
Egalitarian Stable Matching for VM Migration in
Cloud Computing

Hong Xu, Baochun Li
Department of Electrical and Computer Engineering

University of Toronto
{henryxu, bli}@eecg.toronto.edu

Abstract—Virtual machine migration represents a new chal-
lenge to design efficient and practical migration algorithms that
work well with hundreds or even thousands of VMs and servers.
In our previous work, we advocated the use of a general stable
matching framework from economics to solve networking prob-
lems, and showed that it offers unique advantages compared to
utility-based optimization, using a simple procedure of deferred
acceptance. In this paper, we apply this framework to the VM
migration problem, and propose an egalitarian approach that finds
a stable matching fair to both VMs and servers, instead of favoring
either side as a result of the deferred acceptance procedure. Such
an egalitarian stable matching that minimizes the total rank sum
of the outcome is shown to be a sensible notion of fairness under
mild conditions, and through simulations is demonstrated to offer
superior results.

I. INTRODUCTION

Cloud computing is touted over recent years to provide
ubiquitous IT services, ranging from search and online social
networks to high performance computing and infrastructure
outsourcing, in a cost-efficient and flexible way. These cloud
services are usually packaged and run in the form of virtual
machines (VM) in the server farm, so that the statistical
multiplexing effect improves the resource utilization of the
infrastructure.

Live migration of virtual machines (VMs), the process of
dynamically transferring a virtual machine across different
physical servers at runtime, has attracted significant attention in
both industry and academia. It represents a new opportunity to
enable agile and dynamic resource management in modern data
centers [1], which is barely touched in existing studies. This is
especially important since data center networks are fraught with
scalability and efficiency issues, which have already become
subjects of concerns among practitioners and researchers [2],
[3].

The problem is more complicated than it seems if we
consider the practical aspects of data center networks. To a
large extent, current data center networks follow a three-tier
architecture put forth by [4] as shown in Fig. 1. It is thus
the interest of both VMs and servers to migrate VMs to
topologically nearby servers, because doing so minimizes the
imposed traffic footprint to the data center network and the
application downtime to the VMs.

Conflicts of interest abound, however: servers differ in their
traffic loads, affecting the performance of migration. VMs also
differ in the volume of disk images to be migrated, incurring

1 2 3 4 5 6 7 8 13 14 15 16

Core tier

Aggretation tier

Access tier

......

Fig. 1. A three-tier datacenter network architecture.

different amounts of transmission overhead to the network —
a critical factor that servers need to consider.

One may be tempted to resort to optimization to tackle this
problem. However, optimization dictates an arbitrary way of
resolving the conflicts of interest between different stakeholders
in order to achieve a global notion of performance optimality. It
ignores the individual rationality of participants of the market,
which is critical since the cloud provider and consumers are
autonomously and selfishly seeking to maximize their own
benefits. Moreover, a concrete utility function is often needed
for optimization, which may not be possible to define since
different stakeholders have different considerations that they
deem fit.

In our previous work [5], we advocated the use of stable
matching as a general framework to tackle networking prob-
lems, where preferences are used to model each agent’s interest,
and stability serves as the solution concept instead of optimality.
An ISP peering case study was considered in [5]. In this paper
we apply the same framework to VM migration problem. Each
agent, be it a VM or a server, ranks the agents on the other side
of the market based on some criteria, which is its preference
list. An algorithm then computes a matching that cannot be
improved by any pair of VM and server, i.e. it is stable.

The use of the stable matching framework marks a substantial
shift from utility-based optimization or game-theoretic solution
methods. The merit of the framework, as we have shown in [5],
is its overall practicality. The generic preference abstraction
embraces many heterogeneous and complex considerations
that network operators and cloud applications may have. The
classical deferred acceptance algorithm can be applied in a
centralized manner with little complexity. The performance

of stable matching is competitive to that of an optimization
approach, despite its use of ordinal information only.

