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Abstract—State-of-the-art spectrum auctions are designed un-
der a primary market paradigm to conduct spectrum trading
between legacy owners and large cognitive service providers.
In our previous work, we established a spectrum secondary
market based on double auctions, and showed that it significantly
improves spectrum utilization and user performance by allowing
secondary users to dynamically trade among themselves their
channel holdings obtained in the primary market. In this paper, we
devise a channel portfolio optimization framework in order for
users to make intelligent trading decisions without burdensome
overhead. By viewing each channel in the secondary market as a
stock, users assess its characteristics, and derive which chaeis to
buy or sell at what price and quantity as a portfolio optimization
problem to maximize the expected utility. Coupled with the robust ~ Fig- 1. The conceptual spectrum market structure for cognitisers.
secondary market design, the channel portfolio optimization In our previous work [9], [10], we pushed the state-of-the-
framework offers salient performance with low complexity as . .
corroborated in our simulations. art to .the next level by going beyond a primary marke_t. We

established a novel spectrisacondary markett coexists with
|. INTRODUCTION the primary market through “spectrum brokers” as shown in

It is widely believed that current static spectrum assignimeFig. 1. The primary market is the marketplace where spectrum
policy creates artificial spectrum scarcity in face of the-pr brokers, with multiplexed demands across users of a certain
liferation of wireless technologies and devices. Along lihe area [1], bid for relatively long-term spectrum leases from
of dynamic spectrum access, spectrum auctions are peticeilegacy owners based on existing solutions [1]-[5]. Theddas
to be fair and efficient solutions of future spectrum tradingpectrum resources are then traded dynamicaitpngstcog-
where spectrum can be granted to those who value it modtive users in the same area through the secondary market in
and can use it most efficiently [1]-[5]. Conventional spectr a much finer time scale, to adapt to the time-varying demands
auctions are proposed undepamary marketparadigm. They and channel conditions. Towards this end, we devised a novel
are performed weekly or daily with legacy spectrum ownerouble auction mechanism, proved its truthfulness, asymp-
on the selling side and cognitive service providers on thetic efficiency, budget-balance and individual ratiotyaland
buying side. Channels are often modeled to be homogenealgmwed that it significantly improves spectrum utilizatiand
and demands are assumed to be static. From an econommar performance since secondary trading makes the spectru
perspective, such an approach parallels a primary marketnodre liquid and easier to obtain and relinquish [6].
the capital market [6], and is only suitable to deal with the With the spectrum secondary market, cognitive users have
issuance of relatively long-term spectrum leases fromdggato make trading decisions on what channels to buy or sell,
owners to large cognitive entities. and at what prices and quantities, at the very start of each

