

!
"

#$%&

#$%"

$

$%"

$%&

$%'

$%(

!$
#$%& $ $%& $%($%)

#$%"$

#$%$*

$

#$%$* $ $%$*

Fig. 3: PCA of CNN weights on the MNIST dataset.

to apply principle component analysis (PCA) to model weights
and use the compressed model weights to represent states
instead.

Specifically, we compute the PCA loading vectors of differ-
ent principal components only based on local model weights
for t = 1, i.e., {w(k)

1 , k 2 [N]}, obtained in Step 2. In
the subsequent rounds t = 2, 3, . . ., such loading vectors
are reused to obtain first several principal components of
{w(k)

t , k 2 [N]}, through linear transformation, without fitting
the PCA model again. Therefore, the overhead to compress
model weights in subsequent rounds is negligibly small.

We demonstrate the effectiveness of using PCA-compressed
model weights to differentiate between data distributions
through a simple experiment. Consider a two-layer CNN
model (with 431,080 model weights in total) to be trained
with federated learning on 100 devices, running PyTorch, on
the MNIST dataset. Data samples are distributed in the same
way as the experiment in Sec. II: each client has 80% of
its data samples belonging to a dominant class, while the
remaining 20% of its samples have random labels. After five
epochs of local SGD training in Round 1, we project the
model weight vectors of the 100 devices, {w(k)

1 , k 2 [N]},
onto a two-dimensional space of the first and second principal
components.

As shown in Fig. 3, different shapes (or colors) indicate
local models trained on devices with different dominant labels.
For example, all the yellow “+” signs denote the compressed
local models in Round 1 from those devices with a dominant
label “6”. Even reduced from 431,080 dimensions to only
two dimensions and even at Round 1, we can observe a clus-
tering effecting of local models according to their dominant
labels. Therefore, in the evaluation in Sec. IV, we use PCA-
compressed model weights as states to enable efficient training
of the DQN agent.

D. Training the Agent with Double DQN

We propose to use the double deep Q-learning network
(DDQN) to learn the function Q

⇤(st, a). Q-learning provides
a value estimation for each potential action a at state st,
based on which devices are selected. However, the original
Q-learning algorithms can be unstable since they indirectly

… …

Agent

Fe
at

ur
es

so
ftm

ax

… …

State st�1
<latexit sha1_base64="3dWVQ0y4qkQcV7/MZKItgnpkqAA=">AAAB/XicbVDNS8MwHE3n15xf9ePmJTgEL452CnocePE4wX3AVkqapltYmpQkFWYp/itePCji1f/Dm/+N6daDbj4Iebz3+5GXFySMKu0431ZlZXVtfaO6Wdva3tnds/cPukqkEpMOFkzIfoAUYZSTjqaakX4iCYoDRnrB5Kbwew9EKir4vZ4mxIvRiNOIYqSN5NtHw0CwUE1jc2Uq9zN97ua+XXcazgxwmbglqYMSbd/+GoYCpzHhGjOk1MB1Eu1lSGqKGclrw1SRBOEJGpGBoRzFRHnZLH0OT40SwkhIc7iGM/X3RoZiVQQ0kzHSY7XoFeJ/3iDV0bWXUZ6kmnA8fyhKGdQCFlXAkEqCNZsagrCkJivEYyQR1qawminBXfzyMuk2G+5Fo3l3WW81yzqq4BicgDPggivQAregDToAg0fwDF7Bm/VkvVjv1sd8tGKVO4fgD6zPHw6klY4=</latexit>