The problem of the deferred acceptance algorithm is that
it can only produce two extreme outcomes, one that is VM-
optimal and one server-optimal [5]. This is known as polar-
ization of stable matchings [6]. In many cases, the network
operator looks for a “fair” stable matching that does not favor
either side as the operating point of the system, with which
the VMs’ migration performance and the data center network’s
traffic footprint are better balanced. It is therefore important to
answer such practical needs with efficient implementations.

In this paper, we apply the egalitarian stable matching
concept to solve this issue [7]. The intuition of egalitarian
stable matching is simple: it tries to find the matching that
minimizes the total rank sum of the outcome among all stable
matchings [8], [9]. We will first show that the total rank sum,
i.e. the total sum of the ranks of the VMs and servers in
their matched servers’ and VMs’ preferences, respectively, can
be unambiguously used to compare stable matchings under
mild conditions. We then apply a polynomial-time algorithm
developed in [7] to find such egalitarian stable matching. We
also conduct simulations to demonstrate the effectiveness and
practicality of our approach.

II. THE STABLE MATCHING FRAMEWORK

A. Background

We start by introducing the basic theory of stable matching in
the one-to-one marriage model as necessary background for this
paper. In this model, there are two disjoint sets of agents M =
{m1,m2, . . . ,mn} and W = {w1, w2, . . . , wp}, i.e. men and
women. Each agent has a complete and transitive preference
over individuals on the other side, and the possibility of being
unmatched [10]. Preferences are rank order lists of the form
pm1 = w4, w2, . . . , ∅, meaning that man m1 favors w4 the most
as its partner, w2 the next and so on, until at some point he
prefers to be unmatched (i.e. matched to the void set). We use
>i to denote the ordering relationship of i. If i prefers to remain
unmatched than being matched to agent j, i.e. ∅ >i j, then j is
said to be unacceptable to i, and preferences can be represented
just by the list of acceptable partners. Preferences are strict
if each agent is not indifferent between any two acceptable
partners.

Definition 1: An outcome of the market is a matching µ :
M × W → M × W such that w = µ(m) if and only if
µ(w) = m, and µ(m) ∈ W ∪ ∅, µ(w) ∈ M ∪ ∅, ∀m,w.

This implies that the outcome matches agents on one side to
those on the other side, or to the empty set. Agents’ preferences
over outcomes are determined solely by their preferences for
their own partners in the matching.

It is clear that we need further criteria to distill a “good”
set of matchings from all the possible outcomes. One natural
criterion is that a blocking set defined as follows should not
occur:

Definition 2: A matching µ is blocked by a pair of agents
(m,w) if they each prefer each other to the partner they receive

at µ. That is, w >m µ(m) and m >w µ(w). Such a pair is
called a blocking set in general.
If there is a blocking set in the matching, the agents in the
set have an incentive to break up and form a new marriage.
Therefore such an “unstable” matching is not desirable.

Definition 3: A matching µ is stable if and only if it is
individual rational, and is not blocked by any pair of agents.

In the marriage model, a stable matching is efficient, and the
set of stable matchings equals the core of the game whose rules
are that agents from opposite sides of the market can match if
and only if they both agree [11].

The following important theorem establishes the existence of
stable matching:

Theorem 1: A stable matching exists for every marriage
market.

This can be readily proved by the classic deferred acceptance
algorithm, or the Gale-Shapley algorithm proposed in [12]
(with men proposing). In the first round, each men proposes
to his first choice if he has any acceptable ones. Each woman
rejects any unacceptable proposals and, if more than one
acceptable proposals are received, holds the most preferred and
rejects all others. In each round that follows, any man rejected at
the previous round makes a new proposal to his most preferred
acceptable partner who has not yet rejected him, or makes no
proposal if no acceptable choices remain. Each woman holds
her most preferred offer up to this round, and rejects all the rest.
When no further proposals are made, the algorithm stops and
matches each woman to the man (if any) whose proposal she
is holding. The women-proposing version works in the same
way by swapping the roles of men and women.

