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Update global model

Local data
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ML algorithms assume the training data is
independent and identically distributed (11D)



Federated Learning reuses the existing ML
algorithms but on data






data introduces bias into the
training and leads to a slow convergence
and training failures

11



Ellll!llﬂﬂ
i el (53 Dl o K K 5 S S
A il (2] Dl it e S I Bl K
O1—=[VD] T [Dfss [\ ] po] o
NELSRDERESEREL -
ol QI RIRGENIE LG -
SN0l o cfeo) o
A bl B G2 o A1 S S s
OIN[Nfeo] v [fos] o
SIN[d M| T WO~ o
R bl R £ K 21 5 [ K s
il G A0 5] o ) i i I o
) b (a1 21 58 0 S N) 51 K5
o] el 1 01 K3 18] 5 s S
SI~|X| ] 3|9 ]9 ]| o~

http://yann.lecun.com/exdb/mnist/

@\
—

MNIST



Accuracy (%)

110]0,

O
N

O
O1

O
w

91

— FedAvg-IID FedAvg-non-IID

1

10 19 28 37 46 55 64 73 82 91 100109118 127136145154

Communication Round (#)

13



Build IID training data?

. ~we don’t have any access
to the data on your phone.
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Optimizing Federated Learning on

Non-lID Data with Reinforcement Learning



Build IID training data?

Peeking into the data distribution
on each device without violating
data privacy

Probing the bias of non-IID data
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Probing the data distribution



EE! 100 devices, each has 600 samples

Non-iDdata [ K KA Y IS I I K B2

80% data has the same label, e.g, "6"

Initial model Q

¢ A two-layer CNN model with

431,080 parameters
Local model Q
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We apply Principle Component Analysis
(PCA) to reduce dimensionality

431,080-dimension model weight 9 2-dimension space
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An implicit connection between
model weights and data distribution




Probing the data distribution

Selecting devices for federated learning
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K-Center Clustering
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Random Selection from Groups
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Probing the data distribution

Selecting devices for federated learning

How to select devices to speed up training ?



It is difficult to select the appropriate subset of devices
- Model weights —> device selection choice

- A dynamic and undeterministic problem

Reinforcement Learning (RL)
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Reward

Action :
Environment

OD

FL server

State

(..,state, action, reward, state’, action’, ..,end)

Episode
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(..,state, action, reward, state’, action’, ..,end)
(..,state, action, reward, state’, action’, ..,end)

(..,state, action, reward, state’, action’, ..,end)

Learn to maximize sum(reward)

(..,state, action, reward, state’, action’, ..,end)

(..,state, action, reward, state’, action’, ..,end)
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States

Global weights

Local model weights

-

100-dimension
vector
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Actions

Select K devices from a pool of N devices
— a huge action space

Selecting 10 devices from a pool of 100 devices leads to

1.7310309e+13 possible actions
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Modity the RL training algorithm



Selecting the Top K Devices

Only one device is selected during the RL training

Now the action space is {1, 2, ..., N}, instead of selecting K
devices from N devices
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Fvaluating Each Device

Scores

, 9 Select the top K




Rewards
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Training the DRL Agent

Look for a function that points out the actions leading to
the maximum cumulative return under a particular state

Max R = 2 y 1y, = 2 yI=l(E@~Q) _ 1)
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Reward r

Environment

Features

FL server
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Cumulative Discounted Reward
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Probing ¢ Update welght
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Evaluating Our Solution

Benchmark: MNIST FashionMNIST, CIFAR-10

Non-I1ID level: 1, half-and-half, 80%, 50%
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Indirect data distribution probing

DRL-based device selection

Communication rounds can be reduced by up to
e 49% on the MNIST
e 23% on FashionMNIST
e 42% on CIFAR-10
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