Environment

…

FL server

Reward rt
<latexit sha1_base64="ajxj6ouHRhvivI0uKkY+9/oerdw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeCF48VTVtoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ94jTlQUxHSkSCUbTSgx7goFpz6+4CZJ14BalBgdag+tUfJiyLuUImqTE9z00xyKlGwSSfVfqZ4SllEzriPUsVjbkJ8sWpM3JhlSGJEm1LIVmovydyGhszjUPbGVMcm1VvLv7n9TKMboJcqDRDrthyUZRJggmZ/02GQnOGcmoJZVrYWwkbU00Z2nQqNgRv9eV10m7UPbfu3V/Vmo0ijjKcwTlcggfX0IQ7aIEPDEbwDK/w5kjnxXl3PpatJaeYOYU/cD5/AGNIjc0=</latexit><latexit sha1_base64="ajxj6ouHRhvivI0uKkY+9/oerdw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeCF48VTVtoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ94jTlQUxHSkSCUbTSgx7goFpz6+4CZJ14BalBgdag+tUfJiyLuUImqTE9z00xyKlGwSSfVfqZ4SllEzriPUsVjbkJ8sWpM3JhlSGJEm1LIVmovydyGhszjUPbGVMcm1VvLv7n9TKMboJcqDRDrthyUZRJggmZ/02GQnOGcmoJZVrYWwkbU00Z2nQqNgRv9eV10m7UPbfu3V/Vmo0ijjKcwTlcggfX0IQ7aIEPDEbwDK/w5kjnxXl3PpatJaeYOYU/cD5/AGNIjc0=</latexit><latexit sha1_base64="ajxj6ouHRhvivI0uKkY+9/oerdw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeCF48VTVtoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ94jTlQUxHSkSCUbTSgx7goFpz6+4CZJ14BalBgdag+tUfJiyLuUImqTE9z00xyKlGwSSfVfqZ4SllEzriPUsVjbkJ8sWpM3JhlSGJEm1LIVmovydyGhszjUPbGVMcm1VvLv7n9TKMboJcqDRDrthyUZRJggmZ/02GQnOGcmoJZVrYWwkbU00Z2nQqNgRv9eV10m7UPbfu3V/Vmo0ijjKcwTlcggfX0IQ7aIEPDEbwDK/w5kjnxXl3PpatJaeYOYU/cD5/AGNIjc0=</latexit><latexit sha1_base64="ajxj6ouHRhvivI0uKkY+9/oerdw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeCF48VTVtoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ94jTlQUxHSkSCUbTSgx7goFpz6+4CZJ14BalBgdag+tUfJiyLuUImqTE9z00xyKlGwSSfVfqZ4SllEzriPUsVjbkJ8sWpM3JhlSGJEm1LIVmovydyGhszjUPbGVMcm1VvLv7n9TKMboJcqDRDrthyUZRJggmZ/02GQnOGcmoJZVrYWwkbU00Z2nQqNgRv9eV10m7UPbfu3V/Vmo0ijjKcwTlcggfX0IQ7aIEPDEbwDK/w5kjnxXl3PpatJaeYOYU/cD5/AGNIjc0=</latexit>

Action at
<latexit sha1_base64="JiBKSxYyyyX1X4O24iYUGK1+pD4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD3SAg3LFrboLkHXi5aQCOZqD8ld/GLM04gqZpMb0PDdBP6MaBZN8VuqnhieUTeiI9yxVNOLGzxanzsiFVYYkjLUthWSh/p7IaGTMNApsZ0RxbFa9ufif10sxvPEzoZIUuWLLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNMp2RC81ZfXSbtW9a6qtft6pVHL4yjCGZzDJXhwDQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nD0qwjcA=</latexit>

Qθ
<latexit sha1_base64="ET4tcd8QM9Ni9It4gU8eEcPLoG8=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0mqoMeCF48t2A9sQ9lsJ+3SzSbsToQS+i+8eFDEq//Gm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqObR4LGPdDZgBKRS0UKCEbqKBRYGETjC5m/udJ9BGxOoBpwn4ERspEQrO0EqPzUHWxzEgmw3KFbfqLkDXiZeTCsnRGJS/+sOYpxEo5JIZ0/PcBP2MaRRcwqzUTw0kjE/YCHqWKhaB8bPFxTN6YZUhDWNtSyFdqL8nMhYZM40C2xkxHJtVby7+5/VSDG/9TKgkRVB8uShMJcWYzt+nQ6GBo5xawrgW9lbKx0wzjjakkg3BW315nbRrVe+qWmteV+q1PI4iOSPn5JJ45IbUyT1pkBbhRJFn8kreHOO8OO/Ox7K14OQzp+QPnM8fwqaQ7A==</latexit>

Q✓0
<latexit sha1_base64="R2zmR6IUhVmjQxRdR3wyjLD301k=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbRU0mqoMeCF48t2A9oQ9lsN+3SzSbsToQS+jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNM7ud+54lrI2L1iNOE+xEdKREKRtFKveYg6+OYI72cDcoVt+ouQNaJl5MK5GgMyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucPCMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8M7PhEpS5IotF4WpJBiT+f9kKDRnKKeWUKaFvZWwMdWUoU2pZEPwVl9eJ+1a1buu1po3lXotj6MIZ3AOV+DBLdThARrQAgYxPMMrvDnovDjvzseyteDkM6fwB87nDyaLkR0=</latexit>

Fig. 4: The DDQN Agent interacting with the FL server.

optimize the agent performance by learning an approximator
Q(s, a; ✓t) to the optimal action-value function Q

⇤(s, a).
DDQN adds another value function Q(s, a; ✓′

t) to stabilize
the action-value function estimation. The idea behind DDQN
is that the network is frozen every M updates. DDQN adds
stability to the action-value evaluation, which is less prone to
“jittering.”

