
1

Mitigating Bottlenecks in Wide Area Data
Analytics via Machine Learning

Hao Wang and Baochun Li, Fellow, IEEE
Department of Electrical and Computer Engineering, University of Toronto

Abstract—Over the past decade, we have witnessed exponential growth in the density (petabyte-level) and breadth (across
geo-distributed datacenters) of data distribution. It becomes increasingly challenging but imperative to minimize the response times of
data analytic queries over multiple geo-distributed datacenters. However, existing scheduling-based solutions have largely been
motivated by pre-established mantras (e.g., bandwidth scarcity). Without data-driven insights into performance bottlenecks at runtime,
schedulers might blindly assign tasks to workers that are suffering from unidentified bottlenecks.
In this paper, we present Lube, a system framework that minimizes query response times by detecting and mitigating bottlenecks at
runtime. Lube monitors geo-distributed data analytic queries in real-time, detects potential bottlenecks, and mitigates them with a
bottleneck-aware scheduling policy. Our preliminary experiments on a real-world prototype across Amazon EC2 regions have shown
that Lube can detect bottlenecks with over 90% accuracy, and reduce the median query response time by up to 33% compared to
Spark’s built-in locality-based scheduler.

Index Terms—Wide area, data analytics, performance prediction, machine learning, bottleneck detection, task scheduling.

F

1 INTRODUCTION

W ITH large volumes of data generated and stored at ge-
ographically distributed datacenters around the world, it

has become increasingly common for large-scale data analytics
frameworks, such as Apache Spark [47] and Hadoop [15] to span
across multiple datacenters. Petabytes of data — including user
activities, trending topics, service logs and performance traces —
are produced on these geographically distributed datacenters every
day, processed by tens of thousands data analytic queries.

Minimizing response times of geo-distributed data analytic
queries is crucial, but far from trivial. Results of these analytics
queries are typically used when making real-time decisions and
online predictions, all of which depend upon the timeliness of
data analytics. However, in contrast to data analytics in a single
datacenter, the varying bandwidth on wide-area network (WAN)
links and the heterogeneity of the runtime environment across
geographically distributed datacenters impose new and unique
challenges as query response times are minimized.

Known as wide-area data analytics in the literature, tasks (or
data) are optimally placed across datacenters in order to improve
data locality [26, 27, 36, 42, 43]. However, all previous works
made the simplifying assumption that the runtime environment of
wide-area data analytics is temporally stable, and that there are no
runtime performance variations in these clusters. Naturally, this
may not accurately reflect the reality. In addition, existing works
have largely been motivated by a few widely accepted mantras,
such as the scarcity of network bandwidth on access links from a
datacenter to the Internet. With an extensive measurement study
on analytic jobs, Ousterhout et al. [32] have convincingly pointed
out that some of the widely held assumptions in the literature may
not be valid in the context of a single cluster.

Delving into the fluctuating runtime environment of wide-area
data analytics, this paper makes a strong case for analyzing and
detecting performance bottlenecks in data analytics frameworks

Preliminary results have been presented in USENIX HotCloud’17 [44]

at runtime. Shifting gears from a single cluster to the context
of wide-area data analytics, we believe that the conclusion from
[32] still holds: it may not always be the same resource — such
as bandwidth — that causes runtime performance bottlenecks in
wide-area data analytic queries. To generalize a step further, the
types of resource that cause performance bottlenecks may even
vary over time at runtime, as analytic queries are executed across
datacenters. It becomes intuitive that, if we wish to reduce the
query response times in wide-area data analytics, these perfor-
mance bottlenecks need to be detected at runtime, and a new
resource scheduling mechanism needs to be designed to mitigate
them. Unfortunately, such a high-level intuition has not yet been
well explored in the literature and remains a largely uncharted
territory.

In this paper, we propose Lube, a new system that is de-
signed to perform data-driven runtime performance analysis for
minimizing query response times. Lube features a closed-loop
design: the results of runtime monitoring are used for detecting
bottlenecks, and these bottlenecks serve as input to the resource
scheduling policy to mitigate them, again at runtime. Our original
contributions in this paper are the following:

First, we propose effective and efficient techniques to detect
resource bottlenecks at runtime. We investigate two bottleneck
detection techniques, both driven by performance metrics col-
lected in real-time. We start with a simple statistical technique,
Autoregressive Integrated Moving Average (ARIMA) [10], and
then propose machine learning techniques to further explore the
implicit correlation between multiple performance metrics.1 As
one of the effective algorithms and a case study, we use the
Sliding Hidden Markov Model (SlidHMM) [12], an unsupervised
algorithm that takes time series as input and incrementally updates

1. For example, a higher network I/O will lead to higher JVM heap
swap frequencies, since network send/receive semantics will trigger memory
load/dump operations.

2

Fig. 1: A potential bottleneck in memory.

model parameters for detecting upcoming states.
Second, we propose a new scheduling policy that, when assign-

ing tasks to worker nodes, mitigates bottlenecks by considering not
only data locality (e.g., [42]), but also the severity of bottlenecks.
The upshot of our new scheduling policy is the use of a technique
similar to late binding in Sparrow [33], that holds a task for a
short while before binding it to a worker node. This is designed to
avoid the negative implications of false positives when detecting
bottlenecks.

We have implemented a prototype of Lube on a Spark SQL
cluster over Amazon EC2 with 37 instances across nine regions.
Our experiments of the Big Data Benchmark [39] with a 1.1
TB dataset show that Lube is able to detect bottlenecks with an
accuracy over 90% and reduces the median query response time
by as much as 33% (1.5× faster).

2 LUBE: A BIRD’S-EYE VIEW

Data analytics over geo-distributed datacenters may suffer from a
highly volatile runtime environment, due to the lack of load dis-
tribution when using resources, or varying bandwidth availability
over wide-area network links [4]. As a result, resource bottlenecks
are more likely to occur at runtime, when data analytic queries are
executed over the wide area.

As a motivating example of such runtime bottlenecks, Figure 1
presents a heat map of real-time memory utilization on the Java
Virtual Machine (JVM) heap, captured on a 5-node Spark SQL [7]
cluster running the Big Data Benchmark [39]. As we can observe,
within a specific time window (marked by tcurrent), memory is
heavily utilized on node_1, while other nodes are largely idle on
their memory utilization. This implies that memory becomes a
bottleneck on node_1, because the Spark SQL scheduler assigned
more tasks to this node with no knowledge that its memory may
be overloaded at runtime.

