

The matching shown in Fig. 1 is a stable matching for the given
preferences of agents.

Theorem 1:A stable matching exists for every marriage
market.

This can be readily proved by the classicdeferred acceptance
algorithm, or theGale-Shapley algorithmproposed in [1] (with
men proposing). In the first round, each man proposes to his
first choice if he has any acceptable ones. Each woman rejects
any unacceptable proposals and, if more than one acceptable
proposals are received, holds the most preferred and rejects
all others. In each round that follows, any man rejected at the
previous round makes a new proposal to his most preferred
acceptable partner who has not yet rejected him, or makes no
proposal if no acceptable choices remain. Each woman holds
her most preferred offerup to this round, and rejects all the rest.
When no further proposals are made, the algorithm stops and
matches each woman to the man (if any) whose proposal she
is holding. The woman-proposing version works in the same
way by swapping the roles of men and women.

It is then observed that which side proposes in the algorithm
has significant consequences. Specifically, the algorithm finds
the two extremes among the set of stable matchings. The man-
proposing version yields a man-optimal outcome that every
man likes at least as well as any other stable matching, and
the woman-proposing version a woman-optimal one. This is
referred to as the polarization of stable matchings.

Following [1], the simple marriage model has been extended
to other matching problems. Because of the richness of the
literature, it is bold to even attempt a cursory survey of the
existing results here. Instead, we choose to introduce someof
the different models along with our case studies, and present
relevant and important theoretical developments that can be
applied to solve these problems, while using this section asa
necessary background for a better understanding of the material.

From a practical perspective, due to the efficiency of stable
matchings and the simplicity of implementation, the deferred
acceptance algorithm has profound influence on market design.
It has been adopted in a number of practical matching markets,
prominent examples of which include the National Resident
Matching Program of U.S. for medical school graduates, many
medical labor markets in Canada and Britain, and recently
school choice systems in Boston and New York City [3].

There only exists a very limited number of papers in the
networking literature that used solutions designed to achieve
stable matching [4]. In contrast, this paper seeks to present a
systematic study on the feasibility and unique advantages of
applying the stable matching framework to possibly a wider
range of problems in networking, with an objective of drawing
attention to and provoking discussions on this practical and
effective tool from the field of economics.

III. C ONTENT AND EYEBALL ISP PEERING AS

MANY-TO-MANY STABLE MATCHING

In this section, we present a general many-to-many matching
problem of interconnecting Internet Service Providers (ISPs),
where stable matching is arguably theonly practical solution.



The Internet consists of tens of thousands of ISPs, with
profound heterogeneity. Roughly, they fall into three categories,
content, eyeball, andtransit [5]. Content ISPs (CPs) specialize
in content delivery, such as Microsoft MSN and Google.
Eyeball ISPs (EPs) are in the business of selling retail Internet
access to end users, such as Verizon and Comcast. Traditionally
it has been understood that CPs and EPs buy transit from tier-1
ISPs to deliver their traffic, and EPs establish settlement-free
peering links among themselves, provided that their network
sizes or traffic volumes are roughly equal in order to save costs.

This hierarchical picture is becoming increasingly invalid.
Some CPs have built their own backbones for efficient delivery
of content that constitutes the majority of Internet’s traffic [6],
and thus become an indispensable part of the network. EPs
also possess increasing bargaining power because of their large
customer base. To reduce the bulk of transit costs and improve
latency, CPs are nowdirectly peering with EPs, creating a much
flatter Internet pyramid with tier-1 ISPs losing their grip on the
ISP peering ecosystem [7].

This trend has been increasingly realized and independently
observed among practitioners and researchers [6], [7]. Existing
peering mechanism, however, may not work well for the
emerging content-eyeball peering market. As of today, peering
decision is usually made through bilateral negotiation. These
decisions may look beneficial from a local perspective, but from
a global perspective they are very unappealing [5]. The resulted
market inefficiency is hard to rectify, since breaking the contract
involves the risk of legal lawsuit and possibly anti-trust scrutiny,
and incurs disruption to the Internet.

