Dynamic and Decentralized Global Analytics via Machine Learning

Hao Wang¹, Di Niu², Baochun Li¹ ¹University of Toronto, ²University of Alberta

SoCC'18, Carlsbad, CA, USA

UNIVERSITY OF

1.CREATE VIEW MoviesOf1996 AS

- 2. SELECT *
- FROM Movies 3.
- **WHERE** year = 1996;4.
- 5.
- 6.SELECT starName, studioName
- 7.FROM MoviesOf1996 JOIN StarsIN;

Decentralized Global Analytics

Fluctuating WAN

iperf -t 10 -P 5 **Google Cloud**

01.	SELECT
02.	C.name, O.orderstatus,
03.	L.discount, PS.availqty
04.	FROM
05.	customer as C,
06.	order as O,
07.	lineitem as L,
08.	partsupp as PS
09.	WHERE O.orderkey == L.orderkey,
10.	AND PS.partkey == L.partkey,
11.	AND PS.suppkey == L.suppkey,
12.	AND C.custkey == O.custkey

A Toy Example

Query Plan Candidates

Plan A

- The worst plan
- The baseline

Plan B

- The initial optimal plan
- Selected by Clarinet

Plan C

Ο

A Toy Example

Plan C

- partsupp 2.3 GB
- The adjusted plan
- Adapt to bandwidth fluctuation

Query Completion Time

Centralized plan

Baseline (Plan A)

Plan selected by Clarinet (Plan B)

Dynamic adjusted plan (Plan C)

The data movement time

Dynamic Query Planning

- Accurately estimating runtime cost of query plans.
- Minimize overall completion time of queries.

Turbo

Planning

Evaluation

Prediction Target

(duration, output size)

Data Generation

filter(order o=>(o.price>100))

- map(customer c=>(c.custkey, c.values))
- map(order o=>(o.custkey, o.values))
- reduce(custkey, values)

maps

Data Generation

Raw Features

total_exec_num cpu_core_num mem_size avail_bw tbl1_size, tbl2_size hdfs_block_num

Range

1 - 16

- 1 8 per executor
- 1 4 GB per executor
- 5 1000 Mbps per link
- 0.3 12 GB per table

1 - 90

Data Preprocessing

- 1. Handcrafting features
- 2. Polynomial feature crossing
- 3. Feature selection by LASSO path

$[a,b,c] \longrightarrow [1,a,b,c,a^2,ab,ac,b^2,bc,c^2]$

Handcrafted Features

tbl_size_sum = sum(tbl1_size, tbl2_size) max_tbl_size = max(tbl1_size, tbl2_size) min_tbl_size = min(tbl1_size, tbl2_size) 1/avail_bw, 1/total_exec_num, 1/cpu_core_num

Feature Selection

duration

Feature Selection

output size

L₁ penalty (decreasing)

Training

LASSO Regression

Linear Regression with L1 penalty

GBRT

Gradient Boosting Regression Tree 500 ternary regression trees of depth 3

Model Test $APE_{i} = \frac{|y_{i} - h(x_{i})|}{y_{i}} \times 100\%.$ Absolute **Percentage Error:**

Duration

Model Test

Duration

Output Size

Dynamic Planning Strategies

- Shortest Completion Time First (SCTF) duration
- Maximum Data Reduction First (MDRF) data_reduction
- Maximum Data Reduction Rate First (MDRRF) data reduction / duration

Evaluation Setup

 TPC-H benchmark 	Ta
	li
 Google Cloud 	re
22 inctance coreco	SU
- 33 Instances across	pa
o regions	

able	Location	Table	Location
ineitem	Taiwan	customer	Frankfurt
egion	Singapore	orders	Sao Paulo
upplier	Sydney	nation	Northern Virg
art	Belgium	partsupp	Oregon

Query

Turbo-SCTF

• 25.1-38.5%

Turbo-MDRF

• 12.6-37.1%

Turbo-MDRRF

• 25.2-41.4%

S)		
i time (- 600 —	
pletion	- 400 —	
y com	- 200 -	
Quer	0-	
le (s)	2000 -	
on tim	1500 -	
npletic	1000 -	
y con	500 -	
Quer	0-	

Turbo-SCTF

Related Work

Work	Data Placemen
Geode [26]	
WANanalytics [27]	\checkmark
Iridium [20]	\checkmark
SWAG [16]	
JetSteam [21]	\checkmark
Clarinet [25]	\checkmark
Lube [15]	
Graphene [14]	
Turbo	

Conclusion

- Turbo: dynamic query planning with awareness of WAN bandwidths
- Data-driven cost estimation of pairwise join with accuracy over 95%
- Greedy strategies that reduces the query completion times by up to 41% based on the TPC-H benchmark