To train the DRL agent, the FL server first performs random
device selection to initialize the states. As shown in Fig. 4, the
states are fed into the one of the double DQNs Q(st, a; ✓t).
The DQN generates an action a to select a device for the FL
server. After several rounds of FL training, the DRL agent has
sampled a few action-state pairs, with which the agent learns
to solve the (4) as:

`t(✓t) = (Y DoubleQ
t �Q(st, a; ✓t))

2
,

where Y
DoubleQ
t is the target at round t defined as

Y
DoubleQ
t : = rt + � max

a
Q(st+1, a; ✓t) (5)

= rt + �Q(st, argmax
a

Q(st, a; ✓t); ✓
′
t). (6)

(6) uses two acton-value functions to update Y
DoubleQ
t , in

which ✓t is the online parameters updated per time step, and
the ✓′

t is the frozen parameters to add stability to action-
value estimation. The action-value function Q(st+1, a; ✓t) is
updated to minimize `t(✓t) by gradient descent, i.e.,

✓t+1 = ✓t + ↵(Y DoubleQ
t �Q(st, a; ✓t))rθtQ(st, a; ✓t),

where ↵ is a scalar step size.

IV. EVALUATION

We have implemented FAVOR with PyTorch in around
2000 lines of code, which we have released as an open-
source project. With the Python threading library, FAVOR can
simulate a large number of devices with lightweight threads,
each running real-world PyTorch models.

We evaluated FAVOR by training popular CNN models
on three benchmark datasets: MNIST, FashionMNIST, and
CIFAR-10, with FEDAVG and K-Center as the groups of
comparison. We evaluated the accuracy of the trained models
using the testing set from each dataset. Our experimental
results show that FAVOR can reduce the communication rounds
by up to 49% on the MNIST, up to 23% on FashionMNIST,

To
ta

l R
et

ur
n

−100

−50

0

Episode
0 50 100 150

(a) DRL training on the MNIST.

To
ta

l R
et

ur
n

−400

−200

0

Episode
0 50 100 150 200

(b) DRL training on FashionMNIST.

To
ta

l R
et

ur
n

−120
−100

−80
−60
−40
−20

Episode
0 50 100 150 200

(c) DRL training on CIFAR-10.

Fig. 5: Training the DRL agent.

and up to 42% on CIFAR-10, compared to the FEDAVG
algorithm. We briefly describe our methodology and settings
as follows.

Datasets and models: We explored different combinations
of hyper-parameters for the CNN models on different datasets
and chose the hyper-parameters leading to the best perfor-
mance of FEDAVG.

• MNIST. We train a CNN model with two 5⇥5 convo-
lution layers. The first layer has 20 output channels and
the second has 50, with each layer followed by 2⇥2 max
pooling. On each device, the batch size is ten and the
epoch number is five.

• FashionMNIST. We train a CNN model with two 5⇥5
convolution layers. The first layer has 16 output channels
and the second has 32, with each layer followed by 2⇥2
max pooling. On each device, the batch size is 100 and
the epoch number is five.

• CIFAR-10. We train a CNN model with two 5⇥5 convo-
lution layers. The first layer has six output channels and
the second having 16, with each layer followed by 2⇥2
max pooling. On each device, the batch size is 50 and
the epoch number is five.

Performance metrics: In federated learning, due to the lim-
ited computation capacity and network bandwidth of mobile
devices, reducing the number of communication rounds is cru-
cially important. Thus, we use the number of communication
rounds as the performance metric of FAVOR.

A. Training the DRL agent
We train the DRL agent on different datasets with 100

available devices. The DDQN model in the DRL agent consists
of two two-layer MLP networks, with 512 hidden states. The
input size is 10,100, where we have 101 model weights (i.e.,
the global weights w and the local weights {w(k)|k 2 [100]}
from 100 devices) reduced to 100 dimensions. The output
size of the second layer is 100. Each output passing through
a softmax layer becomes the probability of selecting the
particular device. We train the DRL agent on an AWS EC2
instance p2.2xlarge with a K80 GPU. The DDQN model is
lightweight, and each training iteration takes seconds on GPU.
Reducing model weights from 431,080 to 100 dimensions
takes minutes by sklearn.decomposition.PCA.