The difficulty in establishing a market mechanism is mainly
the idiosyncratic factors involved in making peering decisions,
including geographic coverage, traffic volume, routing require-
ments, marketing considerations, etc., alongside the common
and conflicting interests of ISPs that will induce market failure
if not resolved. Existing papers have studied novel settlement
strategies of ISPs through economical analysis when an ISP
interconnection topology is given [5], but few has touched the
issue of how this topology is formed endogenously, especially
among content and eyeball ISPs. Moreover, the market is
inherently decentralized, aggravating the mechanism design
problem.

The stable matching framework can be naturally applied
here as a first attempt to understand and address the content-
eyeball ISP peering problem, where individual rationalityhas
to be respected. Content-eyeball peering can be seen as a
many-to-many stable matching problem with quotas, and an
extension of the deferred acceptance algorithm can serve as
the centralized multilateral mechanism. Further, we provide a
decentralized algorithm that preserves the privacy of preference
information and the final matching outcome. Our theoretical
results, therefore, offer novel perspectives by making useof
the unconventional stable matching framework.

One may argue that, the usual game-theoretic approach, for
example Nash Bargaining Solution based mechanisms, and the
mechanism design approach, for example VCG auctions, can

also be applied here. The problem with game-theoretic ap-
proach is that some concrete utility function needs to be defined
(similar to optimization), which is not possible considering the
enormous complexity involved when making peering decisions.
The mechanism design approach is also unlikely to succeed,
due to collusions that are extremely common in real-world
markets. Stable matching remedies both issues by adopting a
general preference framework and a stability solution concept
resistant to collusion of coalitions from both sides [2].

A. The Model

ISPs generally have different incentives to form peering
relationships. As it improves latency which is critical to their
revenue, CPs tend to exhibit strong incentives for peering,while
some EPs may only be willing to enter a paid-peering contract,
since it possesses bargaining power under the assumption that
eyeball customers are less vulnerable to switching to another
EP. Their interests can also be in conflict, especially when one
ISP is favored by multiple ISPs.

Thus, content-eyeball peering can be cast as a many-to-many
stable matching problem with a set of CPsC and a set of
EPsE . Each ISP has a quota, which is the maximum number
of partners it allows for peering, due to technical overhead
and personnel constraints of setting up the connections, and
business considerations such as paid peering. Each ISP is
assumed to have a strict preference ordering of itsacceptable
partners. This set of acceptable partners and their rankings
could be produced by each ISP identifying and contacting their
potential partners and evaluating the potential benefits.

Due to the variety and complexity of economic and business
policy factors affecting this evaluation process, we can not and
shall not attempt to define a generic preference framework or
anything alike that each ISP adheres to, as in sharp contrastto
most previous work [5]. The only assumption on thestructure
of the preferences we make is aresponsivenessassumption
in order to reduce the exponential complexity of expressing
preferences over all subsets of acceptable ISPs. Specifically,

Definition 5: For any set of EPsE1 with |E1| < qc, and any
EP e and e′ not in E1, CP c prefersE1 ∪ e to E1 ∪ e′ if and
only if e is preferred toe′ underc’s preferencepc, and prefers
E1 ∪ e to E1.

The same can be defined for EPs. Responsive preferences are
a special case of preferences in which ISPs are substitutes rather
than complements to the opposite side [3]. This essentially
means that a CP always prefers adding an acceptable EP before
reaching the quota and it always prefers replacing a EP with
a better one when the quota is met. Clearly this is reasonable
to assume, and it also establishes the sufficiency of preferences
over individual ISPs to find a stable matching [8].

Definition 6: A matchingµ ⊂ C × E for a content-eyeball
peering problem is such that, each CPc ∈ C appears once in
at mostqc pairs whereqc denotes its quota, each EPe ∈ E
appears once in at mostqe pairs, and each pair(c, e) ∈ µ is
individually rational,i.e. mutually acceptable toc ande.



B. Solution Concepts and a Centralized Mechanism

The technical difficulty we encounter here is the choice of
stability concepts. Many-to-many matching is a more general
model than many-to-one matching. Several stability concepts
can be defined. The most common ones in the literature are
pairwise stability, corewise stability, andsetwise stability[9].

