
EAGLE: Expedited Device Placement with
Automatic Grouping for Large Models

Hao Lan∗, Li Chen†, Baochun Li∗
∗University of Toronto, †University of Louisiana at Lafayette

hao.lan@mail.utoronto.ca, li.chen@louisiana.edu, bli@ece.toronto.edu

Abstract—Advanced deep neural networks with large sizes are
usually trained on a mixture of devices, including multiple CPUs
and GPUs. The model training speed and efficiency are dras-
tically impacted by the placement of operations on devices. To
identify the optimal device placement, the state-of-the-art method
is based on reinforcement learning with a hierarchical model,
which partitions the operations into groups and then assigns
each group to specific devices. However, due to the additional
dimension of grouping decisions coupled with the placement,
the reinforcement learning efficiency is greatly reduced. With
modern neural networks growing in size and complexity, the
issue of low efficiency and high cost in device placement is
further aggravated. In this paper, we propose our design of
EAGLE (Expedited Automatic Grouping for Large modEls),
which integrates automatic grouping into reinforcement learning-
based placement in an optimal way, to achieve the best possible
training time performance for very large models. An extra RNN is
introduced to transform parameters of the grouper into inputs of
the placer, linking the originally separated parts together. Further
optimizations have also been made in the network inputs. We
have deployed and extensively evaluated EAGLE on Inception-
V3, GNMT and BERT benchmarks. Compared with the state-
of-the-art, the performance achieved by our design, measured by
the per-step time with the resulted placement, is 2.7% and 18.7%
better for GNMT and BERT, respectively. For Inception-V3,
our design achieves the fastest speed in discovering the optimal
placement.

Index Terms—device placement, reinforcement learning, neu-
ral networks

I. INTRODUCTION

Deep neural networks (DNNs) have gained significant pop-
ularity in solving complex tasks such as image classification,
speech recognition, and game playing. With ever increasing
sizes and complexity, DNNs require an extensive amount of
computational resources for training, and it becomes typical to
leverage a heterogeneous mix of both CPU and GPU devices
[1]–[3]. In such a distributed and heterogeneous training
environment, device placement — the mapping of operations
in a DNN to devices — plays a crucial rule in the training
time performance.

Mirhoseini, et al. [4], [5] proposed to use reinforcement
learning (RL) to find the best placement in order to reduce
the time needed to train a neural network. Having identified
the slow speed of convergence, Gao, et al. [6], [7] developed

The co-authors would like to acknowledge the gracious research support
from Huawei Technologies Canada Co., Ltd., as well as the grant from
Louisiana Board of Regents under the contract LEQSF(2019-22)-RD-A-21.

a joint learning algorithm that combines cross-entropy min-
imization and proximal policy optimization (PPO) to speed
up convergence for the RL agent. The advantages of RL over
human experts in device placement have been seen in these
works: after about 12 to 27 hours of training, RL agents can
find better placements than human experts for training neural
networks such as Inception-V3 and NMT.

With the recent advances in artificial intelligence, the in-
creasing size and complexity of newly developed DNN models
bring significant challenges in device placement. For example,
the BERT model, the state-of-the-art in natural language
processing with over 10,000 operations, requires more than
16 GB of memory for its training even with a batch size
of 1, which cannot be fitted into most of the GPUs [8]. In
this context, existing approaches are no longer capable of
optimizing the placement for such extremely large models:
as the number of operations increases, it becomes impractical
to group operations by human experts manually [4], [7].
To avoid manual grouping, Mirhoseini et al. [5] designed
a hierarchical model which leverages a feed-forward neural
network to group operations automatically and places these
groups by a sequence-to-sequence neural network. However,
training this hierarchical model is non-trivial since it involves
two neural networks to be updated simultaneously.

In this paper, we propose our design of EAGLE (Expedited
Automatic Grouping for Large modEls), a reinforcement learn-
ing agent that enables automatic grouping of operations and
adopts a sample efficient training algorithm to find a better
placement in a shorter period of time than all the existing
works. Our design is driven by a comprehensive experimental
investigation on an extensive array of RL training algorithms
and deep neural network models of the RL agent for the device
placement problem. With an in-depth analysis of their pros
and cons, we design our agent with the favorable integration
of grouping and placing, and the best combination of the
algorithm and the model. For example, we reconstruct the
state vectors to be fed into the RL agent, which makes the
agent better understand the computational graph of the neural
network.

We have deployed EAGLE on 4 GPU machines in the
Compute Canada platform to find the best placement of in-
fluential deep neural networks, including Inception-V3, NMT,
and BERT. Under a challenging scenario when a very large
model is to be placed, EAGLE is able to find the best placement



among all the baselines while existing works even fail to
find a placement better than human experts. Within four
hours of learning, the best placement discovered by EAGLE
reduces the training time of the GNMT model by 17.0%
compared to human expert placement, and it is 2.5% better
than the placement found by Hierarchical Planner [5]. While
Hierarchical Planner fails to learn how to place the BERT
model, EAGLE finds a placement which is 18.7% better than
the placement found by Post [7].

This paper makes three primary contributions. First, we
have identified the urgent need and challenges of efficient de-
vice placement for training very large neural network models.
Second, we have conducted a comprehensive evaluation and
in-depth analysis of existing approaches in the design space,
which motivate and inspire our design of EAGLE. Third, we
have proposed a practical design of a reinforcement learn-
ing based device placement agent, which enables automatic
grouping of enormous operations in a computational graph and
realizes efficient learning of the optimal placement. Finally,
we have implemented EAGLE for benchmark deep learning
models, and our experimental results have demonstrated that
EAGLE outperforms existing baselines in discovering better
placement and learning with faster speed.