On the contrary, we mainly focus on dynamic spectrumeriod of trading. Such trading decision making problem in
trading among individual cognitive users themseheeg,mesh an informationally decentralized and heterogeneous marke
routers of small wireless networks, APs of home networksnvironment has received little research attention sdriathe
etc. By shifting to a micro perspective, we observe that thmrevious paper [10], we showed that the seemingly formilabl
underlying assumptions of the primary market paradigm moblem can be tackled by a reinforcement learning frame-
longer hold. For small users, traffic demand is extremelgtyur work, which essentially adopts a systematic trial-anadwenray
as widely observed by existing works [7]. Moreover, chann& derive the optimal decision policy. However, the leagnin
bandwidth is of a finer granularity now, exhibiting signifita algorithm requires a large amount of data to be calibrated,
time and frequency selectivity due to fading and user mighiliwhich may take many rounds of trading. The system-wide per-
as reported by extensive measurements [8]. The monolitfilemance is inevitably scarified especially before the eay
primary market paradigm becomes inherently inefficienhaf algorithm converges. To conquer this challenge, we let each
detrimental, when applied to this scenario. user simulate hypothetical interactions with the markéeraf
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each real interaction, and update its trading policy with thbe achieved, which means the mechanism maximizes the social
simulated data. Though the convergence problem is allljatwelfare when the number of users goes to infinity, and for the
extra computational overhead is also introduced. Moreovarinning users, the expected utility gain is guaranteed to be
hypothetical interactions assume the market can be modefemh-negative, respectively.
by a stationary Markov process, which may not be the case for
dynamic spectrum trading. [1l. A CHANNEL PORTFOLIO OPTIMIZATION FRAMEWORK
In this work, we seek alternative lightweight solution to ) _ . ) .
the trading decision making problem in order to improve the !N this section, we introduce the channel portfolio optianiz
performance. We apply finance theory into spectrum secgnddPn framework inspired by finance theory in details.
trading, and propose a novel channel portfolio optimizatio
framework. To each user, each channel is viewed as a stétkChannels as Stocks: Models
with time-varying price and risk. Its reservation pri¢e. the We assume that the network operates in a slow fading
highest (lowest) price a user is willing to buy (sell) it, @g1 environment, so that channel estimation is possible. Tanisbe
the utility it can bring (take) to (from) the user accordingione on a per-frame basis using SNR or BER directly from the
to the channel condition. Risk can be roughly defined as th@ysical layer. The achievable throughput can then be mbdai
covariance of the throughput of channels. Since the chanmgladapting the channel coding and modulation schemes to the
conditions may fluctuate within a trading period, espegiail channel condition with some rate adaptation algorithmhsas
scenarios with deep fading and high mobility, users’ ratlen the one in [12]. Notice that the length of the trading intérva
in making the trading decision is to maximize their utilitie s decided according to channel dynamics and communication
determined by the expected throughput and funds availalpierhead considerations, and can be on the order of tens
after trading, subject to budget and risk constraints. Tisle r of frames or packet transmissions [13]. Hence, the channel
constraint is essentially a quality-of-service constrain the quality fluctuates within one trading interval, and thus iiean
maximum level of throughput variance of the channel paidfol achievable throughput of the previous trading interval sedi
Through extensive simulation studies we show that the ortffor the trading decision making at the current interval, abhi
lio optimization framework provides satisfactory perf@mnce is valid by the slow fading assumption. Finally we comment
while alleviates the overhead issue and slow convergentheof that such channel estimation is feasible and accurate hands
learning based solution. little overhead when implemented with various physicalelay
technologies, as suggested by existing studies [12].
With the above assumptions, we can view the wireless
annels astockswith different reservation prices and risks
the market analogous to the stock market with multiple
eouyers and sellers. Due to the channel and user diversitl, ea
individual user has an independent perception of a paaticul
annel. Therefore, to address the trading decision making
péoblem, our portfolio optimization framework naturallgeds
L . answer the following two questions: 1) How does a user
technologies including IEEE 802.16, 802.20, LTE and etc. Sfice each channel,e. assess the reservation price and risk

asstume fad!ng between OFDM subchannels _far away fr sed on the expected throughput? 2) How does a user decide
each other is uncorrelated, and each subcarrier of the s €h channels to buy, or to sell, and at what quantities?

subchannel has the same fading statistics. One subcagrier |
then the smallest trading unit.

The secondary market institution is a periodic double ancti
with multiple divisible commoditiesi.e. subchannels. In each In our market, the consistent objective of any selfish user is
period of trading, for an arbitrary subchannel, there areta maximize its expected long-run self-interest, which tan
number of buyers and sellers willing to trade. Multi-unitibi represented by a utility function. Hence, the reservatigoep
and asks are submitted to the spectrum broker serving aisa channel is directly related to the marginal utility gain
the auctioneer. Then the winner and payment determinatibears. The utility function needs to be quasi-linear to esmsu
algorithms [9] are applied to determine the winning bids artiat users can compensate each other with payments [6]. As
asks, match the total supply with demand, set the transactiguch, in our problem, the utility function includes the biéne
price, and calculate the payment for each winning user. &hegf satisfying traffic demand, which is non-linear, as weltlaes
algorithms are designed to support multi-unit trading, aad amount of funds that can potentially be used to purchase more
be rigorously proven to enforce several desired econonaip-pr spectrum, which is the linear part.
erties. For examplétuthfulnesscan be proved such that no user For trading intervak, let X;(¢) denote the vector of channel
can expect a higher utility gain by setting its price diffgrfom holdings for useti after trading, andR;(¢) denote its expected
the true valuation of the subchannig. the reservation price. throughput on all channelsB;(¢) represents the amount of
Meanwhile,asymptotic efficiencgndindividual rationalitycan funds it possesses after trading abg(¢) denotes the traffic