Definition 7: A matching µ is pairwise stableif there are
no ISPsc and e who are not partners inµ, but by becoming
partners, possibly dissolving some of their partnerships given
by µ to remain within quotas and keeping other ones, can both
obtain a strictly preferred set of partners.

This is the usual stability concept we have seen in the one-
to-one and many-to-one problems.

Definition 8: A matchingµ is in thecore(corewise stable) if
there is no subset of ISPs who by forming all their partnerships
only among themselves, can all obtain a strictly preferred set
of partners.

Definition 9: A matchingµ is setwise stableif there is no
subset of ISPs who by forming new partnerships only among
themselves, possibly dissolving some of their partnerships given
by µ to remain within quotas and keeping other ones, can all
obtain a strictly preferred set of partners.

Both corewise and setwise stability deal with coalitions of
multiple ISPs. The key difference is that corewise stability
requires all agents involved in a blocking set to be better off,
while setwise stability only concerns the agents who form new
partnerships in the blocking set. More detailed comparisonand
discussions of the concepts are available in [9].

Intuitively, setwise stability is the strongest definitionand the
other two are special cases of this concept. However, its proper-
ties and algorithmic implementations are less well understood
compared to the usual pairwise stability. This dilemma does
not exist for one-to-one and many-to-one cases where the three
concepts are equivalent [9], which is not the case for many-to-
many matching in general, simply because each agent can have
multiple partners and form different coalitions [9].

Therefore, for empirical purposes, we restrict our attention
to the case where the coalitions are formed between a single
CP and a set of EPs, or a single EP and a set of CPs, but not
between multiple CPs and EPs. This is a valid assumption in
practice because a CP (EP) negotiates with groups of EPs (CPs)
but not with other CPs (EPs). In this case, it is proved that the
three concepts are equivalent when preferences are responsive
[2]. Thus it is sufficient to work with pairwise stable matchings
in our problem.

Theorem 2:Pairwise stable matchings always exist in the
content-eyeball peering problem, when the ISPs have strictand
responsive preference orderings [10].

This can be readily proved by means of a centralized deferred
acceptance mechanism, which is a generalized version of the
one we discussed in Sec. II. Essentially, the mechanism works
by letting agents on one side of the market propose to its most
preferred subset of ISPs that have not rejected them, and agents
on the other side accept their most preferred subset of proposals
and reject the rest.

The analysis of this mechanism, including the polarization
of the outcomes, is essentially the same as that in Sec. II
with proper generalization. Due to space constraints, we omit
the details in this paper. Note that since CPs have stronger
incentives to peer, and EPs have the benefit of getting paid
peering deals, it may be convincing to let CPs be the proposing
side and the mechanism produces the CP-optimal outcome.

C. A Distributed Implementation

The content-eyeball peering market is inherently decentral-
ized. Thus a distributed procedure with minimum centralized
coordination is highly desirable. Moreover, in reality, anISP
would like to keep its preference and the final peering results
private for obvious reasons, which cannot be achieved in
the centralized mechanism. In this section, we present a new
distributed mechanism that preserves information privacywhile
producing precisely the same stable matching given the same
problem instance. Our mechanism is an extension of [11] in the
marriage market. It consists of two procedures,CP andEP as
presented in Algorithm 1 and 2, which are executed in each CP
and EP, respectively. Note that the execution isasynchronous.

ProcedureCP, after initialization, performs the following
loop. If a CPc does not have enough partners confirmed, and
its preferencepc is nonempty, it iterates by proposing to its
first choicet, deleting t from pc, and addingt to list, until it
hasqc partners inlist. It then waits on a message reply. If the
reply is accept, it does nothing. If the reply is reject, it removes
the sender frompc. If the sender is in itslist, it removes the
sender fromlist, which means its proposal to the sender failed.
Rejection is normally from EPs whomc has proposed to. It
can also be from EPs thatc did not propose to, which we
will explain shortly in theEP procedure. This continues until
a special stop message is received from a “registrar,” which
we assume is a server that delivers all the encrypted messages
exchanged between ISPs and thus can detect the quiescence.