The remainder of this paper is organized as follows: We
briefly present the background knowledge and the state-of-
the-art in Sec. II, and identify the challenges and opportunities
that motivate our design. In Sec. III, we present an overview
of our design, covering the design space and our choices
for the grouping methods, the placement strategies, as well
as the hierarchical model architecture that integrates these
components. We evaluate EAGLE with experiments over a set
of baselines and benchmarks in Sec. IV. Finally, we conclude
our paper in Sec. V.

II. DEVICE PLACEMENT FOR DEEP LEARNING

In this section, we briefly describe the training phase in deep
learning, covering the widely known model for image classi-
fication and the latest complex model for natural language
processing. For these computation-intensive and resource-
demanding tasks in model training, we will go through the
state-of-the-art approaches in distributed and parallel training,
identity the challenges, and present opportunities that motivate
our design.

A. Deep Neural Network Training

Training a deep neural network typically involves a massive
amount of computation over thousands of operations.

With image classification as an example, the model to
be trained is called a convolutional neural network (CNN),
which is a layered network of nodes (operations) and edges
(connections with weights). The training of such a model is in
an iterative fashion, with each iteration consisting of a forward
pass and a backward pass. In a forward pass, a batch of input
examples (i.e., raw pixels of images [3]) is fed into the input
layer of the network, which would then be multiplied by a
series of weight matrices through hidden layers to generate

the output. In particular, the convolutional layer applies a
convolution function and the fully connected layer applies a
weighted summation over the values of the nodes connected
to them at their respective prior levels. The outputs at the last
layer, i.e., the predicted label probabilities for an image in
this example, are compared with the true label to generate a
loss value that measures the prediction error. The loss values
are used to compute gradients of connection weights and then
update these weights, in a backward pass [9]. It is typical
that training a neural network requires millions of iterations
to gradually reduce the loss value below a threshold, which
can take days or weeks.

For a more complex model as BERT [8], both the large num-
ber of parameters and sophisticated training approaches make
its training time-consuming. BERT-Large has 24 transformer
layers, 16 attention heads, and 345 million parameters, which
is the largest model of its kind. Even a small version of BERT,
BERT-Base, has 12 transformer layers, 12 attention heads, and
110 million parameters. In addition to its large scale, BERT’s
bidirectional approach also converges slower than left-to-right
approaches. As a result, BERT-Large (BERT-Base) requires 4
days of training with 16 (4) Cloud TPUs.

B. Distributed Deep Learning

With the increasing size of training datasets and the in-
creasing complexity of deep neural network architectures, the
computation and memory demands of deep learning grow
significantly, requiring computing clusters to exploit the con-
currency for high-performance training.

Data Parallel Training. In traditional machine learning
clusters, data parallelism is extensively employed to achieve
high scalability, e.g., with the parameter server architecture
[10]. In data parallel training, each worker device maintains
a copy of the complete model with all the operations running
to train its own partition of input data. To ensure a consistent
copy of the model across all the workers, the parameters of
each model copy are periodically synchronized through either
the parameter server or allreduce communication. However,
with the increasing size and complexity of deep neural net-
works, it becomes difficult to fit a copy of the complete
model into GPU memory. Although it is possible to reduce
the activation memory of training by using techniques such
as gradient checkpointing, frequently storing and loading
intermediate tensors will slow down the training.

Model Parallel Training. To meet the demanding computa-
tion requirements of deep learning, it recently becomes typical
to train deep neural networks in a heterogeneous cluster,
consisting of a mixture of CPU and GPU devices [1]–[3]. As
the memory size is limited in a GPU device and the model
size keeps increasing in today’s deep neural network, model
parallelism is widely used to partition a large model across
multiple devices, when the model cannot fit into the memory
of a single device.

In this setting, machine learning practitioners are given
the flexibility to customize the mapping between devices and
operations in their neural network models. For example, in



TensorFlow [11]), a user can specify the device for each
operation, which will be executed accordingly on the device
during the training phase. Intuitively, device placement, i.e.,
how operations are assigned to devices, significantly influences
the training time. However, it is non-trivial to find the optimal
placement for neural network models. For example, for the
placement of 1000 operations on four GPUs and one CPU,
there are 51000 possible assignments in total. The growing
depth and size of modern neural networks exaggerate the
problem of finding the best placement among the astronomical
number of possibilities.

C. Device Placement with Reinforcement Learning

Essentially, the device placement problem can be described
as a graph partitioning problem, where the operations are
partitioned (and assigned) to a few different groups (devices).
Although there are many well-studied algorithms for graph
partitioning problems, such as the Scotch optimizer [12], a re-
cent study has shown that these algorithms yield disappointing
results in device placement settings. The reason is that their
partitioning strategies are extensively tuned and not flexible
enough when dealing with TensorFlow computational graphs.

To address the challenge, Mirhoseini et al. [4] proposed
to train a neural network with reinforcement learning (RL)
to learn how to place operations optimally. The main idea
was to perform a series of experiments with the environment
information taken into account, and to gradually learn an
optimal placement where the operations are arranged towards
an optimal communication. More specifically, the RL agent
randomly generates a placement of a neural network. Given
this placement, the environment, a real-world machine with
a mixture of heterogeneous devices, measures the per-step
runtime by training the neural network for several steps.
The RL agent takes this per-step runtime as a reward signal
to adjust its policy of generating future placement towards
a better one with a shorter per-step runtime, until a best-
performed one is eventually obtained.

Although this approach found a better placement than
human experts, the training cost of the RL agent — taking
between 12 to 27 hours with 80 to 160 4-GPUs machines —
was prohibitively high [4]. Spotlight [6] proposed to use an
advanced RL algorithm based on proximal policy optimization
(PPO) [13] to improve the training efficiency. As a result,
Spotlight significantly reduced the cost of learning optimal
device placement, making it affordable for machine learning
users to accelerate their neural network training.