Given the existence of resource bottlenecks, our ultimate
objective is to reduce query response times by designing new
task scheduling strategies that work around these bottlenecks.
To achieve such an objective, we need to monitor performance
attributes of data analytic queries at runtime and detect potential
bottlenecks with very little overhead. To be more specific, we will
need to design and implement the following components:

Lightweight performance monitors. A collection of perfor-
mance monitors on each worker node is needed to capture
process-level performance metrics in real-time. In Lube, rather
than intrusively using code instrumentation, we choose to reuse
existing lightweight system-level performance monitors on Linux
(e.g., jvmtop, iotop, iperf and nethogs). Online bottleneck
detection. With performance metrics collected in real-time, we
will propose algorithms that analyze dependencies between per-
formance metrics and detect potential bottlenecks at runtime.

Lube Master

Bottleneck Info. Cache

Lube Scheduler

Available Worker Pool

Lube Client

Model
Update

Online Bottleneck Detector

Training
Pool

Network I/O JVM

more metricsDisk I/O

Lightweight Performance Monitors

Bottleneck Detector

Submitted Task Queue

(worker, intensity)

Bottleneck-aware
Scheduling

Fig. 2: Lube: a closed-loop architecture involving performance
monitors, bottleneck detection, and task scheduling.

Bottleneck-aware scheduling. To react to detected bottlenecks, a
bottleneck-aware scheduler will make task assignment decisions
by considering both bottleneck severities and data locality. Be-
sides, the scheduler should be able to tolerate inaccurate detec-
tions.

Figure 2 presents the closed-loop design architecture of Lube.
On each worker node, a Lube client periodically collects runtime
performance metrics, updates the machine learning model and
reports detected bottlenecks to the Lube master; on the master
node, the task scheduler makes task assignment decisions based on
bottleneck intensities at the worker nodes, as well as data locality
preferences of tasks. In return, the decisions made by the task
scheduler will further influence the performance of data analytic
queries at each worker node.

3 DETECTING BOTTLENECKS

Performance bottlenecks may emerge anytime and anywhere in
wide-area data analytics. To mitigate performance bottlenecks
in time, we will first need to detect them correctly at runtime.
Lube performs online bottleneck detection on performance metrics
collected in real-time.

We investigate two techniques to detect bottlenecks from
the time series of performance metrics. One is a simple statis-
tical model — the Autoregressive Integrated Moving Average
(ARIMA) algorithm that approximates the future value by a
linear function of past values and past errors; the other is an
unsupervised machine learning model: the Sliding Hidden Markov
Model (SlidHMM) algorithm that can autonomously learn the
implicit correlation between multiple performance metrics.

3.1 Dataset Collection

We collect runtime performance metrics from both system-level
monitors and monitoring interfaces of data analytic frameworks.
Table 1 summarizes all features we have considered in the bot-
tleneck detection. It should be noted that all features are obtained
in a non-intrusive way by reusing exiting toolkits and interfaces.
Besides, it is easy to incrementally expand the training dataset
by including performance metrics collected during the execution
of queries in reality. The bottleneck detection models can be
improved with the updated dataset. All metrics are recorded as
a 2-tuple including the timestamp and the value. A master node

3

Metrics Description

disk_io Disk read/write throughput
disk_iops Disk I/O operations per second
net_io Network throughput
cpu_util CPU utilization per core
mem_util Memory utilization
jvm_gc_util JVM garbage collection utilization
jvm_heap_util JVM heap utilization

pending_task_num The number of waiting tasks
completed_task_num The number of completed tasks
failed_task_num The number of failed tasks
task_retry_num The retry times of failed tasks
pending_stage_num The number of waiting stages
completed_stage_num The number of completed stages

TABLE 1: The metrics used to detect the potential per-
formance bottlenecks, which are collected by performance
monitors of Linux and data analytic frameworks.

aggregates metrics from each worker node and updates the dataset
on each worker node periodically.

In addition to the performance metrics, we also include the
progress metrics collected from the data analytic frameworks. The
progress metrics indicates the runtime execution status of workers.
For example, a high task_retry_num on a worker implies that the
worker is in severe bottleneck. Zero pending_task_num implies
the worker is available or becoming available.

We perform data preprocessing on the raw data of performance
metrics, because the range of values of features varies widely.
For performance metrics such as disk_io and net_io, they are
normalized by dividing the theoretical maximum performances
defined by the hardwares. For utilization metrics such as cpu_util
and mem_util, they are inherently normalized values between 0
and 1. Figure 3 shows heap maps of the normalized metrics.

3.2 ARIMA

Introduced by Box and Jenkins [10], the ARIMA model has
been widely applied in time series analysis. As a combination of
autoregressive (AR) model and the moving average (MA) model,
the ARIMA model is defined by the following equation:

yt = θ0 + φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p

+εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q, (1)

where yt and εt denote the actual value and random error at time t
respectively; φi (i = 1, 2, . . . , p) and θj (j = 1, 2, . . . , q) are the
coefficients specified by the model. p and q are integers indicating
the autoregressive (AR) and moving average (MA) polynomials
respectively. For example, if q = 0, then Eq. (1) reduces to an AR
model of order p; If p = 0, then Eq. (1) reduces to a MA model of
order q. A general ARIMA model is represented as ARIMA(p, d,
q), in which d is the degree of difference transformation for data
stationarity.

The ARIMA methodology basically has three iterative steps.
Firstly, we test the stationarity of the input time series by the
Dickey-Fuller Test [17]. If the time series is not stationary, we
transform it into a stationary time series by applying a suitable
degree (defined by d) of differencing. Secondly, we examine
the autocorrelation function (ACF) and the partial autocorrelation
function (PACF) of the input time series to estimate appropriate p
and q [10]. Thirdly, we check the residuals (actual values minus

Memory utilization of executor processes

Network utilization of datanode processes

CPU utilization of executor processes

Disk (SSD) utilization of datanode processes

Time (s)

Fig. 3: Heat maps of performance metrics.

fitted values) to diagnose whether the model is adequate. If the
model is not adequate, then we repeat the previous steps.

We build an univariate ARIMA model for each performance
metric, rather than a vector ARIMA model for all metrics, as it
usually becomes “overfitting” due to too many combinations of
insignificant parameters [14]. To support online bottleneck detec-
tion, we periodically update the ARIMA model with continuously
arriving performance metrics.

3.3 Sliding HMM

The Hidden Markov Model (HMM) [8] infers a sequence of
hidden states that maps to the sequence of observation states.
Through feeding a time series of observed performance metrics
(O1 to Od) to HMM, we can infer the possible performance
metrics Ok in the future (Figure 4). The HMM is usually defined
as a three-tuple: (A,B, π) as the following notations (t is the time
stamp):

Q = {q1, q2 . . . , qN}, hidden state sequence.

O = {O1, O2 . . . , Ok}, observation state sequence.

A = {aij}, aij = Pr(qj at t+ 1|qi at t), transition matrix.

B = {bj(k)}, bj(k) = Pr(Ok at t|qj at t), emission matrix.

π = {πi}, πi = Pr(qi at t = 1), initial state distribution.