The seminal paper [12] has thus spurred the research of
stable matching in both economics and computer science.
Many models have been developed that consider other variants
of different markets. More importantly, the theory of stable
matching has also been extensively tested in real world. Many
labor markets have adopted and extended the deferred accep-
tance procedure to match employers with employees. Prominent
examples include the National Residency Program in the U.S.
and many medical labor markets in Britain and Canada [10].

B. VM Migration as A College Admissions Problem
First let us state our assumptions. We focus on a server

maintenance scenario where VM migration is triggered mainly
by periodic upgrades and maintenances, as well as by failures of
hardware components [13]. We assume that each VM enjoys
a uniform provision of resources that it can possibly use in
terms of CPU, memory and disk, though their actual resource
usage may differ widely. This is usually the case in practice. In
addition, we assume techniques for monitoring the traffic load
on servers are available, which is widely provided by vendors
[14], [15].

We study VM migration as a college admissions problem
[12], a variant of the stable matching problems. The “market”
consists of a set of VMs V with cardinality V on one side, and
a set of servers S with cardinality S on the other side. Each
VM (“student”) seeks to be migrated to one server (“college”),

while each server may have vacant capacity to hold multiple
VMs. The capacity of a server is the maximum number of
instances qs it can hold, up to the resource provisioning limit
per VM. We assume

�
v qs ≥ V , so that every VM will have

one match.
To model the common and conflicting interest, the concept

of preferences is used in the stable matching literature. In our
VM migration problem, the derivation of preferences can be
based on a wide spectrum of practical considerations, possibly
including the hop distance, storage image size of VMs, and
traffic load of servers. We are not specifically concerned with
the construction of preferences here in this paper.

Given PV = (pv1 , . . .) and PS = (ps1 , . . .), the vectors
of preferences from both parties, we can define stability of
matchings in our college admissions model:

Definition 4: A matching µ is stable if there is no incentive
for any pair (v, s) to deviate from µ. That is, there is no pair
(v, s) ∈ V×S such that (i) VM v prefers server s to its matched
one u(v); and (ii) s prefers to add v to its set, possibly at the
expense of another less-preferred VM according to ps.

The existence of stable outcomes is then immediate from [6],
which may be proven by a simple extension of the centralized
deferred acceptance algorithm [6]. Suppose we let VMs be
the proposing side as in [5]. First, VMs propose to their first
choices. A server with quota qs then places on its waiting list
qs VMs who rank highest, or all VMs if there are fewer than
qs proposals, and rejects the rest. Rejected VMs then apply to
their second choices, and servers again accept qs highest ranked
VMs from all the proposals it has received up to this round. The
algorithm continues until every VM is placed on one waiting
list. Each server then admits every VM on its waiting list, and a
stable matching has been produced. This centralized algorithm
can be implemented as a service module in the control plane.

It can be readily proven that in the VM migration problem,
the set of stable matchings has a specific lattice structure as
in the classical one-to-one marriage problem [5], [16]. This
structure implies that there is a best stable matching for one
side of the market, which is at the same time the worst for the
other side, i.e. the polarization of stable matchings. Specifically,

Theorem 2: The matching produced by the VM-proposing
algorithm is the VM-optimal stable matching, while the one
produced by the server-proposing algorithm is server-optimal.

Therefore, which side proposes has a direct impact on the
outcomes. In our context, this implies that the VM-proposing
algorithm offers best performance for VMs in terms of minimiz-
ing their individual downtime, while having the worst perfor-
mance for servers in that the overall overhead of transmission is
not optimized. In this work, our objective is to find a plausible
fairness criterion that strikes a balance between the benefits of
VMs and servers.