II. THE SPECTRUMSECONDARY MARKET

We start by introducing the spectrum secondary markag
established in our previous work [9]. We consider a micrqh
level cognitive radio network covered by one spectrum brok
with many cognitive users using possibly different teclogs.
The only assumption about users is that they use OFDMA
recommended by the IEEE 802.22 draft [11] for cognitive oadi
networks. OFDMA has already been implemented in vario

B. Pricing the Channel



demand. The utility function can then be expressed as: maximumnet funds needed to acquire the optimal portfolio
T given the current one. It can be negative if the total proseed

(Xi(g)()Ri(t) 1} + Bi(t) from selling exceed the total costs of buying, and must be no
i t ) 1 )

Ui (X;(t), Bi(t)) = ¢; min
larger than the total wealth that usgpossesses before trading,

where ¢; is a positive parameter that indicates the relative®: Bi - i , ,
importance of the current demand satisfaction, in comparis 10 calculate the expectation of funds avalla?IeTafter tradi
with the future trading potential. We assume that all usef§ first notice thatE(B;) = B — (Xi — X;7)" - E(P),
have the same form of utility functions, but they may hav&here P is the transaction price vector. Hence usdras to
different¢’s that are only privately known to characterize theif Stimate the trr.:msacnon. pnces-based on what it ha_s ptniserve
preferences. Such definition of utility function motivatesers UP 0 the previous trading period. By the prevalefiicient

to trade among themselves in order to improve their utiiign@rket hypothesis financial economics, we assume here that
dynamically. the transaction price process isnaartingale and therefore

With the utility function defined, the reservation price of®(P) =P~ whereP™ is the transaction price in the previous
buying a unit of a channel is readily obtained as follows: trading mterval_ [6]. Thus the portfolio optimization phen
can be alternatively formulated as follows:

T C
Pibc(t) =¢ (min { (Xi(t—1)) Ri(t) + Ri(?) , 1} . . X;"R; _
’ D;(t) OPT: II%(B;X €; min D, 1y —X;"P
(Xt —1)" Ri(t) 1 (3) (4).
mln{ XO) ,1}) D) s.t. (3)(4)

D. Deriving the Optimal Portfolio

Whgre X.i(t — 1) is the 'chanr.]el portfolio before trading at By observing the objective function @PT, clearly we can
. Likewise the reservation price of selling a channel can t%%e that increasiny; further after the demand is fully satisfied

de?ﬂed .ai thfe Ut'.“ty Ior;ss 'thW'” calluse._ ¢ he f hWiII decrease the utility. Hence, we may simpli@PT without
e risk of using the channels arises from the fact thaly ninimization operator:

the channel conditions change within one trading interval.

As finance theory suggests [6], it may be represented by OPT_S: max XiT(Ai -P7)
the covariance matrix of the instantaneous throughputsacro X T

channels, which can be obtained by the channel estimation st Xi Ry < D,
algorithm. and (3) (4),

C. What to Trade, and How Many? whereA; = ¢;D; /R;.

To address the second question on which channels to tradd0 solve OPT_S, we notice that it is an integer program
and at what quantities, we argue that the user rationale eand3d is NP-hard in general. We relax the integer constraint
summarized as an optimization problem. A given user seek’d letX; be a non-negative real number. Then it becomes a
to optimize its channel portfolio so as to maximize the tot&0Nvex program that can be solved in its dual domain. Inizedu
expected utility after trading, subject to a budget coistra Lagrangian multipliersi, 11, and the dual problem can be
Meanwhile, it also tries to control the variance of the expedc Written as:

throughput of the portfolio to maintain a certain level oftjty . A
: - . min g(A, 1, v) (5)
of service, which can be calculated from the covarianceiratr A v

Without ambiguity, we drop the time index and use the st pu,v >0,

superscript(-)~ to denote a quantity at — 1 in the sequel.