HMM learns the hidden states based on an expectation max-
imization algorithm, the Baum-Welch Algorithm [9]. This algo-
rithm iteratively searches the model parameters (A,B, π) that
maximizes the likelihood of Pr(O|µ) — the best explanation
of the observation sequence. Traces of JVM heap utilization in
Figure 5 presents a clear periodical pattern. By learning the hidden
states behind this pattern, the HMM infers the future performance
metrics for bottleneck-aware scheduling.

To support bottleneck detection in runtime, HMM must be
updated online. However, such online updates incur a heavy cost

4

past

…

…

futuret

{time_stamp: mem, net, cpu, disk}

A(aij)A(aij)

B(bj(k))B(bj(k))

…QQ

OdOdO2O2O1O1

q1q1 q2q2 qiqi qjqj

OkOkOO

Fig. 4: The Hidden Markov Model.

in both time and space, as the Baum-Welch algorithm needs to re-
calculate both old and new time series input. Hence, we propose to
use the Sliding Hidden Markov Model (SlidHMM) [12], which is
a sliding version of the classic HMM, and is particularly designed
for online characterization of high-density time series. The core of
SlidHMM is a sliding window that accepts new observations and
evicts outdated ones. A moving average approximation replaces
the outdated observations during SlidHMM’s training phase. Dif-
ferent from the traditional HMM, SlidHMM updates incrementally
with the partial calculation on a fixed window of observations.
Thus, it improves the efficiency of bottleneck detection in both
time and space.

3.4 Accuracy-Overhead Trade-Off

A natural conflict lies between the accuracy of bottleneck detec-
tion and the overheads of algorithms. More training iterations lead
to more accurate detection, but introduces more overheads and
latency. Designed to coexist with costly data analytics engines,
bottleneck detection should work under the radar.

Considering the ultimate goal of bottleneck detection is to
enable bottleneck-aware scheduling, it is fairly unnecessary to
enforce an accuracy of one decimal place. A number of bottleneck
severity levels are enough for bottleneck-aware scheduling. To
this end, we shape the input performance metrics from continuous
values to discrete ones (e.g., integers from 1 to 100) and classify

Query-1 Query-2 Query-3

0

5

10H
e

a
p

 M
e

m
o

ry
 (

G
B

)

0
2

4

6

8

0

5

10

Time (s)

0 500 1000 1500 2000

Fig. 5: The JVM heap utilization traces of a Spark executor
process.

the output into several bottleneck severity levels. It results in a
coarse inference of bottleneck severity, though, which is adequate
for our error-tolerant scheduling strategy.

4 BOTTLENECK-AWARE SCHEDULING

To justify the imperatives of bottleneck-aware scheduling, we
visualized the performance metrics collected from a Spark SQL
cluster running real-world workloads in a geographically dis-
tributed fashion on Amazon EC2. Figure 3 reveals the necessity
and feasibility of performing bottleneck-aware scheduling in wide-
area data analytics: a single worker node is bottlenecked con-
tinuously while all nodes are rarely bottlenecked in chorus.
A bottlenecked node slows down the running tasks, and if we
keep assigning tasks to the bottlenecked node, performance will be
further degraded. Meanwhile, there usually exist available nodes
to take over the tasks assigned to bottlenecked nodes.

Unfortunately, neither existing resource management plat-
forms (e.g., Mesos [23] and YARN [6]) nor scheduling solutions
(e.g., Iridium [36] and Sparrow [33]) support online detection of
such performance bottlenecks. The built-in schedulers of Spark
and Hadoop make decisions only based on data locality, with the
objective of reducing network transmission times [46].

Bottlenecked nodes consume extra time to process tasks. To
minimize the response times of data analytic queries, we propose a
simple task scheduler to coordinate with our bottleneck detection
algorithms and mitigate bottlenecks at runtime. A node will be
marked as available if no upcoming bottlenecks have been de-
tected; a task has several levels of locality preferences in descend-
ing order. When assigning a task, this scheduler jointly considers
data locality and bottleneck severity. Essentially, it searches for an
available node that satisfies the highest locality preference level
of the task compared to all available nodes. Considering that
bottlenecks may not be correctly detected, we introduce a late-
binding algorithm to our bottleneck-aware scheduler. Sparrow [33]
applies this algorithm to work around incorrect samplings. The
intuition of late-binding is that the worker nodes first verify the
correctness of bottleneck detection, and then launch the assigned
tasks. If such verification fails, the task will be reassigned.

Our bottleneck-aware scheduling algorithm has a prospective
bird-view over bottleneck severities of all nodes, thanks to the on-
line bottleneck detection. Basically, the bottleneck-aware schedul-
ing algorithm is seeking a worker that not only best matches the
locality preferred by the task, but also keeps bottleneck-free in
future period of time. Pseudocode for this algorithm is shown in
Algorithm 1. Note that a task usually has a list of preferred local-
ities sorted by preference levels in descending order. However, if
no bottleneck-free worker meets the task’s locality preference, the
task will be assigned to a random picked worker that is bottleneck-
free. In case of potential false positives in bottleneck detection, our
scheduler will call an error-tolerance algorithm first before the task
is sent to the matched worker.

4.1 Error Tolerance

Our bottleneck detection algorithms are not always accurate. It is
impossible to have one hundred percent accuracy. A false positive
detection further worsens the bottleneck severity, since a node
detected as bottleneck-free will be assigned with more tasks.
Similar to Sparrow [33], we introduce a late-binding algorithm to
overcome detection inaccuracies in bottleneck-aware scheduling.

5

Algorithm 1: Bottleneck-Aware Scheduling Algorithm
Input: taskList, . pending task list

workerList, . running worker list
btlOfWorker, . bottleneck severity hashmap

Output: taskToWorker . assignment decisions

1 for task in taskList do
2 for locality in task.localityList do
3 . search a worker that matches the locality
4 worker = search(workerList, locality);
5 btlLevel = btlOfWorker[worker];
6 if btlLevel is low then . bottleneck-free
7 . for error-tolerance, call Algorithm 2
8 binding = lateBind(task, worker);
9 add binding to taskToWorker;

10 break; . go to the next task
11 else . in bottleneck
12 continue; . try next locality

13 if no matched worker then
14 . randomly pick a free worker
15 randFreeWorker = randFree(btlOfWorker);
16 . for error-tolerance, call Algorithm 2
17 binding = lateBind(task, randFreeWorker);
18 add binding to taskToWorker;

The intuition of late-binding is that the workers do not imme-
diately launch the assigned tasks and instead place reservations for
the requested resources (i.e., CPU cores and memory). Meanwhile,
the scheduler probes performance metric observations and justifies
whether the detected bottlenecks are false positive. The scheduler
will adopt a back-off strategy when false positives happen. For
example, if the observed performance metrics increase rapidly,
the detected bottleneck-free will be identified as false positive.
The scheduler then releases the resource reservation on the nodes
and puts back the assigned tasks to the list of pending tasks.
Pseudocode for this algorithm is shown in Algorithm 2. For
false negative cases that mistakenly mark a worker node as
non-available, the worker will still receive tasks if there are no
bottleneck-free worker nodes because the Lube scheduler is work-

Algorithm 2: Late-Binding Algorithm
Input: task, . a task to be binded

taskList, . pending task list
worker, . detected as bottleneck-free
obsOfWorker . observed performance hashmap

Output: binding . task-to-worker

1 reserve worker.cpu and worker.mem;
2 while tick in timePeriod do . probe for a time period
3 obsVal = obsOfWorker[worker]; . observation
4 add obsVal to trend;

5 if trend is ascending then . false positive
6 add task to taskList; . back to pending list
7 release worker.cpu and worker.mem;
8 return empty binding;
9 else

10 return (task, worker); . late-binding

conserving. In other words, such false negative worker nodes will
not be under-utilized, as if there were pending tasks in the queue.