As a further improvement, Post [7] used a joint training
algorithm that combined the proximal policy optimization
and cross-entropy minimization to accelerate the training of
the RL agent. It made incremental policy improvements by
updating the policy network with PPO every several sampling
periods. After collecting a certain number of samples, Post
solved a cross-entropy minimization problem to achieve a
global and aggressive policy improvement. With such a joint
training algorithm, it achieved faster convergence and obtained

a better placement for some neural network models compared
to Mirhoseini et al.’s work [4].

Instead of placing all the operations in one shot, Placeto [14]
proposed to place only one group of operations and evaluate
the placement for every single change, so that the reward can
directly reflect the changes that have been made in each step.
However, this approach required an extremely large number
of steps to train, as it needed hundreds of steps to place
the entire model. Hence, they used a simulator to evaluate
the placements, rather than collecting measurements from real
devices.

The state-of-the-art works had one characteristic in com-
mon: they all grouped the operations of neural networks before
placing them. This is because they had to reduce the action
space of the RL agent, otherwise the difficulty of training will
be unacceptable. Such a grouping process was done manually
before Mirhoseini et al. proposed a hierarchical model, called
Hierarchical Planner, consisting of two neural networks to
partition the operations automatically [5], as shown in Fig. 1.
The grouper — a two-layer feed-forward neural network —

Placer

Hierarchical model

Grouper

Embedding of operations

Embedding of groups

Fig. 1: An illustration of the hierarchical model.

took all the operations as input and partitioned them into a
fixed number of groups. Then, the embeddings of these groups
were generated and fed into the placer, which is a sequence-to-
sequence neural network. The grouper and placer were trained
jointly with the RL algorithm. Therefore, the hierarchical
model itself can learn how to group and place the operations at
the same time. This two-level hierarchical design allowed the
agent to directly take computational graphs of the ML jobs as
input, rather than manually sliced operation groups. However,
since the grouper was initialized with random parameters,
the grouping result was far from optimum at the beginning.
Moreover, the dynamics of the grouping result during training
made it even harder to train the agent.

Besides grouping operations, Zhou et al. [15] proposed to
use a graph encoder to learn a representation for each operation
and place all operations by a modified transformer-XL model
directly. While this approach granted the finest granularity
of placing operations to the placer, it increased the training
difficulty.

Some relate works tried to speed up the training of the
neural networks in a distributed computing environment. Tic-



Tac [16] accelerated a distributed deep learning system by
communication scheduling. It consisted of two heuristics for
efficient scheduling and improved iteration throughput by
20%. Priority-based Parameter Propagation (P3) [17] also
improved the training performance by better utilizing the avail-
able network bandwidth. It splits the layers into smaller slices
and synchronizes them based on their priority independently.
PipeDream [18] combined traditional data parallelism with
model parallelism enhanced with pipelining. It automatically
partitioned a neural network and used pipelined parallelism
across multiple machines. Different from these works, We
focus on model parallelism across multiple devices on a single
phyiscla machine.

D. Challenges and Opportunities

Due to the slow convergence speed of reinforcement learn-
ing, the cost of finding the best placement is prohibitively
high, even for a relatively small neural network model such
as Inception-V3. When it comes to recent neural network
models with very large sizes and complicated structures, such
as BERT, the disappointing learning speed of existing works
can hardly tackle the challenges in more practical settings.
More specifically, we have identified the following challenges
and opportunities to motivate and inspire our design.

Challenge 1: Manual grouping is neither optimal nor
scalable. Manual grouping requires an in-depth understanding
of the model architecture and running environment to make
accurate estimation and judicious decisions. This is inherently
difficult, given the number of operations, the complexity
of deep learning models, and the heterogeneity of running
environments that jointly lead to a huge design space.

Challenge 2: Learning based grouping exaggerates the
slow convergence of placement learning. Grouping and
placing are inherently coupled, and they jointly determine
the final training time performance. Particularly, given each
possible way of grouping, there is a large space of placements
to be explored. Even with fixed grouping, placement using
RL takes time. Such a two-dimensional learning space will
incur significant overhead and become impractical, as even
one-dimensional learning of placement with fixed groups is
already slow.

Challenge 3: A unified end-to-end device placement
framework remains largely unexplored. The device place-
ment problem has mostly been addressed by RL approaches
for the single dimension of placing, taking fixed operation
groups as input. To the best of our knowledge, there are
only two existing works proposed to operate in the end-to-
end fashion, which reads the computation graph as input and
predict the placement by two joint neural networks [5], [15].
This category of solutions, without a delicate design, may
easily suffer from slow convergence and heavy overhead, due
to an additional neural network introduced to be trained jointly.
In a unified learning framework with the computation graph
as input and device placement as output, a rich set of design
choices remains unexplored.

Faced with these challenges, we with to explore the op-
portunities of designing a RL agent that integrates automatic
grouping in a light-weighted fashion with highly efficient
placement learning. In the following section, we will present
our design choices of the model architecture and training
algorithm in such a unified learning framework.

III. DESIGN

We present our design of EAGLE from two aspects: the
model used in the RL agent and the training algorithm for
model updates.

A. Overview of the Hierarchical Model

It is a common practice in existing works [4], [6], [7], [14]
to partition the operations in the computational graph of a
machine learning job into small groups, and then use a neural
network to decide the device for each group of operations
to be placed on. The rationale behind this design is that the
number of operations in today’s deep neural networks is huge,
which implies that the action space of directly placing these
operations becomes enormous, and the agent can hardly find
the best placement. Instead of manual grouping, Mirhoseini et
al. [5] introduced a hierarchical model which uses a feed-
forward neural network, called a grouper, to automatically
group the operations.