Let us take a look at an example to understand the polar-
ization problem in context. Table. I and II show the preference
lists of 5 VMs and 4 servers, together with servers’ quotas. We
can readily obtain the VM-optimal stable matching:

VM-optimal: (s1, v4), (s2, v2), (s3, v1, v3), (s4, v5), (1)

TABLE I
PREFERENCE LISTS FOR VMS.

v1 s3, s2, s1, s4
v2 s2, s1, s4, s3
v3 s3, s1, s4, s2
v4 s1, s4, s2, s3
v5 s4, s2, s3, s1

TABLE II
PREFERENCE LISTS FOR

SERVERS.

quota
1 s1 v5, v2, v3, v1, v4
1 s2 v3, v5, v4, v1, v2
2 s3 v2, v4, v5, v3, v1
1 s4 v1, v4, v2, v3, v5

by running the VM-proposing deferred acceptance algorithm
for one round, since all VMs are accepted to their first choices.
This outcome, however, is the worst for servers since all servers
are assigned their worst choices of VMs.

The server-optimal stable matching can be similarly obtained

Server-optimal: (s1, v5), (s2, v3), (s3, v2, v4), (s4, v1), (2)

where servers are all matched to their first choices. It is clearly
distinct from the VM-optimal stable matching, and one can
readily verify that it is the worst for VMs.

III. EGALITARIAN STABLE MATCHING

We now present our egalitarian stable matching framework
in this section.

A. Cases of Complications

There are many possible fairness criteria to distill a good
stable matching. One natural choice is to minimize the total
rank sum of partners of all agents in the matching, as first
stipulated in [17] for one-to-one matching problems. This
means that the average “happiness” of the agents involved
are maximized. However, since in our problem a server can
admit multiple VMs, a server’s ranking over individual VMs
alone may not be sufficient to determine its preferences over
combinations of them.

Specifically, there are several cases one needs to take care
of. First, a server with quota 2 may not be indifferent between
the combinations of VMs (1, 4) and (2, 3), where the numbers
indicate the ranks of VMs in the server’s preference. Second,
it may prefer the combination of (1, 5) over (2, 3) due to the
significance of the first VM in its list, though the rank sum of
the former is greater (worse) than the latter. Third, it may also
prefer the combination of (2, 4) over (2, 3), if the second and
fourth VMs are complementary to each other and they have to
be migrated to the exact same machine.

The first two complications can be readily resolved by using
weighted preferences, which provide not only ordinal but also
quantitative information. However, this might not be possible
when policy or other subjective configurations are involved,
which is quite common in production data centers. Luckily, we
note that some properties of the general many-to-many stable
matchings due to [18] also hold for our many-to-one matching
problem, and can help us eliminate the first complication.
Further, a mild assumption on the structure of preferences
eliminates the remaining complications and establishes the total
rank sum as an unambiguous notion of fairness we can use.

B. Analysis

We first introduce some notations. Given a set of VMs µ(s)
paired with server s in a stable matching µ, we define the
dissatisfaction score DS(µ(s)) of s to be the sum of ranks
over µ(s) in its preference ps, as in [18].

DS(µ(s)) =
�

v∈µ(s)

Rs(v), (3)

where Rs(v) denotes the rank given by s to v. The dissatis-
faction score of VM v is simply DS(µ(v)) = Rv(µ(v)). The
dissatisfaction score of the stable matching µ is then the sum
of the scores of all agents involved.

DS(µ) =
�

v∈V
DS(µ(v)) +

�

s∈S
DS(µ(s)). (4)

The following results from [18] are stated for servers. They
are also true for VMs by symmetry.

Proposition 1: A server s ∈ S is assigned the same number
of VMs, ns, in all stable matchings. Further, if ns < qs, then
s has the same set of VMs in all stable matchings [18].

Proposition 2: Suppose µ and µ∗ are different stable match-
ings that assign different sets of VMs to a server s. Then there is
one matching (say µ) such that if (v, s) ∈ µ and (v∗, s) ∈ µ∗\µ,
Rs(v) < Rs(v∗) [18].

A useful corollary of Proposition 2 is that if a server is
assigned different sets of VMs in different stable matchings,
then its least preferred VM in each of them must be different.