5 IMPLEMENTATION

In order to implement a practical closed-loop framework that
enables online bottleneck-aware scheduling, we specifically set
our implementation goals as follows:
• Low-latency: To detect bottlenecks accurately and make
scheduling decisions effectively, the closed-loop of Lube
must operate at fine time granularity. Therefore, modules and
pipelines integrated in this loop must act in low latency.
• Extensible: Data analytics tasks consume various resources.
The framework should provide simple interfaces to plug in
customized performance monitors, in case of missing potential
bottlenecks in different resources.
• Compatible: The framework should be able to open the bot-
tleneck detection service to prevailing data analytics engines. It
must provide compatible loose-coupled APIs.
• Low-overhead: All components in Lube framework must
perform under the radar. They must be lightweight enough,
introducing negligible impact on running analytics tasks.
To achieve these goals, we implement the software stack

and open APIs of Lube as Figure 6. In essence, components
are Python lightweight daemon processes that interact with each
other asynchronously. Redis [37], an in-memory cache, works
as the underlying low-latency and reliable messaging channels.
Messages exchanged between different components are tagged
with an epoch timestamp. To guarantee consistent timing on the
whole cluster, a NTP [3] clock synchronization service is deployed
on each node. Before cached in redis, messages are all serialized
in a lightweight data-interchange format, JSON [2], .

On each worker node, performance monitors and the bottle-
neck detection module communicate in a publish/subscribe mes-
saging paradigm. The monitors are continuously publishing per-
formance metric streams to local redis server. As a subscriber, the
local bottleneck detection module receives runtime performance
metrics and detects potential upcoming bottlenecks. Subsequently,
the detected bottleneck severities will be published to a remote
redis server on master node. For error-tolerant (Algorithm 2),
both observed performance metrics (i.e., val_ob) and detected
bottlenecks (i.e., val_inf) will be directed to the redis server on
master node.

On the master node, a redis server is deployed to cache
detected bottleneck severities and observed performance metrics
from each worker node. When a task is ready to run, the Lube
Scheduler will make task assignment decisions based on runtime
bottleneck severities cached on the redis server.

Our implementation reuses the redis APIs as our interfaces,
because the redis APIs have simple and clear definitions as well
as a broad support for various programming languages. Inherently,
Lube is implemented in a well-decoupled structure with high
flexibility and extensibility for further development.

5.1 Pluggable Performance Monitors
A performance monitor is implemented as a daemon process
that monitors specific metrics in the background. As an instance
of Python multiprocessing.Process, a performance monitor
process is optimized for multiple CPU cores and non-blocking.
Though implementation based on Python threading consumes

6

PUBLISH + HSET
 metric {time: val}
 (e.g, iotop {time: I/O})

SUBSCRIBE
 metric_1 metric_2 …

HSET
 worker_id {time: {metric:
 val_ob, val_inf}}

HGET worker_id time

Worker Redis Server

iotopjvmtopnethogs

Master Redis Server

Lube Scheduler

…

M
as

te
r N

od
e

W
or

ke
r N

od
es

Bottleneck Detection Module

APIs:

Fig. 6: The software stack and APIs of Lube.

less memory, it suffers high context-switching latency introduced
by the Global Interpreter Lock (GIL) of Python.

Plugging in another customized performance monitor is easy.
We have provided a base class PerfMonitor, with which perfor-
mance monitor developers only need to: 1) create a child class; 2)
pass in a monitor command (e.g., iotop) and a filter function (for
filtering out redundant output). By tens of lines of code, one can
plug a new performance monitor into the Lube framework.

In our prototype of Lube, we have developed performance
monitors based on nethogs, jvmtop and iotop, which monitor
network I/O, JVM performance and disk I/O at process-level
respectively. The output of performance monitors is organized as
a HashMap following the API style of redis:

{'monitor_name':
timestamp, metric_1, metric_2, ...}

The overhead of performance monitors is negligible. Moni-
toring toolkits like nethogs, jvmtop and iotop are well-tested
and widely-deployed on Linux. Our experiments in Section 6 also
show the overhead introduced by monitoring per second can be
ignored.

5.2 Bottleneck Detector
The Bottleneck Detector is also a daemon process, running locally
on each worker. As a subscriber of the local redis server, the Bot-
tleneck Detector periodically updates the machine learning model
based on new monitored performance metrics, and asynchronously
pushes predicted bottleneck severities to the remote redis server
on master node.

The core wrapped by the Bottleneck Detector process is bottle-
neck detection algorithms. We build statistics model ARIMA from
Python statsmodels.tsa library and the machine learning model
SlidHMM from Python scikit-learn library. The models are
updated online and serialized as a file saved persistently by Python
pickle. The serialization is necessary for potential failures on
worker nodes, and avoid training a model from scratch everytime.

The bottleneck information is recorded in a UNIX-style num-
ber, each digit indicating the severity level of a specific perfor-
mance metric. This digit-based structure is easy to extend, efficient
to transfer and safe to cache. In our prototype, we define a 4-digit
number as follows:

n m d c
| | | |

network: 0-4 <-+ | | +-> cpu : 0-4
memory : 0-4 <---+ +---> disk: 0-4

As an instance, 4201 indicates the intensity levels of the
bottleneck in network, memory, disk and CPU are 4, 2, 0 and
1 respectively (the highest level is 4).

5.3 Lube Scheduler

We have to integrate the Lube Scheduler natively into the code-
bases of data analytics engines. As one of the core components
in data analytics engines, the schedulers have few open APIs
exposed to the third-party schedulers. Our prototype scheduler
is implemented for Spark-1.6.1, one of the most prevailing data
analytics engines. Note that our APIs of bottleneck detection
are aligned with standard redis APIs, implementing bottleneck-
aware schedulers on other data analytics engines like Hadoop [15]
and Cosmos [11] will not take much effort.