Let C; denote user’s covariance matrix of throughpul; Where

its reservation prige vector, arﬁ:! the tolerance thresh_old ofg()w% V) = max x;T (Ai _ P‘) +A (B; _ (Xi _ X;)T Pi)
the throughput variance respectively. Expressed sudgiribe X

channel portfolio optimization problem is: y (91 _ XiTCiXi> Ty (Dz' _ XiTRi) .
max € min { Xi;iRi , 1} + E(B) ) To solveg(A, i, v), note that
stX;'P;— (X;)"P; < By, ®3) %X’f’”) =A; — P~ —AP; — 2uC;X; — vR;.
T
o O = 0 @ By KKT conditions,M = 0. Thus, the optimak; for

(3) represents the budget constraint. Since our mechanisim ) 0X;
is individual rational, the reservation pridé’ is a worse-case 9\, p,v) is
estimation of the transaction pride® if user is a winner of . 1, _
the auction forc [9]. Thus, the left side of (3) denotes the Xi(Apv) = ﬂci (Ai =P~ —AP; —vR;). (6)



Since the relaxed version dPT_S has zero duality gap, IV. SIMULATION RESULTS

it can be solved optimally by solving its dual problem. Sub- \ye are now ready to resort to extensive simulations to study
gradient methods can be used here to iteratively searctéor fhe performance of our portfolio optimization based altjoni.
optimal dual variables with which the optimal primal vailg® as no previous work has been done for the spectrum secondary
can be easily recovered. Finally we round the fractionahoba market, we rely on the double auction in [5] as our perfor-
allocation vectoiX; to the floor of each element to conform tqnance benchmark, which represents state-of-the-art rspect
the integer constraint. The difference between the re&ulip-  5jjocation in the primary market paradigm. Be reminded that
timal channel portfolio and the current portfolice. X; —X;",  the double auction in [5] only supports homogeneous channel

is the trading quantity vector which specifies how many unitg,g single-unit bids and asks, and therefore bidding anitgsk
useri wants to buy, if the difference is positive, or to selpices are randomly generated.

if otherwise, for each channel. Together with the reseovati _ _ _
price vectorP; determined according to (1), usemakes the A. Simulation Settings
trading decisions, forms its bids and asks for all channets a 25 27 o

i i i i 7 PRILE BTSN Y
sub_m_lts to thel auctioneer. The complete aIgopthm Qf t.hdan!ga 'z nwnmwfmmn“ﬂ;fwgfp“ 21: o i
decision making based on channel portfolio optimization i<z Y ois N"
summarized as follows. 22, " Cearing S1s #‘é; ® S pafe
g + ;Primary o 1'2 ° % %!b%otgst;o o)
Algorithm 1 Decision Making Algorithm based on Channel £ MQ%JO@WQ;%f Ojgi  Learming
Portfolio Optimization L5} - — 05, . o men
1. Each user; periodically runs a channel estimation algo- Time (minute) Time (minute)
rithm, such as the one in [12], between two tradings at (@) Throughput (b) Spectrum Utilization

t — 1 andt to obtain the mean throughput vectB; and
the covariance matricC;.

2. At t, i determines its reservation price vect®f accord- We use practical settings of an OFDMA cognitive radio
ing to (1), and solves the channel portfolio optimizatiometwork, including channel frequency, bandwidth, and &dap

Fig. 2. Performance of secondary market and primary market.

problem OPT_S as follows. modulation and coding schemes, as specified in the IEEE
1) Initialize A©), ;(©) 1(0), 802.22 draft [11]. There are 48 channels, each containil®y 12
2) Given A®) ;) (%) solve g(\, i, v) according to orthogonal subcarriers. Channel gain can be decomposed int
(6). a large-scale log normal shadowing component with standard
3) Perform subgradient updates fox,u, v, where deviation of 5.8 and path loss exponent af and a small-
Y1, 92,95 follow a diminishing step size rule: scale Rayleigh fading component. The frequency selegtivit

4 is characterized by an exponential power delay profile with a
A1) [)\(k) _ <B.‘ _ (Xi _ X.‘)TPi)] delay spread .257us. The time selectivity is captured by the
! ! ! Doppler spread, which depends on the user’s speed. We assume