Corollary 1: Suppose µ and µ∗ are stable matchings of the
same problem instance (V×S, PV , PS). Then for every server
s ∈ S , either µ(s) = µ∗(s), or min(µ(s)) �= min(µ∗(s)).
Here min(µ(s)) denotes the least preferred VM among those
matched to s in µ. Note that this holds trivially for VMs, since
in different matchings a VM is matched to either the same or
different servers.

With the two propositions and Corollary 1, we can prove the
following theorem that essentially eliminates the first case of
complication.

Theorem 3: Suppose µ and µ∗ are different stable matchings
that assign distinct sets of VMs to a server s ∈ S . Then
DS(µ(s)) �= DS(µ∗(s)).

Proof: By Proposition 1, s must be matched to the same
number of VMs in µ and µ∗. By Proposition 2, we can
assume that Rs(min(µ(s))) < Rs(min(µ∗(s))) without loss of
generality. Each VM in the preference list ps that ranks below
Rs(min(µ(s))) corresponds to at most one set of VMs for s

(amongst which it is the least preferred VM).
Consider the first VM that ranks below Rs(min(µ(s))) in ps,

which is the least preferred VM of s in some stable matching,
say µ∗∗. By Proposition 2, any VM v ∈ µ∗∗\µ must rank below
any VM v� ∈ µ in ps. Moreover, since |µ∗∗(s)| = |µ(s)|, each
such v is a replacement of some other v� ∈ µ that ranks above
v in ps. Each replacement of v� with v leads to an increase of
the dissatisfaction score of s so that DS(µ(s)) < DS(µ∗∗(s)).

Thus, each server has distinct total rank sum of its matched

VMs in different stable matchings. This theorem implies that
the first case of complication with equal total rank sum for
distinct stable matchings will not happen. However, this alone
cannot resolve the other two cases of complications that largely
concern the relationship between VMs. It can be readily seen
that we need further assumptions on the complementariness
among VMs in order to do so.

Thus, we impose an additional no-complementarities as-
sumption on the preference orderings of servers over combi-
nations of VMs in the outcome as in [7]:

Definition 5: Given two sets of VMs A1 and A2, if a server
s prefers A1 at least as much as A2, and v1 >s v2, then s

strictly prefers A1 ∪ v1 to A2 ∪ v2.
No-complementarities is a special case of preferences in

which VMs are substitutes rather than complements to servers
[10]. This essentially means that a server always prefers adding
an acceptable VM before reaching the quota and it always
prefers replacing a VM with a better one when the quota is
met. Clearly this is reasonable to assume for servers.

Finally, the following theorem proved in [7] essentially
asserts that with the no-complementarities assumption, we can
obtain a strict preference ordering over all possible stable
matchings for any server by specifying only the preferences
on individual VMs.

Theorem 4: Suppose µ(s) and µ∗(s) are two distinct sets of
VMs of server s under stable matchings µ and µ∗, respectively.
Then, (i) DS(µ(s)) �= DS(µ∗(s)), and (ii) if DS(µ(s)) <

DS(µ∗(s)), then s prefers µ over µ∗ and vice versa [7].
This obviates the need for preferences that specify the

orderings over all possible combinations of VMs a priori which
would be of exponential size. We can now unambiguously
compare any two sets of stable outcomes by comparing the
dissatisfaction scores. An egalitarian measure of fairness that
minimizes the total rank sum across all agents thus makes sense.

As a simple illustration, let us reuse the example as shown in
Table. I, II. The total rank sums of the VM-optimal and server-
optimal stable matchings as shown in (1) and (2) are 29 and
26 respectively. Now consider the following egalitarian stable
matching for the same problem instance:

egalitarian: (s1, v2), (s2, v5), (s3, v1, v3), (s4, v4), (5)

We can see that the total rank sum is 23, which is smaller than
that of both VM-optimal and server-optimal matching. Most
of the servers (except s3) are matched to their second choices,
and most of the VMs are also assigned their second choices
(except v1, v3). This matching clearly represents a fair balance
between the two parties.