To implement an efficient and compatible Lube Scheduler, we
fully reuse the original codebase of Spark-1.6.1. We implement the
Lube Scheduler as a subclass of the Spark default task scheduler,
inheriting most functions and data structures we do not need to
refactor for the bottleneck-aware scheduling. The default task
scheduler maintains two queues to respectively track available
worker nodes and pending tasks. Each available worker is rep-
resented as a slot of CPU cores and memory capacities. A worker
node enters the queue when it has free CPU cores and memory
capacities. A task and a worker node will both be dequeued after
a task assignment decision is made by the scheduler. The default
scheduler applies a delay scheduling strategy [46] for data locality.
To make a task assignment decision, the scheduler first dequeues
a task from the queue of pending tasks, and iteratively looks for a
worker that matches the task’s locality preference. Based on this
intuition, to enable bottleneck-aware scheduling, we extend the
scheduler a little bit — to further check the bottleneck severities
after the node and execute late-binding as Algorithm 2.

6 EVALUATION

In this section, we present evaluation results on Lube. We demon-
strate that Lube (i) provides accurate bottleneck detection for
Spark jobs, (ii) significantly reduces completion times of queries,
and (iii) is robust and scalable to large-scale clusters and work-
loads. The highlights of our evaluation are as follows.

• Bottleneck detection accuracy: Experiments on running
different workloads show that Lube with SlidHMM achieves
over 90% bottleneck detection accuracy.

• Bottleneck detection robustness: We show that SlidHMM
can hold a bottleneck detection accuracy around 90% when the
scales of the cluster and the query increase.

• Performance improvement: Lube speeds up the median
query response times from 26.88% (1.4×) to 33.46% (1.5×)
at negligible overheads.

• Error-tolerance effectiveness: Lube Scheduler achieves ap-
proximated speedup rate with different bottleneck detection
accuracies by ARIMA and SlidHMM.

• Scalability: We evaluate Lube with a variety of queries on
clusters in different scales. The results show Lube scales well
and maintains stable performance benefits upon the increasing
scales of clusters and workloads.

7

Query-1

H
it
 R

a
te

 (
%

)

50

60

70

80

90

100

a b c

Query-2

H
it
 R

a
te

 (
%

)
50

60

70

80

90

100

a b c

Query-3

H
it
 R

a
te

 (
%

)

50

60

70

80

90

100

a b c

Query-4

H
it
 R

a
te

 (
%

)

50

60

70

80

90

100

ARIMA SlidHMM

Fig. 7: The accuracy of bottleneck detection.

6.1 Methodology

EC2 deployment: We deploy Lube across 9 EC2 regions in N.
Virginia, N. California, Oregon, Ireland, Frankfurt, Tokyo, Seoul,
Singapore and Sydney [5]. We launch 37 m4.2xlarge instances
in total, with 4 workers in each region and 1 master in one region
(N. Virginia). Each instance has a 8 cores CPU, 32 GB memory,
1000 Mbps network2 and a 100 GB SSD disk.

Software environment: All instances run on Ubuntu-14.04 with
Oracle Java-1.8.0. The whole data analytics platform is build with
Spark-1.6.1, HDFS-2.6.4 and Hive-1.2.1. For Spark, we configure
each worker with 6 CPU cores and 24 GB memory; For HDFS,
we configure each data chunk with 3 replicas, the same as the
default.

Workloads: We use the Big Data Benchmark [39] as our
workload, with datasets from Intel HiBench [24] and Common
Crawl [1] document corpus. The dataset is around 1.1 TB (36
datanodes, 30s GB per each). Derived from Pavlo et al. [34],
Big Data Benchmark contains a mix of Hive and Spark SQL
queries for evaluating performance of large-scale parallel queries.
There are four major workloads: Query 1 and Query 2 are both
exploratory SQL queries; Query 3 is a join query; Query 4 is a
user-defined-function (UDF) query executing an external python
script to count URLs. Query 1-3 each has three scale levels a, b,
c, from small to large.

Evaluation Metrics: As for bottleneck detection accuracy, we
use hit rate to represent the accuracy of our bottleneck detection
algorithms. A hit rate is defined as the proportion of detected
bottlenecks that are observed by monitors among all detected
bottlenecks. As for benefits of bottleneck-aware scheduling, we
compare the query response times and task completion times on

2. EC2 only guarantees intra-region bandwidth. The inter-region traffic runs
on public links that is highly fluctuating and intensely competitive.

ARIMA SlidHMM

H
it
 R

a
te

 (
%

)

50

60

70

80

90

100

110

Number of instances

5 10 15 20 25 30

(a) The average accuracy vs the scale of clusters.

ARIMA SlidHMM

H
it
 R

a
te

 (
%

)

75

80

85

90

95

Query completion times (s)

500 1000 1500

(b) The accuracies vs the scale of queries.

Fig. 8: Analysis of Lube’s bottleneck detection accuracy.

pure Spark and Spark with Lube enabled. In addition, we measure
the overhead by running Lube with default Spark task scheduler
instead of the Lube Scheduler. For effectiveness of Lube’s error-
tolerance, we compare query response times and task completion
times under different detection accuracies.

6.2 Bottleneck Detection Accuracy

We use hit rate to represent the accuracy of bottleneck detection
accuracy. The hit rate is formulated as:

hit rate =
#((t, detection) ∩ (t, observation))

#(t, detection)
× 100%,

which calculates the proportion of verified bottleneck detections.
We run each workload of Big Data Benchmark with the ARIMA
algorithm and the SlidHMM algorithm for 15 times respectively,
tracing both detected bottleneck severity sequences and obser-
vation sequences. By calculating hit rate offline, we plot the
bottleneck detection accuracies under different queries in Figure 7.

Figure 7 presents the accuracies of bottleneck detection under
different settings. We collect the time stamps and the bottleneck
sequences during the running of the Big Data Benchmark for 15
times respectively. During the collection, it should be noted that
the Lube scheduler is disabled to order to observe the bottlenecks.
By comparing the time sequences of detected bottlenecks and

8

Query-1

0

0.5

1.0

Time (ms)
0 2×105 4×105

Query-2

0

0.5

1.0

Time (ms)
0 2×105 4×105

Query-3

0

0.5

1.0

Time (ms)
0 2×105 4×105

Query-4

0

0.5

1.0

Time (ms)
0 2×105 4×105

Pure Spark Lube-ARIMA Lube-SlidHMM

Fig. 9: CDF of task completion times.

observed bottlenecks, we calculate the hit rate offline. In our
experiments, the average hit rate of the SlidHMM is 92.1%,
while it’s 83.57% for ARIMA. The hit rate of ARIMA tends to
decrease with the increase of query scale. As a linear combination
of autoregression and moving average, ARIMA ignores nonlinear
patterns in the performance metric sequences, which may lower
the accuracy of bottleneck detection.