Fig. 5 plots the training progress of the DRL agent on three
FL tasks. An episode starts at the initialization of a federated
learning job and ends when the job converges to the target

FL
 A

cc
ur

ac
y

(%
)

60

80

100

Communication Round (#)
0 200 400

σ=1

FL
 A

cc
ur

ac
y

(%
)

96

97

98

99

Communication Round (#)
50 100 150

σ=0.8

FL
 A

cc
ur

ac
y

(%
)

94

96

98

Communication Round (#)
0 200

σ=H

FL
 A

cc
ur

ac
y

(%
)

96

97

98

99

Communication Round (#)
20 40 60

σ=0.5

Baseline Favor K-Center FedAvg

Fig. 6: Accuracy v.s. communication rounds on different
levels of non-IID MNIST data.

accuracy ⌦. The total return is the cumulative discounted
reward R obtained in one episode. The target accuracy ⌦ is
set to 99% for training on the MNIST, 85% for training on
FashionMNIST, and 55% for training on CIFAR-10.

B. Different Levels of Non-IID Data

We investigate different levels of non-IID data to testify the
efficiency of FAVOR. We include the performance of FEDAVG
and K-Center as a comparison. At each round, the number of
selected devices K is set to 10, as in [1].

We use � to denote the four different levels of non-IID data:
� = 1.0 indicating that data on each device only belong to one
label, � = 0.8 indicating that 80% of the data belong to one
label and the remaining 20% data belong to other labels, � =
0.5 indicating that 50% of the data belong to one label and the
remaining 50% data belong to other labels, � = 0 indicating
the data one each device is IID and � = H indicating that
data on each device evenly belong to two labels. We plot the
test-set accuracy v.s. the communication rounds of federated
learning on the three benchmarks in Fig. 6, Fig. 7, and Fig. 8.

FL
 A

cc
ur

ac
y

(%
)

0

50

100

Communication Round (#)
0 200 400

σ=1
FL

 A
cc

ur
ac

y
(%

)

65

70

75

80

85

Communication Round (#)
0 20 40

σ=0.8

FL
 A

cc
ur

ac
y

(%
)

0

20

40

60

80

Communication Round (#)
0 100 200 300

σ=H

FL
 A

cc
ur

ac
y

(%
)

40

60

80

Communication Round (#)
0 10 20

σ=0.5

Baseline Favor KCenter FedAvg

Fig. 7: Accuracy v.s. communication rounds on different
levels of non-IID FashionMNIST data.

Each entry in Table I shows the number of communication
rounds necessary to achieve a test-set accuracy of 99% for
the CNN on MNIST, 85% for FashionMNIST, and 55% for
CIFAR-10. It should be noted that the italic numbers indicate
that the model converges to a lower accuracy than the test-
set accuracy. The model on MNIST with data distribution of
� = 1.0 converges to a test-set accuracy of 96%. The models
trained on FashionMNIST with data distribution of � = 1.0
and � = H both converge to a test-set accuracy of 80%. The
model trained on CIFAR-10 with data distribution of � = 1.0
converges to a test-set accuracy of 50%.

Our experimental results show there is no guarantee that K-
Center can always outperform FEDAVG. Devices selected from

� MNIST FashionMNIST CIFAR-10

FEDAVG 0 (IID) 55 14 47

FEDAVG 1.0 1517 1811 1714
K-Center 1.0 1684 2132 1871

FAVOR 1.0 1232 1497 1383

FEDAVG H 313 1340 198
K-Center H 421 1593 188

FAVOR H 272 1134 114

FEDAVG 0.8 221 52 87
K-Center 0.8 126 62 74

FAVOR 0.8 113 43 61

FEDAVG 0.5 59 19 67
K-Center 0.5 67 21 52

FAVOR 0.5 59 16 50

TABLE I: The number of communication rounds to reach
a target accuracy for FAVOR v.s. FEDAVG and K-Center.

