
Peer-Assisted On-Demand Streaming:
Characterizing Demands and

Optimizing Supplies
Fangming Liu, Member, IEEE, Bo Li, Fellow, IEEE,

Baochun Li, Senior Member, IEEE, and Hai Jin, Senior Member, IEEE

Abstract—Nowadays, there has been significant deployment of peer-assisted on-demand streaming services over the Internet. Two

of the most unique and salient features in a peer-assisted on-demand streaming system are the differentiation in the demand (or

request) and the prefetching capability with caching. In this paper, we develop a theoretical framework based on queuing models, in

order to 1) justify the superiority of service prioritization based on a taxonomy of requests, and 2) understand the fundamental

principles behind optimal prefetching and caching designs in peer-assisted on-demand streaming systems. The focus is to instruct how

limited uploading bandwidth resources and peer caching capacities can be utilized most efficiently to achieve better system

performance. To achieve these objectives, we first use priority queuing analysis to prove how service quality and user experience can

be statistically guaranteed, by prioritizing requests in the order of significance, including urgent playback (e.g., random seeks or initial

startup), normal playback, and prefetching. We then proceed to construct a fine-grained stochastic supply-demand model to

investigate peer caching and prefetching as a global optimization problem. This not only provides insights in understanding the

fundamental characterization of demand, but also offers guidelines toward optimal prefetching and caching strategies in peer-assisted

on-demand streaming systems.

Index Terms—On-demand video streaming, peer-to-peer, queuing model, performance evaluation

Ç

1 INTRODUCTION

IN recent years, peer-assisted on-demand streaming sys-
tems have not only been the target of a substantial amount

of research, but also been core industry products in both
startup and established corporations alike, such as PPLive [1]
and Joost [2]. Such systems offer great potential to bring a rich
repository of video content to users’ fingertips. Typical peer-
assisted on-demand streaming systems provide users the
convenience and flexibility of watching whatever video clips
whenever they wish: they are able to play back the video, pause
the video, perform random seeks to an arbitrary point of
playback, or switch to and startup new videos. To offload
dedicated streaming servers that maintain a baseline on
content availability, peers contribute their uploading band-
width resources and limited local cache capacities to
cooperatively serve one another. Despite a large variety of
different design choices in the literature (e.g., [1]), they have

primarily been driven by engineering intuitions, rather than a
rigorous set of design principles based on a solid theoretical
foundation. In particular, we believe that two critical aspects
of the design space need to be revisited from a theoretical
perspective: requests on the “demand” side, and caching on the
“supply” side.

First, in response to a large number of playback and
random seek requests from peers, it would be desirable to
have guaranteed continuous playback and short latencies
after a random seek or an initial startup. How can a certain
level of guarantees be provided with respect to service quality
and user experience? Second, as peer caching has been used
in both memory and nonvolatile storage to improve the
“supply” of video content [1], [3], it is possible for peers to
actively prefetch and cache certain content in local peer
caches. The hope is that such prefetched content may
become useful to other peers, and as such mitigate the load
on dedicated servers. While a plethora of heuristics are
available (e.g., [4]), potential benefits of such prefetching do
not come without costs of bandwidth. There have been no
founding principles on when and how prefetching should be
performed, again based on solid theoretical analysis. If we
jointly consider requests that make demands for content and
prefetching that augments supplies of content with additional
a priori consumption of upload bandwidth, we may be able
to develop a theoretical framework that cultivates the root of
a high-quality on-demand streaming system design.

In this paper, we seek to address these fundamental
questions with the following contributions. Rather than
heuristics based on intuition, we construct a new analytical
framework based on queuing models, that 1) advocates and
justifies the superiority of service prioritization based on a

IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 2, FEBRUARY 2013 351

. F. Liu and H. Jin are with the Services Computing Technology and System
Lab, Cluster and Grid Computing Lab, School of Computer Science and
Technology, Huazhong University of Science and Technology, No. 5
Eastern Building, No. 1037 Luoyu Road, Hongshan District, Wuhan
430074, China. E-mail: {fmliu, hjin}@mail.hust.edu.cn.

. B. Li is with the Department of Computer Science and Engineering, Hong
Kong University of Science and Technology, Clear Water Bay, Kowloon
999077, Hong Kong. E-mail: bli@cse.ust.hk.

. B. Li is with the Edward S. Rogers Sr. Department of Electrical and
Computer Engineering, University of Toronto, 10 King’s College Road,
Toronto, ON M5S 3G4, Canada. E-mail: bli@eecg.toronto.edu.