6.3 Bottleneck Detection Robustness

We evaluate accuracies of both ARIMA and SlidHMM on clusters
consisting of different numbers of instances, when running each
query of the Big Data Benchmark. We plot the average accuracies
achieved by ARIMA and SlidHMM under different scales of clus-
ters as Figure 8(a). The accuracies of both ARIMA and SlidHMM
are stable in terms of an increasing cluster scale, credited to the
distributed design of Lube’s bottleneck detection module running
locally on each worker node.

Figure 8(b) shows that SlidHMM achieves accuracy around
90% for long-running queries, which last more than 1000 seconds.
However, the accuracy of ARIMA decreases with the increase of
query completion times.

6.4 Scheduling Effectiveness and Overheads

The results show that with an accuracy of over 90% in bottleneck
detection, Lube speeds up median query response times from
26.88% (1.37×) to 33.46% (1.5×). Lube achieves a faster query
response and maintains a low overhead from the task level to query
level.

At the task level, Figure 9 plots the task completion times
CDF of pure Spark, Lube-ARIMA and Lube-SlidHMM. For
Query 1, the average (75th percentile) task completion time of
pure Spark is 150.928 seconds (246.19 seconds). Lube-ARIMA

Pure Spark

ARIMA+Spark

SlidHMM+Spark

Lube-ARIMA

Lube-SlidHMM

Query-1
1000

1200

1400

1600

Query-2

1000

1200

1400

1600

Query-3
800

1000

1200

1400

1600

1800

Query-4
1000

1200

1400

1600

1800

T
im

e
 (

s
)

T
im

e
 (

s
)

Fig. 10: Query response times.

saves 12.454 seconds (22.075 seconds) for average seconds (75th
percentile) tasks compared to pure Spark, while Lube-SlidHMM
saves 14.783 seconds (27.469 seconds) for average (75th per-
centile) tasks. Our bottleneck-aware scheduler brings a substantial
improvement to the completion times of long tasks.

At the query level, we measure query response times under
different control groups. Pure Spark is the baseline; Lube-ARIMA
and Lube-SlidHMM show the reduction of query response times;
and, the Spark default scheduler with Lube-ARIMA (ARIMA +
Spark) and Lube-SlidHMM (SlidHMM + Spark) are the control
group to evaluate Lube’s overhead. Figure 10 shows that running
Lube-ARIMA or Lube-SlidHMM with the Spark default scheduler
does not introduce much overhead since the query response times
under these three settings are similar. In addition, for median query
response times, Lube reduces 26.88% to 33.46% (1.37× to 1.5×
faster) of time with the ARIMA algorithm, while reduces 28.41%
to 33.18% (1.4× to 1.5× faster) of time with the SlidHMM
algorithm. From these results, we can conclude that Lube reduces
the overall query response times.

In addition, though there is a gap of nearly 10% in accuracies
of ARIMA algorithm and SlidHMM algorithm, Lube achieves
close performance in reducing task completion times and query re-
sponse times with these two algorithms. Since the Lube Scheduler
applies a late-binding algorithm for error-tolerance, 10% accuracy
loss has little impact on query performance.

6.5 Scalability

We evaluate the scalability of Lube by analyzing the reduction
of query completion times when scale up the input data sizes
and cluster instance numbers. Figure 11 presents the scalability of
Lube in three dimensions: (i) the cluster size, (ii) the query input
data size, and (iii) the query complexity.

9

The reduction rate of query completion times is calculated in
this way:

reduction rate =
average(tpure)− tlube

average(tpure)
× 100%,

in which the average(tpure) is the average completion times of
queries running on pure Spark, the tlube is the completion times
of queries running on Lube-ARIMA or Lube-SlidHMM.

Figure 11(a) plots the reduction rates of query completion
times when queries are executed on different sizes of clusters. The
completion time reduction rates achieved by both Lube-ARIMA
and Lube-SlidHMM float within a steady range of 26% to 34%.
The scale-up of the cluster has negligible effects on the reduction
rates.

Figure 11(b) plots the reduction rates of completion times
when queries take different scales of input data. Lube-SlidHMM is
more robust to the increase of input data sizes, compared to Lube-
ARIMA, which tends to have less performance improvement (i.e.,
query completion time reductions).

Figure 11(c) plots the relationships between the reduction rates
and the average(tpure), which implies the inherent complexity
of queries. There’s no obvious decrease in reduction rates for
both Lube-ARIMA and Lube-SlidHMM when the average(tpure)
increases.

7 RELATED WORK

There exists large volumes of existing research on optimizing
the performance of wide-area data analytics. Clarinet [41] pushes
wide-area network awareness to the query planner, and selects
a query execution plan before the query begins. Graphene [22]
presents a Directed Acyclic Graph (DAG) scheduler with aware-
ness of DAG dependencies and task complexity. Iridium [36]
optimizes data and task placement to reduce query response times
and WAN usage. Geode [42] minimizes WAN usage via data
placement and query plan selection. SWAG [25] adjusts the order
of jobs across datacenters to reduce job completion times. These
works develop their solutions based on a few widely-accepted
mantras, which are shown to be skeptical in a systematic analysis
on the performance of data analytics frameworks [32]. The blocked
time analysis proposed in [32] calls for more attention to temporal
performance variations.

However, there is still very little existing effort on optimiz-
ing the performance of data analytics with the awareness of
variations in the runtime environment. Hadoop speculative task
execution [45] duplicates tasks that are slow or failed, but not
knowing the exact bottlenecks may lead to worse performance. As
far as we know, Lube is the first work that leverages machine learn-
ing techniques to detect runtime bottlenecks and schedules tasks
with awareness of performance bottlenecks. Lube is orthogonal
to schedulers of the existing wide-area data analytic frameworks.
These schedulers can enable bottleneck awareness at runtime by
integrating with Lube.

Machine learning techniques have been actively applied to
predict and classify data analytics workloads. NearestFit [13]
establishes accurate progress predictions of MapReduce jobs by
a combination of nearest neighbor regression and statistical curve
fitting techniques. Ernest [40] applies a linear regression model to
predict the performance of large-scale analytics. CherryPick [4]
uses Bayesian Optimization to build cloud performance models
for specific applications and cloud configurations.

Lube-ARIMA Lube-SlidHMM

C
o

m
p

le
ti
o

n
 t
im

e
s
 r

e
d

u
c
ti
o

n
 r

a
te

 (
%

)

0

10

20

30

40

Number of instances

5 10 15 20 25 30

(a) The reduction of query completion times vs scales of clusters.

Lube+ARIMA (Query 1-3) Lube+SlidHMM (Query 1-3)

C
o

m
p

le
ti
o

n
 t
im

e
s
 r

e
d

u
c
ti
o

n
 r

a
te

 (
%

)

26

28

30

32

34

Input data scale

a b c

(b) The reduction of query completion times vs the scale of query input data.