A centralized polynomial time algorithm to find such egali-
tarian stable matching is developed in [7], and can be readily
applied to our problem here. The complexity is O(n6), where
n = min{V, S}. Note that it is worse than the simple deferred
acceptance algorithm which is only O(n2).

C. Discussions
It should be noted that our framework is generally applicable

to any sensible preference derivation that VMs and servers have.

Readers may be interested in how preferences can be defined
in different scenarios, and how the different definitions affect
the performance of the migration algorithm. Indeed we are
exploring this direction as one of our future work. However,
this paper is mainly positioned at provoking the use of stable
matching theory as a new theoretical tool, and thus is concerned
with the theoretical development as the first step. We use a
simple preference derivation in our evaluation in this paper,
which is shared among agents on the same side of the market.
However, it should be noted that stable matching allows the
preference derivation to be heterogeneous across agents. That
is, one VM may have an entirely different preference definition
than another. This is also one of the key merits of the framework
compared with optimization.

IV. EVALUATION

We are now ready to resort to simulations to study the
performance of egalitarian stable matchings. As no previous
work has been done using the theory of stable matching, we
rely on the VM-proposing deferred acceptance algorithm in
our previous work [5] as the performance benchmark, which
produces the VM-optimal stable matching.

As discussed above we adopt a simple preference derivation.
We assume that VMs rank servers in an ascending order of the
transmission cost Φv,s defined as follows:

Φv,s = ds(v),s/θs(v),s, ∀v ∈ V, s ∈ S, (6)

where s(v) denotes v’s residing server, ds(v),s denotes its hop
distance to server s, and θs(v),s denotes the available end-to-
end bandwidth between s(v) and s. This derivation takes a joint
consideration of hop distance and server traffic load. Servers,
on the other hand, rank VMs in an ascending order of the
migration overhead defined as

Ωs,v = ds(v),s · ζv, ∀v ∈ V, s ∈ S, (7)

where ζv is the size of VM disk image in bytes. It considers
both the transmission distance and volume, and captures the
total amount of bytes processed by routers in the network
for migrating v to s. Both servers’ and VMs’ preferences are
assumed to be complete and strict.

In the simulations, we set the maximum capacity of each
server to be 4 VMs. The quota of each server is uniformly
distributed in [1, 4]. The hop distance between servers is gener-
ated by assuming the fan-out of access routers to be 4, and the
fan-out of aggregation routers to be 8. The initial placement
of VMs on servers is random. The size of VM’s disk image
ζv is uniformly distributed in [1, 100] Gb, and the available
bandwidth between servers θs(v),s is uniformly distributed in
[0.5, 1.5] Gbps.

A. Overall Performance
Fig. 2, 3 show the overall performance averaged over 100

runs with 200 servers and increasing number of VMs. We can
clearly see that egalitarian stable matching achieves a different
tradeoff point between the benefits of two parties. In terms
of average transmission cost, the VM-optimal stable matching

100 150 200 250 300 350 400 450 5001

1.25

1.5

1.75

2

2.25

2.5

number of VMs

av
er

ag
e

tra
ns

m
is

si
on

 c
os

ts

VM−optimal
egalitarian

Fig. 2. Transmission costs compar-
ison under general conditions (S =
200).

100 150 200 250 300 350 400 450 500

50
60
70
80
90

100
110
120
130

number of VMs

av
er

ag
e

ov
er

he
ad

VM−optimal
egalitarian

Fig. 3. Migration overhead compar-
ison under general condition (S =
200).

produced by deferred acceptance algorithm outperforms the
egalitarian stable matching by over 10− 15%. This is because
the VM-optimal stable matching provides the best performance
for VMs among all stable matchings of the problem instance,
i.e. the least transmission cost. The egalitarian approach tries
to strike a balance between these conflicting interest while
ensuring that the matching is still stable. Thus the performance
of VMs is inevitably scarified.