Algorithm 1 Distributed CP Procedure
list ← ∅, end← false;
while !end do

while |list| < qc andpc 6= ∅ do
t ← pop(pc);
sendMsg(propose,c, t); add(list, t);

msg← getMsg();
switch msg.type

accept: do nothing;
reject: delete(pc, msg.sender);

if msg.sender∈ list then
delete(list, msg.sender);

stop:end← true;

The EP procedure is more complicated. It keeps a loop that
receives messages from CPs. Upon getting a proposal fromc, it
accepts if quota is not used up, and do an insertion sort to add
c in order. A tricky issue here is that, if the resulted number
of offers exceeds its quota, it sends messages to reject all CPs
after the last element inlist, simply because it will never accept



proposals from these CPs given the status quo. This reduces the
possible number of proposals from those who will definitely be
rejected, and speeds up the algorithm. This also ensures that
when quota was met, EPe can accept a new proposal fromc
as long asc is currently inpe. If this is the case, then again
all CPs after the newly accepted one inpe are also rejected
and deleted frompe. The EP procedure also terminates when
it receives the stop message from the registrar.

The distributed and asynchronous stable matching mecha-
nism eliminates the need of centralized coordination at thehelm
for the matching process. More importantly, it perfectly main-
tains the privacy of preference information and the final peering
decisions. Each ISP only accesses its own preference, and at
the end it has knowledge about only its own peering result. As
the distributed mechanism shares the same deferred acceptance
procedure, the final outcome is exactly the same CP-optimal
stable matching produced by the centralized mechanism.

Algorithm 2 Distributed EP Procedure
list ← ∅, end← false;
while !end do

msg← getMsg();
switch msg.type

propose:t ← msg.sender;
if |list| < qe then
sendMsg(accept,e, t);
insertionSort(list, t);
if |list| = qe then

for eachi after t in pe do
sendMsg(reject,e, i);
pe ← pe− i;

else if t ∈ pe then
sendMsg(reject,e, last(list));
sendMsg(accept,e, t);
insertionSort(list, t);
for eachi after t in pe do
sendMsg(reject,e, i);
pe ← pe− i;

else then
sendMsg(reject,e, t);

stop:end← true;

IV. L ESSONSLEARNED AND CONCLUDING REMARKS

In this paper, we articulated the stable matching framework,
which advocates a novel perspective on solving networking
problems practically. Instead of striving to achieve any concrete
notion of optimality, our framework pursues the unconventional
stability as the central solution concept using only the ordering
information in two-sided matching problems. Through the case
study, stable matching has been evidently demonstrated as a
simple, efficient, and practical solution framework applicable to
complex problems where the traditional utility-based approach
is inapplicable or impractical.

In trying to be impartial, we wish to critically examine what
is less satisfactory from the stable matching framework. Inret-
rospect, one of the most compelling concerns is the polarization

of stable outcomes that favors the proposing side of the market.
It is desirable in many cases to find a “fair” stable matching that
does not favor either side as an alternative operating pointof the
system. There are efforts in the economics literature that pursue
this direction, such as theegalitarian stable matching that
minimizes the total rank sum of the outcome in the marriage
model [12]. This is a feasible extension to our framework.

Strategy-proofness is also crucial to the effectiveness ofsta-
ble matching mechanisms. Is it the dominant strategy for agents
to truthfully report, or act according to their preferences and
quotas? Can they benefit from manipulating this information?
In this regard, some negative results have been proven on the
theoretical impossibility of achieving truthfulness for both sides
of the market in some models [2]. On the other hand, many
real-life implementation experiences suggest that the impact of
misbehavior is extremely limited, especially when each agent
has a small number of acceptable partners in a thick market [3].
Given this mixed picture, it is interesting to explore the issue
in a networking context, and understand the extent to which
this impacts the suitability of the new framework.

Our attempt of advocating stable matching in favor of con-
ventional optimization or game-theoretic approaches heremay
seem ambitious. Yet, we believe that stable matching, due toits
rich theoretical foundation and practical implementationexperi-
ences, has unique merits in solving problems in the networking
domain. Towards this vision, this paper is meant to serve as a
first step towards applying stable matching to design practical
networking solutions. With unique advantages that preferences
are more flexible to express practical considerations, and that
its solutions are efficient and may be decentralized, stable
matching has the potential to become a general framework to
solve a wide range of networking problems.
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