Lube-ARIMA Lube-SlidHMM

C
o

m
p

le
ti
o

n
 t
im

e
s
 r

e
d

u
c
ti
o

n
 r

a
te

 (
%

)

15

20

25

30

35

40

Query completion times of pure Spark (s)

500 1000 1500 2000

(c) The reduction of query completion times vs the scale of queries.

Fig. 11: Analysis of query performance improvements of Lube.

A Kernel Canonical Correlation Analysis (KCCA) model is
applied to predict query properties including completion time
and resource demands [19]. ASpR [28] applied Artificial Neural
Networks (ANNs) to forecast overhead of function calls and loops
in script languages.

8 DISCUSSIONS

Our preliminary experiments have highlighted the performance of
Lube in reducing query response times achieved through detecting

10

and mitigating bottlenecks at runtime. While this motivates the
research on performing data-driven runtime performance analysis
to optimize data analytics frameworks, there are a few aspects that
need additional discussions.

Selection of runtime metrics. It is the selection of runtime
metrics that determine the efficacy of the runtime performance
analysis. There exist an enormous volume of runtime metrics
from multiple hierarchies within wide-area data analytics frame-
works. To efficiently detect and mitigate bottlenecks in low-level
resources (e.g., CPU, memory, disk I/O and network I/O etc.),
we have studied several performance monitors and various com-
binations of performance metrics. However, the space of selecting
appropriate metrics has still not been fully explored. We will put
more efforts in the exploration of runtime metrics and the practice
of feature selection techniques such as LASSO Path [18] and
principal component analysis (PCA) [35].

Bottleneck detection models. Lube achieves a substantial
improvement by applying two simple models, ARIMA and
SlidHMM. The emerging data-driven techniques have broadened
the horizon of data analytics optimization methodologies. We
would like to further explore the latest data-driven techniques,
such as Generative Adversary Network (GAN) [20] and Rein-
forcement Learning [38]. For example, DeepRM [30] builds a
deep reinforcement learning model for strategies of cluster re-
source management. However, the surprising accuracy of machine
learning models makes us wonder the practical boundary of their
effectiveness, which is imperative for robust and reproducible
solutions.

Fine-grained scheduling. The scheduling policy applied by Lube
is bottleneck-aware but coarse-grained due to the absence of task
resource demand. Recent work on profiling tasks of data analytic
applications characterized resource utilization of tasks by an
analytical or statistical model [16, 21, 29, 31]. Besides, users can
also provide the application resource requirements [23]. By jointly
considering the task resource demand and the runtime bottleneck
severity, Lube can enforce a fine-grained task scheduling policy
that mitigates the bottleneck of a type of resource required by
particular tasks. This fine-grained scheduling policy is expected
to achieve higher resource utilization and to further reduce query
completion times.

WAN conditions. Most recent work considered the heterogeneity
and the variance of wide-area network bandwidths [4, 22, 25,
36, 40, 42]. A few approaches have been applied to measure
network conditions in these works. Lube captures the local net-
work throughput by measuring network I/O on each node, which
only revealed a coarse-grained awareness of network. It also
attempts to measure the pair-wise WAN bandwidth by a cron
job running iperf on each node. In our future work, we plan to
exploit the capabilities of Software-Defined Networking (SDN) to
complement the global wide-area network conditions at runtime.

9 CONCLUSION

In this paper, we have presented Lube, a closed-loop framework
that mitigates bottlenecks at runtime to improve the performance
of wide-area data analytics. Lube monitors runtime query per-
formance, detects bottlenecks online and mitigates them with a
bottleneck-aware scheduling policy. Experiments across nine EC2
regions show that Lube achieves over 90% bottleneck detection

accuracy and, compared to the default Spark scheduler, reduces
the median query response time by up to 33%.

As a highlight, this work delves into runtime performance
of wide area data analytics and delivers a responsive strategy
as a workaround. It introduces an orthogonal solution to today’s
scheduling strategies in the wide area — detecting and mitigating
bottlenecks online. Lube is instrumental to improving performance
profiling techniques, machine learning on time series analysis, and
optimized resource scheduling strategies. For those who work
on scheduling strategies in distributed data analytics engines,
our pluggable performance sensor module will provide valuable
insights on the real-time performance metrics they care about.

10 ACKNOWLEDGMENTS

This work is supported by a research contract with Huawei
Technologies Co. Ltd. and an NSERC Collaborative Research and
Development (CRD) grant.

REFERENCES

[1] Common Crawl Web Crawl Data. http://commoncrawl.org, 2016. [On-
line; accessed 1-July-2016].

[2] JSON Website. http://json.org, 2016. [Online; accessed 1-May-2016].
[3] NTP: The Network Time Protocol. http://www.ntp.org, 2016. [Online;

accessed 1-July-2016].
[4] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and

M. Zhang. CherryPick: Adaptively Unearthing the Best Cloud Configura-
tions for Big Data Analytics. In Proc. USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 4–2, 2017.

[5] Amazon. Amazon Web Services. https://aws.amazon.com/about-aws/
global-infrastructure/, 2016. [Online; accessed 1-July-2016].

[6] Apache. Apache Hadoop Official Website. http://hadoop.apache.org/,
2016. [Online; accessed 1-May-2016].

[7] Apache. Spark SQL. https://spark.apache.org/sql/, 2016. [Online;
accessed 1-July-2016].

[8] L. E. Baum and T. Petrie. Statistical inference for probabilistic functions
of finite state Markov chains. The annals of mathematical statistics,
37(6):1554–1563, 1966.

[9] L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization
technique occurring in the statistical analysis of probabilistic functions of
Markov chains. The Annals of Mathematical Statistics, 41(1):164–171,
1970.

[10] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung. Time series
analysis: forecasting and control. John Wiley & Sons, 2015.

[11] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib, S. Weaver,
and J. Zhou. SCOPE: easy and efficient parallel processing of massive
data sets. Proc. the VLDB Endowment, 2008.

[12] T. Chis. Sliding Hidden Markov Model for Evaluating Discrete Data.
In 10th Proc. Computer Performance Engineering European Workshop
(EPEW), volume 8168, 2013.

[13] E. Coppa and I. Finocchi. On data skewness, stragglers, and MapRe-
duce progress indicators. In Proc. the 6th ACM Symposium on Cloud
Computing. ACM, 2015.

[14] J. G. De Gooijer and R. J. Hyndman. 25 years of time series forecasting.
International Journal of Forecasting, 22(3):443–473, 2006.

[15] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters. In Proc. USENIX Symposium on Operating System
Design and Implementation (OSDI), 2004.

[16] C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient and QoS-
aware Cluster Management. In Proc. the 19th International Conference
on Architectural Support for Programming Languages and Operating
Systems. ACM, 2014.