On the other hand, the performance of servers is improved in
the egalitarian stable matching. As seen in Fig. 3, the average
migration overhead is around 15% better than that of the
VM-optimal stable matching. Thus, the data center network
is better served with less migration overhead, at the cost of
VM migration performance. Egalitarian stable matching offers
an alternative with fair tradeoff between the benefits of the two
parties for the cloud operator.

We also compare the total rank sums of the two different
stable matchings for the same problem instance. We observe
through a set of simulation that, indeed, egalitarian stable
matching minimizes the rank sum of all matched pair of VMs
and servers. We omit the results due to space limit.

B. Performance under Extreme Conditions

The story is different when we evaluate the performance of
egalitarian stable matching under extreme conditions, where the
available total quotas of servers are barely enough to accom-
modate migrating VMs. We generate these problem instances
by reducing the average quota of each server from 2 to 1 (it is
ensured that the total quota is larger than the number of VMs).

Fig. 4, 5 show the results with increasing number of VMs
averaged over 100 runs. We can see that egalitarian stable
matching and VM-optimal stable matching stay close to each
other in both performance metrics. We also observe that the
difference in total rank sum between the two stable matchings
is smaller than that under general conditions.

The reason for this indifference is that, when quota is barely
enough, the total number of stable matchings for a problem
instance is in general much less. As a result, the performance
of egalitarian stable matching compared to the VM-optimal
stable matching is not as much different as it is under general
conditions. We also find that reducing the variance of server
traffic load ζs has the same effect. The reason is similar: when
ζs of different servers are largely clustered in a small range,

100 150 200 250 300 350 400 450 5001.2

1.4

1.6

1.8

2

2.2

2.4

number of VMs

av
er

ag
e

tra
ns

m
is

si
on

 c
os

ts

VM−optimal
egalitarian

Fig. 4. Transmission costs compar-
ison under extreme conditions (S =
200).

100 150 200 250 300 350 400 450 50060
70
80
90

100
110
120
130

number of VMs

av
er

ag
e

ov
er

he
ad

VM−optimal
egalitarian

Fig. 5. Migration overhead compar-
ison under extreme conditions (S =
200).

TABLE III
RUNNING TIME OF THE ALGORITHMS.

Algorithm Average running time (s)
deferred acceptance 0.0145

egalitarian stable matching 26.69

migration overhead θs,v for different VMs is insignificant,
and the final performance difference between distinct stable
matchings is thus insignificant. Due to space limit we omit the
figure here.

C. Discussion
Finally, in trying to be impartial, we evaluate the running

time of the egalitarian stable matching algorithm as in [8],
which as we discussed is worse than the simple deferred
acceptance procedure. More intuitively, Table. III shows a
running time comparison averaged over 100 runs on a Dual-
Core Intel Xeon 3.0 Ghz machine, with a problem size of
200 servers and 350 VMs. Egalitarian stable matching has a
disadvantage of being three orders of magnitude slower than
deferred acceptance.

Together with the simulation results, this tells us that the
egalitarian approach is applicable and effective when the prob-
lem has a moderate to large number of stable matchings. We
note that this does not hurt its practicality since in general,
production data center networks operate under mild workload
where there are more than enough servers to host all the mi-
grating VMs. The running time is also acceptable for practical
use. Under extreme conditions the use of egalitarian stable
matching is not justified due to its computational burden and
little performance improvement.

V. RELATED WORK

Live migration of virtual machines, the process of transition-
ing a VM across physical servers, emerges and has attracted sig-
nificant attention in both industry and academia [14], [15], [19],
with products such as VMotion already being shipped. Most of
the existing work, however, focus on implementation issues and
optimization techniques of migration. The question of which
servers to migrate the VMs to is largely left untouched.

There are also some studies in networking that apply stable
matching, though this line of related work is very limited. In
[20], the endogenous formation of source-relay pairs between
selfish nodes in cooperative wireless networks is modeled and

solved as a stable roommate problem. A further variant of the
stable roommate problem called stable exchange problem is
proposed in [21] to model the peer selection process of peer-
to-peer storage systems. Our recent work [5], to our knowledge,
represents the first attempt in applying stable matching theory
as the general framework for solving networking problem.