(k+1) _ [ (k) _ (k) (9- _X.Tc.X.)}—F every user moves around the network area according to the
H - H N oo random waypoint model with its speeds (in km/h) following a
; ; k + niform distribution 10]. The combined complex gain is
SUe+1) — [V(k) —19;(; ) (DZ‘ _XiTRi)} uni istributi Q[O, 0] bi plex gain i
generated using an improved Jakes-like method [14].
4) Return to step 2) until convergence. We assume that data packets arrive at users following an
3. Submit the bids and asks formed by the trading quantiggymptotically self-similar model, the ARIMA process, to
vector X; — X and the reservation price;. model the bursty traffic [7]. All packets have the same size.

The buffer is assumed to be sufficiently large, and the amount
of data in it reflects user's demand. Two metrics are used to
evaluate the performancél) Average User Throughpu(2)
Highly efficient channel estimation algorithms are commoniSpectrum Utilization as the average utility from all users.
available in the literature as we discussed before [12]. For
the subgradient method, its complexity is polynomial in thB- Overall Performance
dimension of the problem, which is 3 far(\, u, v). Hence, We first evaluate the effectiveness of our channel portfolio
the complete algorithm has low complexity. optimization algorithm. The simulation is performed for 60
In solving OPT_S we have relaxed the integer constraintninutes with 100 secondary users and 48 subchannels. Fig. 2
which introduces integrality gap. Characterizing the gnédity shows the results. We observe that the portfolio optimizati
gap of our rounding-based solution may be possible and calgorithm denoted as “OPT” outperforms the learning atboni
be one of the future work. Through simulation studies wiey 20% before it converges. The performance margin becomes
observe that the rounding-based algorithm provides satizfy smaller as time goes, indicating the improved trading polic
performance, which justifies its use here to approximate thg the iterative learning algorithm. After convergence PO
optimal solution. provides a similar level of performance as “Learning”, and

E. Discussions



that “OPT” and “Learning-H" performs better when the market
expands. This implies that although each user has lessroesou
on average, they are more efficiently allocated to users that
—+Learning-H can better utilize them in a larger market. In other wordss th
% Learning shows the increased efficiency of the market suggested by its
} asymptotic efficiency result. Also, we see that “Learning” i
05 9 unable to harvest the increased market efficiency, againaue
00 150 200 250 300 350 100 150 200 250 300 350 . . .

Number of SUs Number of SUs the impairing effect of severely slower convergence. Hynal
“OPT” still outperforms both of the learning based soluspn
verifying its effectiveness and robustness.

—+Learning-H
-A-Learning

=OPT

ey

Throughput (Mbps)

Spectrum Utiliation

o —

(a) Throughput (b) Spectrum Utilization

Fig. 3. Investigation of the impact of market size.
V. CONCLUDING REMARKS

enjoys a 30% throughput gain and a 35% spectrum utilizationin our previous work [9], [10], we presented a spectrum
gain over conventional primary market based approach.erhggcondary market based on dynamic double auctions, which
results demonstrate the advantage of the portfolio opéitiin  makes it possible for users to bilaterally trade their clenn
framework since it does not require any training, and doé®ldings. In this work, we devised a novel algorithm to solve
not suffer from the slow convergence. The results also yerithe trading decision making problem based on a portfolio
that with the secondary market, every channel is traded @stimization framework that is widely used in finance. In our
a different stock with dynamic prices across users, and fifamework, each channel is viewed as a unique stock with
efficiently utilized as time goes by, despite the temporal amiynamic characteristics that each user keeps track of. Then
spatial variation of user demands and link qualities. at each trading period, an optimization problem is effidient
solved to maximize the utility of the channel portfolio with
budget and quality-of-service constraints. Simulatiosuhs

We investigate the impact of the market size in this sectiogorroborate the effectiveness of the algorithm in prowdin
Intuitively, a larger market involving a larger number ofets robust and good performance in dynamic environments while
provides more trading opportunities, and is therefore mofgmedying the convergence issue of the learning solution we
efficient. This is also rigorously proved in our technicgboe ysed before.
[10]. However, increasing the size of the market has a negati
impact on the learning algorithm, as the interactions wiité t REFERENCES
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