FL
 A

cc
ur

ac
y

(%
)

0

20

40

Communication Round (#)
0 100 200

σ=1

FL
 A

cc
ur

ac
y

(%
)

20

30

40

50

Communication Round (#)
20 40 60 80

σ=0.8

FL
 A

cc
ur

ac
y

(%
)

20

40

60

Communication Round (#)
0 100 200

σ=H

FL
 A

cc
ur

ac
y

(%
)

40

45

50

55

Communication Round (#)
20 40 60

σ=0.5

Baseline Favor KCenter FedAvg

Fig. 8: Accuracy v.s. communication rounds on different
levels of non-IID CIFAR-10 data.

winit

w1

w2w3w4w5

Local weights Global weights

C
2

−0.5

0

0.5

1.0

1.5

C1
1.0 1.5 2.0 2.5 3.0

(a) Training on MNIST with FEDAVG.

winit

w1

w2w3w4

Local weights Global weights

C
2

−0.5

0

0.5

1.0

1.5

C1
1.0 1.5 2.0 2.5 3.0

(b) Training on MNIST with FAVOR.

Fig. 9: PCA on model weights of FL training with MNIST.
w1, w2 . . . , w5 are the global model weights at Round 1-5.

the K-Center clusters may introduce more bias to federated
learning than devices selected randomly by FEDAVG. How-
ever, FAVOR has reduced the number of communication rounds
by up to 49% on the MNIST, up to 23% on FashionMNIST,
and up to 42% on CIFAR-10, compared to the FEDAVG
algorithm.

C. Device Selection and Weight Updates
We save the global model weights and local model weights

per round when we train the two-layer CNN on MNIST with
� = 0.8. The saved model weights are reduced to two-

K=10 K=50 K=100

K = 10, round # = 87
K = 50, round # = 89
K = 100, round # = 128Ac

cu
ra

cy
 (%

)

20

40

60

Communication Round (#)
0 20 40 60 80 100 120 140

FedAvg

K = 10, round # = 74
K = 50, round # = 76
K = 100, round # = 128Ac

cu
ra

cy
 (%

)

20

40

60

Communication Round (#)
0 20 40 60 80 100 120 140

KCenter

K = 10, round # = 61
K = 50, round # = 78
K = 100, round # = 128Ac

cu
ra

cy
 (%

)

20

40

60

Communication Round (#)
0 20 40 60 80 100 120 140

Favor

Fig. 10: FL training on CIFAR-10 with different levels of
parallelism.

dimension vectors by PCA and plotted in Fig. 9. By examining
the model weights trained with FEDAVG and FAVOR, respec-
tively, Fig. 9 shows that FAVOR updates the global model with
a larger weight update � than FEDAVG in early rounds, which
leads to a faster convergence speed.

D. Increasing Parallelism

We also studied the performance of FAVOR on different
numbers of selected devices. The CIFAR-10 dataset is dis-
tributed to 100 devices with the non-IID level at � = 0.8.
We apply FAVOR, FEDAVG, and K-Center to train the same
CNN on CIFAR-10 separately. The number of selected devices
K is set to 10, 50, and 100 to study the performance of
federated learning with different parallelism. Fig. 10 shows
that increasing the parallelism does not reduce the number
of communication rounds and even increases the number of
communication rounds.

V. RELATED WORK

Federated learning allows machine learning models to be
trained on mobile devices in a distributed fashion without
violating user privacy. Existing studies on federated learning
have mostly focused on improving its efficiency. We classify
the existing literature into the following two categories:

Communication efficiency. Mobile devices typically have
unstable and expensive connections, and existing works have
attempted to improve the communication efficiency of fed-
erated learning. Konečnỳ et al. [6, 7] proposed structured

and sketched updates to decrease the completion time of
each communication round. Bonawitz et al. [3] developed a
secure aggregation protocol that enables a server to perform
the computation of high-dimensional data from the devices,
which is widely deployed in production environments [4,
17]. McMahan et al. [1] presented the Federated Averaging
(FEDAVG) algorithm that allows devices to perform local
training of multiple epochs, which further reduces the number
of communication rounds by averaging model weights from
the client devices. Nishio et al. [18] proposed a resource-aware
selection algorithm that maximizes the number of participating
devices in each round. Sattler et al. [9] proposed a compression
framework, Sparse Ternary Compression (STC), that reduces
the communication costs and remains robust to non-IID data.
FAVOR applies DRL to select the best subset of participating
devices to minimize the number of communication rounds,
which is orthogonal to these studies on communication effi-
ciency.

Sample efficiency. Unlike centralized machine learning,
federated learning performs training on non-IID data on de-
vices. Zhao et al. [8] presented a mathematical demonstration
to show that non-IID data reduces the accuracy of federated
learning by a substantial margin, and proposed to push a
small set of uniform distributed data to participating devices.
Downloading extra data further increases communication cost
and computation workload for the devices. Mehryar et al. [10]
proposed an agnostic federated learning framework for fairness
to avoid biases due to non-IID data from the devices. In
contrast, FAVOR is the first work that counterbalances the bias
from different non-IID data by dynamically constructing the
subset of participating devices with DRL techniques.