VI. CONCLUDING REMARKS

In this paper, we advocated an egalitarian stable matching
framework, which introduces a novel perspective on solving
the VM migration problem. Egalitarian stable matching aims
to address the polarization issue of the deferred acceptance
algorithm we used in [5], and achieve a fair balance between the
benefits of VMs and servers. We presented necessary theoretical
foundation for the applicability of the egalitarian approach,
and through simulations demonstrated its effectiveness and
practicality.

REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,” in
Proc. SOSP, 2003.

[2] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible Data Center
Network,” in Proc. ACM SIGCOMM, 2009.

[3] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “BCube: A
High Performance, Server-Centric Network Architecture for Modular
Data Centers,” in Proc. ACM SIGCOMM, 2009.

[4] “Cisco Data Center Infrastructure 2.5 Design Guide,” 2007.
[5] H. Xu and B. Li, “Seen As Stable Marriages,” in Proc. INFOCOM, 2011.
[6] A. E. Roth, “The College Admissions Problem Is Not Equivalent to the

Marriage Problem,” J. Econ. Theory, vol. 36, pp. 277–288, 1985.
[7] V. Bansal, A. Agrawal, and V. S. Malhotra, “Polynomial Time Algorithm

for An Optimal Stable Assignment with Multiple Partners,” Theoretical
Computer Science, vol. 379, pp. 317–328, 2007.

[8] R. Irving, P. Leather, and D. Gusfield, “An Efficient Algorithm for the
‘Optimal’ Stable Marriage,” J. ACM, vol. 34, no. 3, pp. 532–543, 1987.

[9] D. F. Manlove, R. W. Irving, K. Iwama, S. Miyazaki, and Y. Morita, “Hard
Variants of Stable Marriage,” Elsevier Theoretical Computer Science, vol.
276, pp. 261–279, 2002.

[10] A. E. Roth, “Deferred Acceptance Algorithms: History, Theory, Practice,
and Open Questions,” Int. J. Game Theory, vol. 36, pp. 537–569, 2008.

[11] A. E. Roth and M. Sotomayor, Two-sided Matching: A Study in Game
Theoretic Modeling and Analysis, ser. Econometric Society Monograph.
Cambridge University Press, 1990, no. 18.

[12] D. Gale and L. S. Shapley, “College Admissions and the Stability of
Marriage,” Amer. Math. Mon., vol. 69, no. 1, pp. 9–14, 1962.

[13] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu, “Live Migration of Virtual
Machine Based on Full System Trace and Replay,” in Proc. HPDC, 2009.

[14] M. Nelson, B. H. Lim, and G. Hutchins, “Fast Transparent Migration for
Virtual Machines,” in Proc. USENIX, 2005.

[15] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live Migration of Virtual Machines,” in Proc. NSDI,
2005.

[16] A. E. Roth, “Stability and Polarization of Interest in Job Matching,”
Econometrica, vol. 53, pp. 47–57, 1984.

[17] D. McVitie and L. B. Wilson, “The Stable Marriage Problem,” Comm.
ACM, vol. 114, pp. 486–492, 1971.

[18] M. Baı̈ou and M. Balinski, “Many-to-Many Matching: Stable Polyandrous
Polygamy (or Polygamous Polyandry),” Discrete Applied Mathematics,
vol. 101, pp. 1–12, 2000.

[19] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-box and
Gray-box Strategies for Virtual Machine Migration,” in Proc. NSDI, 2007.

[20] F. Fazel and D. R. Brown III, “On the Endogenous Formation of Energy
Efficient Cooperative Wireless Networks,” in Proc. Allerton, 2009.

[21] L. Toka and P. Michiardi, “Analysis of User-driven Peer Selection in
Peer-to-Peer Backup and Storage Systems,” in Proc. GameNets, 2008.