Our design of EAGLE is driven by the need of striking
a balance between the sophistication of grouping and the
efficiency of training. Manual grouping requires an expert with
a deep understanding of the model of a machine learning
job, who makes judicious grouping decisions according to
the co-location information within the computational graph
and the potential resource bottleneck in the model. This is
not a general solution for a wide variety of modern neural
network models, especially when these models evolve rapidly
with increasing complexities in their structures.

Hence, our design space is within the scope of automatic
grouping, and our next concern is the choice between a
heuristic-based approach following the traditional convention
and a learning-based approach in the newly emerging propos-
als. Compared with manual grouping that entirely relies on
human intelligence and knowledge, a learning-based approach,
in contrast, relies completely on machine intelligence. How-
ever, such a benefit comes with the cost of introducing more
complexities in training, especially since the grouper and the
placer are tightly coupled with each other and are to be jointly
trained. To mitigate the difficulty of training, we re-investigate
the well-studied research area of graph partitioning, with the
hope of achieving a favorable tradeoff between the need for
automation and computational requirements.

B. Grouper Design: Model-based vs. Heuristic-based

We study the following two graph partitioning heuristics: (1)
the asynchronous fluid communities algorithm, a community
partitioning algorithm implemented in the Python Networkx
package [19]; and (2) METIS [20], one of the popular graph
partitioning algorithms. To benchmark these algorithms in the



context of device placement, we have reproduced Hierarchical
Planner [5] based on the source code in TensorFlow grappler
[21], and replaced the feed-forward neural network with
these graph partitioning heuristics. Unlike machine learning
methods that can utilize multi-dimensional features of nodes,
graph partitioning heuristics usually only focus on the weights
of nodes and edges in the graph. Given a neural network
model to be grouped and placed, we extract features from
its computation graph and build an identical graph, where
the edges are the connection between operations, and the
weight of each edge is the amount of data needed to be
transmitted from the source to the destination operation. These
features represent the communication cost between operations.
The heuristics will partition the graph by solving the min-cut
problem; and as a result, the total communication cost between
these groups will be minimized. With the grouping output from
the heuristics, the placer will be trained in the RL agent to
search for optimal placement for the operation groups.

TABLE I: Per-step time (in seconds) of placements found by
the hierarchical model with different groupers.

Models Feed-forward METIS Networkx
Inception-V3 0.067 0.071 0.072

GNMT 1.418 1.537 2.041
BERT 5.534 7.526 7.584

0 2 4 6 8
Training time (hours)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pe
r-

st
ep

 ti
m

e 
(s

ec
on

ds
)

Feed-forward
METIS
Networkx

Fig. 2: Per-step time of the placement for BERT, found by the
hierarchical model with different groupers during the training
process.

We evaluate and present the performance of placements for
three models found by different strategies in Table I. These
models are included in the TensorFlow framework, among
which the Inception-V3 [22] and GNMT [23] models are
enabled with the default placement across multiple devices,
and the BERT model is not.

As shown in Table I, the best placement (with the shortest
per-step time) identified by the agent with the feed-forward
neural networks outperforms the agents with heuristic-based
groupers (METIS and Networkx). However, we found that

the hierarchical model with neural network-based grouper
converged to a local optimum rather than the best placement.
As shown in Fig. 2, although it found a better placement for
BERT during the training process, it eventually converged
to a worse point than the two heuristics. This is because
when the model grows larger and more complex as BERT, the
additional dimension of variables in learning-based grouping
incurs significantly more training overhead and makes it
difficult for the agent to learn from good placements. Hence,
efficient training is highly desired for optimally placing large
models. If the hierarchical model with the feed-forward neural
networks is fully trained, it should be able to group and
place the operations in the right way, outperforming heuristic-
based grouping to a large extent. With such observation and
insight, we decide to use feed-forward neural networks as the
grouper of EAGLE, and try to improve the training efficiency
by designing a simpler placer and by using advanced training
algorithms.

C. Placer Design: A Deep Dive

With respect to the placer, we compare two neural networks,
a sequence-to-sequence neural network [1] and a graph con-
volutional network (GCN) [24]. Both of these neural networks
take the embedding (or features) of operation groups as input,
but they generate placements in different ways. The sequence-
to-sequence placer is a recurrent neural network that outputs
the device for each group one by one. In contrast, the GCN
placer outputs the hidden states of all groups at the same time,
and then predicts the entire placement for them.

As shown in Fig. 3a, our sequence-to-sequence placer has
an encoder and a decoder, each consisting of a long short-
term memory (LSTM) layer. After the encoder encodes the
information of the entire graph — a sequence of group
embeddings {X1, X2, . . . , Xn} — into a fixed-length vector
called hidden states, the decoder decodes this vector and
predicts the device Dn of the group n to be placed on. A group
embedding consists of three parts: the number of operations
of each operation type in the group, the output shapes, and
the adjacency information of the group. We generate these
embeddings by aggregating the embedding of operations in
the same group in the same way as Hierarchical Planner.

As illustrated in Fig. 3b, the GCN placer takes two inputs,
the embedding of groups and an adjacency matrix. As the adja-
cency matrix already has adjacency information of groups, we
removed the adjacency information in group embeddings. We
use two graph convolutional layers with the ReLU activation
function in the model, which finally outputs the policy through
a softmax layer.

We found that there are two different methods of using the
attention layer in the sequence-to-sequence neural network. As
shown in Fig. 4, the context calculated by the attention layer
can be combined before or after the RNN decoder, i.e., the
LSTM layer. In Fig. 4a, the LSTM takes the output of the
attention layer, previous hidden states of the decoder and the
embedding as inputs, and generates the next hidden states. The
output is predicted by the softmax of the next hidden states.