VI. CONCLUDING REMARKS

In this paper, we presented our design and implementation
of FAVOR, an experience-driven federated learning framework
that performs active device selection to minimize the com-
munication rounds of FL training. We argue that non-IID
data exacerbates the divergence of model weights on partic-
ipating devices, and increases the number of communication
rounds of federated learning by a substantial margin. With
both mathematical demonstrations and empirical studies, we
found the implicit connection between model weights and the
distribution of data that the model is trained on. We proposed
to actively select a specific subset of devices to participate
in training at each round, in order to counterbalance the bias
introduced by non-IID data on each device and to speedup FL
training by minimizing the number of communication rounds.
In particular, we designed a DRL-based agent that applies
the DDQN algorithm to select the best subset of devices to
achieve our objectives. We have implemented an open-source
prototype of FAVOR with PyTorch in more than 2K lines
of code and evaluated it with a variety of ML models. An
extensive comparison with FL training jobs by FEDAVG has
shown that FL training with FAVOR has reduced the number of
communication rounds by up to 49% on the MNIST dataset,
up to 23% on FashionMNIST, and up to 42% on CIFAR-10.

REFERENCES

[1] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y.
Arcas, “Communication-Efficient Learning of Deep Networks from
Decentralized Data,” in Proc. the Artificial Intelligence and Statistics
Conference (AISTATS), 2017.

[2] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
Multi-Task Learning,” in Proc. the Advances in Neural Information
Processing Systems (NeurIPS), 2017.

[3] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical Secure Aggre-
gation for Privacy-Preserving Machine Learning,” in Proc. the ACM
SIGSAC Conference on Computer and Communications Security (CCS),
2017.

[4] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba et al., “Towards
Federated Learning at Scale: System Design,” in Proc. the Conference
on Systems and Machine Learning (SysML), 2019.

[5] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep Gradient
Compression: Reducing the Communication Bandwidth for Distributed
Training,” in Proc. the International Conference on Learning Represen-
tations (ICLR), 2018.

[6] J. Konečnỳ, B. McMahan, and D. Ramage, “Federated optimization:
Distributed optimization beyond the datacenter,” in Proc. the NIPS
Workshop on Optimization for Machine Learning (OPT), 2015.

[7] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh, and
D. Bacon, “Federated Learning: Strategies for Improving Communica-
tion Efficiency,” in Proc. the NIPS Workshop on Private Multi-Party
Machine Learning, 2016.

[8] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
Learning with Non-IID Data,” arXiv preprint arXiv:1806.00582, 2018.

[9] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust
and Communication-Efficient Federated Learning from Non-IID Data,”
arXiv preprint arXiv:1903.02891, 2019.

[10] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic Federated Learning,”
in International Conference on Machine Learning (ICML), 2019.

[11] O. Sener and S. Savarese, “Active Learning for Convolutional Neural
Networks: A Core-Set Approach,” in Proc. the International Conference
on Learning Representations (ICLR), 2018.

[12] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource Man-
agement with Deep Reinforcement Learning,” in Proc. the 15th ACM
Workshop on Hot Topics in Networks. ACM, 2016.

[13] A. Mirhoseini, H. Pham, Q. Le, M. Norouzi, S. Bengio, B. Steiner,
Y. Zhou, N. Kumar, R. Larsen, and J. Dean, “Device Placement Opti-
mization with Reinforcement Learning,” in International Conference on
Machine Learning (ICML), 2017.

[14] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998.

[15] M. Volodymyr, K. Kavukcuoglu, D. Silver, A. Graves, and
I. Antonoglou, “Playing Atari with Deep Reinforcement Learning,” in
Proc. NIPS Deep Learning Workshop, 2013.

[16] H. Van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning
with Double Q-Learning,” in Proc. the Thirtieth AAAI Conference on
Artificial Intelligence (AAAI), 2016.

[17] T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong, D. Ram-
age, and F. Beaufays, “Applied Federated Learning: Improving Google
Keyboard Query Suggestions,” arXiv preprint arXiv:1812.02903, 2018.

[18] T. Nishio and R. Yonetani, “Client Selection for Federated Learning
with Heterogeneous Resources in Mobile Edge,” in Proc. the IEEE
International Conference on Communications (ICC), 2019.