[17] D. A. Dickey and W. A. Fuller. Distribution of the estimators for
autoregressive time series with a unit root. Journal of the American
Statistical Association, 74(366a):427–431, 1979.

[18] J. Friedman, T. Hastie, and R. Tibshirani. The Elements of Statistical
Learning. Springer series in statistics New York, 2001.

[19] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. Jordan, and
D. Patterson. Predicting multiple metrics for queries: Better decisions
enabled by machine learning. In IEEE 25th International Conference on
Data Engineering (ICDE), pages 592–603, 2009.

11

[20] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative Adversarial Nets. In
Advances in neural information processing systems (NIPS), pages 2672–
2680, 2014.

[21] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella.
Multi-resource packing for cluster schedulers. ACM SIGCOMM Com-
puter Communication Review, 44(4):455–466, 2015.

[22] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni. Graphene:
Packing and Dependency-aware Scheduling for Data-Parallel Clusters.
In 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), page 81, 2016.

[23] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica. Mesos: A Platform for Fine-Grained
Resource Sharing in the Data Center. In Proc. USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2011.

[24] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The HiBench
Benchmark Suite: Characterization of the MapReduce-based Data Anal-
ysis. In Proc. International Conference on Data Engineering Workshops
(ICDEW), 2010.

[25] C. Hung, L. Golubchik, and M. Yu. Scheduling Jobs Across Geo-
Distributed Datacenters. In Proc. ACM Symposium on Cloud Computing
(SoCC), 2015.

[26] V. Jalaparti, P. Bodik, I. Menache, S. Rao, K. Makarychev, and M. Caesar.
Network-Aware Scheduling for Data-Parallel Jobs: Plan When You Can.
In ACM SIGCOMM Computer Communication Review, pages 407–420,
2015.

[27] K. Kloudas, M. Mamede, N. Preguiça, and R. Rodrigues. Pixida:
Optimizing Data Parallel Jobs in Wide-Area Data Analytics. VLDB
Endowment, 9(2):72–83, 2015.

[28] J. Li, X. Ma, K. Singh, M. Schulz, B. R. de Supinski, and S. A.
McKee. Machine learning based online performance prediction for
runtime parallelization and task scheduling. In IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
2009.

[29] C.-K. Luk, S. Hong, and H. Kim. Qilin: Exploiting Parallelism on
Heterogeneous Multiprocessors with Adaptive Mapping. In Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microarchi-
tecture. ACM, 2009.

[30] H. Mao, M. Alizadeh, I. Menache, and S. Kandula. Resource Man-
agement with Deep Reinforcement Learning. In Proc. the 15th ACM
Workshop on Hot Topics in Networks. ACM, 2016.

[31] V. S. Marco, B. Taylor, B. Porter, and Z. Wang. Improving Spark Ap-
plication Throughput Via Memory Aware Task Co-location: A Mixture
of Experts Approach. In Proc. the 18th ACM/IFIP/USENIX Middleware
Conference. ACM, 2017.

[32] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun. Mak-
ing sense of performance in data analytics frameworks. In Proc. USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2015.

[33] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow: dis-
tributed, low latency scheduling. In Proc. the 24th ACM Symposium on
Operating Systems Principles (SOSP), 2013.

[34] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
and M. Stonebraker. A comparison of approaches to large-scale data
analysis. In Proc. the ACM International Conference on Management of
data (SIGMOD), pages 165–178, 2009.

[35] K. Pearson. LIII. On Lines and Planes of Closest Fit to Systems of Points
in Space. The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, 2(11):559–572, 1901.

[36] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl,
and I. Stoica. Low latency Geo-Distributed Data Analytics. In Proc. ACM
SIGCOMM 2015. ACM, 2015.

[37] redis. Redis Website. http://redis.io/, 2016. [Online; accessed 1-May-
2016].

[38] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction.
MIT press Cambridge, 1998.

[39] UC Berkeley AMPLab. The Big Data Benchmark. https://amplab.cs.
berkeley.edu/benchmark/, 2016. [Online; accessed 1-July-2016].

[40] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica. Ernest:
efficient performance prediction for large-scale advanced analytics. In
13th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 16). USENIX Association, 2016.

[41] R. Viswanathan, G. Ananthanarayanan, and A. Akella. Clarinet: WAN-
aAware optimization for analytics queries. In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16). USENIX
Association, 2016.

[42] A. Vulimiri, C. Curino, P. Godfrey, T. Jungblut, J. Padhye, and G. Vargh-
ese. Global Analytics in the Face of Bandwidth and Regulatory Con-
straints. In Proc. USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2015.

[43] A. Vulimiri, C. Curino, P. Godfrey, K. Karanasos, and G. Varghese.
WANalytics: Analytics for A Geo-Distributed Data-Intensive World. In
Proc. Conference on Innovative Data Systems Research (CIDR), pages
1087–1092, 2015.

[44] H. Wang and B. Li. Lube: mitigating bottlenecks in wide area data
analytics. In Proc. the 9th USENIX Conference on Hot Topics in Cloud
Computing, pages 1–1. USENIX Association, 2017.

[45] T. White. Hadoop: The Definitive Guide. " O’Reilly Media, Inc.", 2012.
[46] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and

I. Stoica. Delay Scheduling: A Simple Technique for Achieving Locality
and Fairness in Cluster Scheduling. In Proc. ACM European Conference
on Computer Systems, pages 265–278, 2010.

[47] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. Franklin, S. Shenker, and I. Stoica. Resilient Distributed Datasets:
A Fault-Tolerant Abstraction for In-Memory Cluster Computing. In
Proc. USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2012.

Hao Wang received both of his B.E. degree in In-
formation Security and M.E. degree in Software
Engineering from Shanghai Jiao Tong University,
Shanghai, China, in 2012 and 2015 respectively.
His research interests include large-scale data
analytics, distributed computing, machine learn-
ing and datacenter networking.

Baochun Li (F) received his B.E. degree from
the Department of Computer Science and Tech-
nology, Tsinghua University, China, in 1995 and
his M.S. and Ph.D. degrees from the Department
of Computer Science, University of Illinois at
Urbana-Champaign, Urbana, in 1997 and 2000.

Since 2000, he has been with the Department
of Electrical and Computer Engineering at the
University of Toronto, where he is currently a
Professor. He holds the Nortel Networks Junior
Chair in Network Architecture and Services from

October 2003 to June 2005, and the Bell Canada Endowed Chair in
Computer Engineering since August 2005. His research interests in-
clude cloud computing, large-scale data processing, computer network-
ing, and distributed systems. In 2000, Dr. Li was the recipient of the IEEE
Communications Society Leonard G. Abraham Award in the Field of
Communications Systems. In 2009, he was a recipient of the Multimedia
Communications Best Paper Award from the IEEE Communications
Society, and a recipient of the University of Toronto McLean Award. He
is a Fellow of IEEE and a member of ACM.