LSTM

X1

LSTM

X2

LSTM

Xn

Embedding of groups

… LSTM

go

D1Attention layer

LSTM

Dn

LSTM

D2

…

Embedding of devices

Encoder Decoder

Softmax

(a) A sequence-to-sequence network model.

GCN
Softm

ax
PlacementGCN ReLUReLU

Group
Adjacent

Matrix

Embedding
of groups

(b) A graph convolutional network model.

Fig. 3: Illustration of two different placer designs.

LSTM LSTM

Dt

…

Dt-1

Attention layer

Encoder outputs

…

Softmax

(a) before decoder

LSTM LSTM

Dt

…

Dt-1

Attention layer

Encoder outputs

…

Softmax

(b) after decoder

Fig. 4: Illustration of two different methods of applying
attention mechanisms.

In Fig. 4b, the output of the attention layer is used after the
decoder layer, and the prediction is based on the softmax over
the outputs of the attention layer and decoder layer. Google’s
Hierarchical Planner uses the method presented in Fig. 4b to
apply the attention layer. For the attention mechanism, we
adopt the mechanism proposed by Bahdanau et al. [2], which
calculates the context vector based on encoder outputs and
previous hidden states of the decoder.

TABLE II: Per-step time (in seconds) of placements found by
the agent with METIS grouper and different placers.

Models Seq2Seq(before) Seq2Seq(after) GCN
Inception-V3 0.067 0.067 0.072

GNMT 1.440 1.418 2.040
BERT 4.120 5.534 7.214

We evaluate both versions of the sequence-to-sequence
placer and the GCN placer with three benchmarks. To elimi-
nate the influence of the grouper, we train these three placers
with a fixed grouping, which is generated by the METIS
grouper. From the experimental results shown in Table II, we
found that the sequence-to-sequence placer outperforms the
GCN placer in all the benchmarks. The reason is that the
GCN placer makes decisions for each group independently
while the sequence-to-sequence placer predicts the device of
a group based on previous decisions. Among two versions of

sequence-to-sequence placer, although the placement of the
GNMT model found by the before version is slightly worse
compared to the after version, it finds a much better placement
of the BERT model. So we use the before version of sequence-
to-sequence placer in EAGLE to better address large models.

D. Advanced Training Algorithm

The training algorithm plays an important role in the
learning speed and efficiency of a RL agent. In this section,
we examine an array of training algorithms in the context
of placing very large models, including the REINFORCE,
proximal policy optimization [13] and Post [7].

The REINFORCE algorithm is the most basic and popular
training algorithm for reinforcement learning. It is simple and
easy to be used to solve a wide variety of practical problems,
but it may not be the best choice for device placement.
Compared with the environments where the interactions and
rewards are easily obtained such as in video game playing,
the cost of interactions in device placement is not cheap. For
example, the average time of evaluating a random placement
with 10 steps of the NMT model is about 1 minute. As a
result, the sampling rate of the device placement environment
is very slow, which makes it crucial to leverage these samples
in a better way. To achieve a higher sampling efficiency, we
use a more advanced policy gradient method, proximal policy
optimization, which performs comparably or better than state-
of-the-art approaches while being much simpler to implement
and tune. In this paper, we use the clip version of PPO which is
the best one reported in [13]. The objective function is shown
in Eq. (3),

r(θ) =
πθ(a|s)
πθold(a|s)

(1)

LTRPO(θ) = E[r(θ)Ât(s, a)] (2)

LCLIP(θ) = E[min(r(θ)Ât(s, a),

clip(r(θ), 1− ε, 1 + ε)Ât(s, a))]
(3)

where πθ is the policy based on current parameters θ, θold is the
parameters before updating, and Ât is the estimated advantage
for action taken at time step t. To avoid an excessively large



policy update, PPO uses clipped surrogate objective over trust
region policy optimization (TRPO) in Eq 2. As a result, it
enables multiple epochs of minibatch updates without moving
too far away from the old policy. Here, ε is a hyperparameter
for adjusting the clip region.

Instead of directly updating the policy network with reward,
advanced reinforcement learning algorithms perform better in
an A2C (Advantage Actor-Critic) [25] fashion — the agent
uses a value network to predict the value of each action and
estimates the advantage based on the gap between the value
and the actual reward. However, in our attempt at proximal
policy optimization in an A2C fashion, the value network
does not have enough samples to be trained and may yield
inaccurate estimations. The inaccuracy will lead to the policy
network updating towards a wrong direction, which aggravates
the difficulty of convergence. To solve this problem, we use
the exponential moving average of rewards as a baseline
and calculate the advantages by subtracting the baseline from
rewards. As shown in Eq. (4), we use the negative square root
of the per-step time of placements as the reward,

Rt = −
√
rt

Bt = ExpMovAvg(Rt)

Ât = Rt −Bt
(4)

where rt is the per-step time of the placement sampled at time
step t.

Apart from algorithms of REINFORCE and PPO, we also
consider the joint training algorithm proposed in Post, which
combines proximal policy optimization and cross-entropy min-
imization. This algorithm updates the agent with proximal
policy optimization every few samples, which is exactly the
same as original proximal policy optimization. After collecting
a large number of samples, it picks the top K samples as elites
and updates the agent with them. By doing this, the agent is
more likely to probe around the good placements previously
found.

To evaluate the algorithms, we train EAGLE with these three
algorithms and compare the per-step time of best placements
they found for three different models.

TABLE III: Per-step time (in seconds) of placements found
by EAGLE trained with three different algorithms.

Models REINFORCE PPO PPO+CE
Inception-V3 0.067 0.067 0.067

GNMT 2.216 1.379 1.507
BERT 2.425 2.287 2.488

As presented in Table III, proximal policy optimization is
the best training algorithm for our model. It outperforms all
other algorithms both in final results and convergence speed.
Compared to REINFORCE and PPO joint with cross-entropy
minimization (represented as PPO+CE in Table III), the per-
step time of placements found by the agent trained with PPO
is shorter, while the training time is also the shortest. PPO
joint with cross-entropy minimization does not work well
when training with EAGLE. It finds a better placement for

the GNMT model compared to PPO, but it falls at a local
optimum when optimizing the placement for BERT.

IV. EXPERIMENTS

In this section, we evaluate EAGLE with three widely-used
deep neural networks of different architecture and size as
benchmarks. And we compare our results to four baselines,
including two pre-defined placements and two RL-based ap-
proaches. To show why EAGLE can find a better placement
than other approaches, we also examine the training process
of all RL-based approaches.

A. Benchmarks

We choose three widely-used deep neural network models
for computer vision, neural machine translation, and language
representation learning. The size of models also spans from
small, large to very large.

• Inception-V3, the third edition of Google’s Inception
Convolutional Neural Networks, which has been widely
used in computer vision tasks, such as recognition, clas-
sification and feature extraction [22]. It is one of the
benchmarks used in the evaluation of the state-of-the-
art RL-based approaches. With a relatively small size,
Inception-V3 can easily fit into a single GPU. We use it
as a base case to evaluate the ability of an agent to find
the best placement. The batch size of the model is set to
1.

• GNMT, a neural machine translation model proposed
by Google [23] for automated translation. It has three
variations with a different number of LSTM layers: 2-
layer, 4-layer, and 8-layer. We use the 4-layer version
with an attention layer, where each LSTM layer has 256
hidden units. The sequence length is limited within 20
to 50. To make it more challenging for the RL agent to
find the best placement, we increase the batch size of
the model from 128 to 256, such that it cannot fit into a
single GPU. All the other settings are left as default.

• BERT, a novel language representation model proposed
recently, with a large number of operations and a complex
design [8]. It is supposed to be trained on a Cloud TPU
with 64GB of device RAM, while typical GPUs only
have 12GB to 16GB. Even with a batch size of 1, the
BERT-Large model cannot fit on a 12GB GPU. So we
use a smaller version of BERT model, BERT-Base, with
a max sequence length of 384 and a batch size of 24.
With this setting, the model still cannot fit into a single
GPU but is able to be trained by placing its operations
across four GPUs.

B. Baselines

To demonstrate the improvement achieved by EAGLE, we
compare EAGLE with two pre-defined placements and two
state-of-the-art RL-based approaches:

• Single GPU. As the name suggested, this baseline tries to
place all operations on a single GPU. For the operations
that are incompatible with GPU, such as embedding



lookup, we place them on CPU devices. This baseline is
only valid for models that can fit into a single GPU, e.g.
the Inception-V3 in our benchmarks. The large models
will trigger an Out-Of-Memory error when training with
a single GPU.

• Human Expert. We use the pre-defined placements from
open source libraries of three models. For Inception-V3,
we use the pre-defined placement in TensorFlow-Slim
library [26], which places most of the operations on the
same GPU and the rest on CPU. For GNMT (Google’s
NMT) [27], it places each LSTM layer, attention layer
and softmax layer on a separate device while using
multiple GPUs. For BERT, we use the implementation
provided by Google [28]. however, it does not have pre-
defined placement for multi-GPU training with model
parallelism.

• Hierarchical Planner. Mirhoseini et al. [5] proposed a
hierarchical model consists of a grouper and a placer,
which are trained jointly to learn the policy for grouping
and placing operations in a neural network. This hierar-
chical model avoids manual grouping of operations and
optimizes the placement of a neural network in an end-
to-end fashion. It is one of the state-of-the-art works for
solving the device placement problem.

• Post. Post [7] uses a joint learning algorithm, which com-
bines proximal policy optimization and cross-entropy,
to train a simple neural network for device placement
problem. It greatly improves the sample efficiency and
achieves an impressive reduction both on training time
and the per-step time of final placement.

C. Experimental Setups

Following the convention of reinforcement learning-based
approaches, we train EAGLE for the device placement of three
benchmarks, with the following settings:

• Environment. The environment in our training is a
physical machine, which has 4 NVIDIA P100 Pascal
GPUs, 2 Intel E5-2650 v4 Broadwell @ 2.2GHz CPUs
and 125GB memory. We use Python 3.6 and TensorFlow
r1.12 for running the deep neural network models.

• Agent architecture. As mentioned in Section 3, EAGLE
employs a hierarchical design for grouper and placer. We
explored a set of grouper designs and found that a two-
layer feed-forward neural network with 64 hidden units
is the best. The number of groups is set to 256 in our
experiments. The placer is a sequence-to-sequence model
with an attention layer. It has a bi-directional LSTM layer
as the encoder and a uni-directional LSTM layer as the
decoder. Both of these two LSTM layers have a hidden
size of 512. The attention mechanism we used is context-
based input attention proposed by [2]. The attention score
is applied before feeding to the decoder. The agent is
implemented with Python 3.6 and PyTorch v1.0.

• Training algorithm. We use two different algorithms
to train EAGLE, PPO and PPO joint with cross-entropy
minimization. This is because when the deep neural

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Training time (hours)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pe
r-

st
ep

 ti
m

e 
(s

ec
on

ds
)

EAGLE
Post
Google

Fig. 5: Per-step time of the placement for Inception-V3 found
by different approaches during the training process.

network to be placed is complex, such as BERT, it is
hard for the agent to find the optimal placement among
the enormous action space. In this case, cross-entropy
minimization will let the agent explore more around the
elite placements found during the training. However, this
may also lead to the agent falling into a local optimum.
So we evaluate EAGLE with both training algorithms. For
the PPO algorithm, we collect 10 placements as a mini-
batch and update the parameters of agent 4 times for each
mini-batch. The clip ratio, ε, is 0.3 and the coefficient
of entropy is 0.01. For the PPO joint with cross-entropy
minimization, we use the same hyperparameters for the
PPO part, and set the interval of two cross-entropy
minimization updates to 50 placements. The number of
elites is 5, which means it picks the top 5 placements
from all sampled placements. We use Adam optimizer
to train our agent with a learning rate of 0.01, and clip
gradients by norm at a threshold of 1.0.

• Placement evaluation. We measure the per-step time of
placement by running it on a physical machine (environ-
ment). In the training phase, we evaluate each placement
sampled from the policy by running it for 15 steps, and
take the average per-step time over the last 10 steps. This
is because, whenever there is a new placement sampled,
the environment needs to initialize the parameters on
different devices based on the new placement and the first
few steps will take longer time to finish. So we discard
the first 5 warm-up steps and average the per-step time
over the last 10 steps. After the training, we pick the best
placement found by the agent and run it for 1,000 steps.
The same as before, we discard the first 5 warm-up steps
and average per-step time of the rest.

D. Results and Analysis

Figures 5 to 7 show the per-step time of placements found
by three RL-based approaches for benchmarks.



TABLE IV: Per-step time (in seconds) of placements found by different approaches (lower is better). OOM stands for Out-
Of-Memory.

Models Single GPU Human Experts Hierarchical Planner Post EAGLE (PPO) EAGLE (PPO+CE)
Inception-V3 0.071 0.071 0.067 0.067 0.067 0.067

GNMT OOM 1.661 1.418 2.031 1.379 1.503
BERT OOM OOM 5.534 2.812 2.287 2.488

0 2 4 6 8
Training time (hours)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pe
r-

st
ep

 ti
m

e 
(s

ec
on

ds
)

EAGLE
Post
Google

Fig. 6: Per-step time of the placement for GNMT found by
different approaches during the training process.

0 2 4 6 8
Training time (hours)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pe
r-

st
ep

 ti
m

e 
(s

ec
on

ds
)

EAGLE
Post
Google

Fig. 7: Per-step time of the placement for BERT found by
different approaches during the training process.

For the Inception-V3 model, we find that Google’s Hierar-
chical Planner experiences a large number of invalid place-
ments at the beginning of training. After learning with 200
placements, it starts to generate valid placements and tries to
further optimize the placement. EAGLE and Post are better
at avoiding the invalid placements. They only encounter very
few invalid placements during the entire training process. All
three approaches are able to find the optimal placement within
3.5 hours, and EAGLE is the fastest one.

For the GNMT model, all three approaches converge within

6 hours. Both Google’s Hierarchical Planner and EAGLE find a
good placement within 1 hour. Then, they keep exploring more
placements and try to find a better placement. In this phase,
EAGLE is more aggressive, the per-step time of placement
fluctuates greatly over time. Post has a relatively bad start
point. The per-step time of the best placement found in the
first four hours is 5 seconds. Although it becomes better after
four hours, it finally converges to a local optimum, where the
per-step time of placement is around 4 seconds.

For the BERT model, Google’s Hierarchical Planner fails
to learn how to place it and converges to a bad point, where
the per-step time of placements is around 17 seconds. Post
converges fast and is stable. It finds a very good placement in
the first hour and keeps improving the placement gradually
for the rest of the training time. Similar to the previous
two benchmarks, EAGLE always tries to explore as many
placements as possible in the first few hours and becomes
stable at the end of the training. As a result, EAGLE finds
the best placement for the BERT model among these three
baselines.

From the results, we have the following conclusions: In
terms of convergence, Post is the most stable one. This is
because that Post has a much simpler neural network compared
to the other two RL-based approaches such that it can easily
be fully trained. However, the simplicity of the neural network
also means it may not be able to find the best placement for
the model, which is exactly what happened when placing the
GNMT model.

Final placements compared with state-of-the-arts: Table
IV presents the per-step time of the best placement found by
EAGLE and the two state-of-the-art works (Google’s Hierar-
chical Planner and Post). EAGLE outperforms the other two
RL-based approaches in all three benchmarks.

For the Inception-V3 model, all RL-based approaches find
very similar placement – putting most operations on the same
GPU device, similar to the pre-defined placements. This is
most likely because the Inception-V3 model is too simple,
only taking a few milliseconds to finish a step. As a result,
the communication overhead of sending data across devices
outweighs the benefits of leveraging multiple devices. We also
notice that the best placement found by RL-based approaches
is slightly faster than the pre-defined placements. The reason
is that some operations are actually running faster on the CPU
devices, and the RL-based approaches learned this knowledge
during the training and finally generate a better placement than
the pre-defined placements.

For the GNMT model, both Google’s Hierarchical Planner
and EAGLE found a better placement than the human experts,



which reduced the per-step time by 14.5% and 17.0%. In
contrast, Post went into a local optimum and failed to find
the best placement for GNMT.

For the BERT model, it requires more than 12GB of device
RAM to train, which is not able to fit into a single GPU.
And it also does not support running over multiple GPUs by
default. Therefore, we only compare the placements found
by the three RL-based approaches. All of them are able
to find a valid placement for the BERT model. However,
from the observation of the training process, we find that
Google’s Hierarchical Planner failed to learn how to place the
BERT model and generated bad placements. Post and EAGLE
performed well in this benchmark, finding good placements
with per-step time below 3 seconds. The best placement is
found by EAGLE. It reduces per-step time by 18.7% compared
to the placement found by Post.

V. CONCLUSION

Recent years have witnessed the growing size and com-
plexity of advanced neural network models. When training
these large models across multiple computation devices, it
becomes increasingly important to find an optimal mapping of
operations to devices, so that the model training completes as
fast as possible. This problem is challenging due to the massive
amount of operations in large neural network models. In this
paper, we have presented our design of EAGLE, a unified
reinforcement learning framework to automatically partition
a neural network model into groups and learn the best device
placement for these groups. Particularly, our design is based
on comprehensive analysis and experimental evaluation of a
rich set of design choices for the model architecture and train-
ing algorithm. Finally, we have implemented and evaluated
EAGLE with three benchmarks, i.e., Inception-V3, GNMT
and BERT. Compared with existing baselines, EAGLE has
demonstrated its superiority in discovering better placements
for large models of GNMT and BERT. For Inception-V3
which is relatively smaller, EAGLE is able to find the optimal
placement with the fastest speed.

REFERENCES

[1] I. Sutskever, O. Vinyals, and Q. Le, “Sequence to sequence learning
with neural networks,” in Advances in Neural Information Processing
Systems, 2014.

[2] D. Bahdanau, C. Kyunghyun, and Y. Bengio, “Neural machine trans-
lation by jointly learning to align and translate,” in Proc. International
Conference on Learning Representations, 2015.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Computer Vision and Pattern Recognition
(CVPR), 2016.

[4] A. Mirhoseini, H. Pham, Q. Le, B. Steiner, R. Larsen, Y. Zhou,
N. Kumar, M. Norouzi, S. Bengio, and J. Dean, “Device placement
optimization with reinforcement learning,” in International Conference
on Machine Learning, 2017.

[5] A. Mirhoseini, A. Goldie, H. Pham, B. Steiner, Q. V. Le, and J. Dean,
“A hierarchical model for device placement,” in Proc. Int’l Conference
on Learning Representations (ICLR), 2018.

[6] Y. Gao, L. Chen, and B. Li, “Spotlight: Optimizing device placement for
training deep neural networks,” in International Conference on Machine
Learning, 2018.

[7] ——, “Post: Device placement with cross-entropy minimization and
proximal policy optimization,” in Advances in Neural Information Pro-
cessing Systems, 2018, pp. 9971–9980.

[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, 2019.

[9] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2011.

[10] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling Distributed Machine
Learning with the Parameter Server,” in Proc. the 11th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI), 2014.

[11] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, and et. al.,
“Tensorflow: A system for large-scale machine learning,” in USENIX
Symposium on Operating Systems Design and Implementation, 2016.

[12] F. Pellegrini, “Distillating Knowledge about SCOTCH,” in Combinato-
rial Scientific Computing. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, Germany, 2009.

[13] J. Shulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” in International Conference
on Machine Learning, 2017.

[14] R. Addanki, S. B. Venkatakrishnan, S. Gupta, H. Mao, and M. Alizadeh,
“Learning generalizable device placement algorithms for distributed ma-
chine learning,” in Advances in Neural Information Processing Systems,
2019.

[15] Y. Zhou, S. Roy, A. Abdolrashidi, D. L.-K. Wong, P. Ma, Q. Xu,
A. Mirhoseini, and J. Laudon, “A single-shot generalized device place-
ment for large dataflow graphs,” IEEE Micro, vol. 40, no. 5, pp. 26–36,
2020.

[16] S. H. Hashemi, S. A. Jyothi, and R. H. Campbell, “Tictac: Acceler-
ating distributed deep learning with communication scheduling,” arXiv
preprint arXiv:1803.03288, 2018.

[17] A. Jayarajan, J. Wei, G. Gibson, A. Fedorova, and G. Pekhimenko,
“Priority-based parameter propagation for distributed dnn training,”
arXiv preprint arXiv:1905.03960, 2019.

[18] A. Harlap, D. Narayanan, A. Phanishayee, V. Seshadri, N. Devanur,
G. Ganger, and P. Gibbons, “Pipedream: Fast and efficient pipeline
parallel dnn training,” arXiv preprint arXiv:1806.03377, 2018.

[19] A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using networkx,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

[20] G. Karypis and V. Kumar, “Metis: Software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices,” 1998.

[21] B. Steiner, “Open source code of hierarchical planner in tensorflow,”
Jul. 2019. [Online]. Available: https://github.com/tensorflow/tensorflow/
blob/master/tensorflow/python/grappler

[22] C. Szegedy, V. Vanhoucke, S. Ioffe, and J. Shlens, “Rethinking the
inception architecture for computer vision,” in Proc. IEEE Computer
Vision and Pattern Recognition (CVPR), 2016.

[23] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah,
M. Johnson, X. Liu, Łukasz Kaiser, S. Gouws, Y. Kato, T. Kudo,
H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young,
J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and
J. Dean, “Google’s neural machine translation system: Bridging the gap
between human and machine translation,” CoRR, vol. abs/1609.08144,
2016. [Online]. Available: http://arxiv.org/abs/1609.08144

[24] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[25] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning,
2016, pp. 1928–1937.

[26] “Tensorflow-slim library,” Oct. 2019. [Online]. Available: https:
//github.com/tensorflow/models/tree/master/research/slim

[27] “Google’s neural machine translation,” Feb. 2019. [Online]. Available:
https://github.com/tensorflow/nmt

[28] “Bert,” Oct. 2019. [Online]. Available: https://github.com/
google-research/bert

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/grappler
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/grappler
http://arxiv.org/abs/1609.08144
https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/nmt
https://github.com/google-research/bert
https://github.com/google-research/bert

	Introduction
	Device Placement for Deep Learning
	Deep Neural Network Training
	Distributed Deep Learning
	Device Placement with Reinforcement Learning
	Challenges and Opportunities

	Design
	Overview of the Hierarchical Model
	Grouper Design: Model-based vs. Heuristic-based
	Placer Design: A Deep Dive
	Advanced Training Algorithm

	Experiments
	Benchmarks
	Baselines
	Experimental Setups
	Results and Analysis

	Conclusion
	References