Manuscript received 24 Mar. 2011; revised 6 Sept. 2011; accepted 16 Oct.
2011; published online 10 Nov. 2011.
Recommended for acceptance by S. Nikoletseas.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2011-03-0193.
Digital Object Identifier no. 10.1109/TC.2011.222.

0018-9340/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

taxonomy of streaming requests, and 2) helps understand
the fundamental principle behind optimal prefetching and
caching designs. Uploading bandwidth and peer caching
are finite resources in any design of on-demand streaming
systems, and it is our focus to provide guidelines how a
finite pool of uploading bandwidth resources and peer
caching capabilities are to be utilized most efficiently
toward better performance.

In particular, we first use priority queuing analysis to
prove how service quality and user experience can be
statistically guaranteed by prioritizing requests in the order
of urgent playback (e.g., random seeks or initial startup),
normal playback, and prefetching. We then proceed to a
fine-grained stochastic supply-demand model to investigate
peer caching and prefetching as a global optimization
problem. This not only provides insights in understanding
the fundamental characterization of the demand, but also
offers guidelines toward optimal prefetching and caching
strategies in peer-assisted on-demand streaming systems.

The remainder of this paper is organized as follows: in
Section 2, we discuss our contributions in the context of
related work. In Section 3, we present a conceptual queuing
model for peer-assisted on-demand streaming systems, and
justify the superiority of service prioritization based on a
taxonomy of requests. Section 4 presents our investigation
on caching and prefetching based on a fine-grained
stochastic supply-demand model. Finally, we conclude the
paper in Section 5.

2 RELATED WORK

Though a number of commercial peer-assisted on-demand
media streaming systems have been deployed (e.g., [1]),
there is a lack of theoretical foundations and analyses
toward the understanding of fundamental design principles
and challenges in peer-assisted on-demand streaming
systems. From a theoretical perspective, to date, only a few
analytical studies on peer-assisted on-demand streaming
exist in the literature. Suh et al. [3] have analytically
investigated the design of a push-to-peer video-on-demand
system in cable networks, and bounds of catalog sizes in
such a system have been derived in a subsequent work [5].
More recently, Parvez et al. [6] have developed a theoretical
model to analyze the performance of BitTorrent-like proto-
cols for on-demand stored media streaming. However, these
models have not been able to characterize the differentiation
in demand, and thus are not in a position to provide insights
on how to guarantee the service quality for urgent requests,
such as random seeks. In contrast, our model characterizes
demand of different levels of urgency through a priority
queuing analysis, which both qualitatively and quantita-
tively justifies how service quality and user experience can
be statistically guaranteed through service prioritization.

With respect to studies on caching and prefetching in
peer-assisted on-demand streaming systems, there exist a
number of proposals (e.g., [7]), mostly driven by engineering
intuitions or heuristics. Guo et al. have proposed a hybrid
media proxy system assisted by P2P networks, called PROP
[8], in which DHT-based overlay management and cache
replacement heuristics are designed to achieve system
scalability and reliability. Instead of dictating specific system
infrastructure and implementation, we focus on the under-
lying resource allocation problem—with respect to finite peer

bandwidth and cache capacities in any design of on-demand
streaming systems—from a theoretical perspective.

Rather than designing specific prefetching or caching
strategies (e.g., [9]), we analytically characterize and under-
stand the fundamental problem behind caching and pre-
fetching designs based on sound stochastic queuing analysis.
Rather than optimizing prefetching from an individual
peer’s viewpoint (e.g., [10]), we investigate optimal caching
and prefetching as a global optimization problem to balance
the system-wide demand and supply. Similarly, a cache
redundancy model is developed in [8] to achieve the optimal
distribution of media segment replicas across the system,
under the assumption of Zipf-like distribution of segment
popularity and the storage constraint of peer caches. In
comparison, our model not only has no a priori assumption
on segment popularity distributions, but also cohesively
incorporates both storage and upload bandwidth constraints
at peers.

While data replication and caching have been extensively
studied in P2P file sharing and distributed storage systems
to satisfy search queries and download demand (e.g., [11]),
how to adapt existing replication schemes to peer-assisted
on-demand streaming systems is still an open problem. Our
model and performance analysis, which intrinsically con-
sider the timing and bandwidth requirements in peer-
assisted on-demand streaming, can reveal the fundamental
principle of a family of prefetching and caching strategies.
We show that simple heuristics used in recent real-world
systems essentially lie in this family, and can potentially
achieve comparable performance to optimal strategies.

In addition, there have been extensive prior studies on
conventional web caching for reducing user access latencies
to text-based web content. Different from web traffic
caching under the widely accepted Zipf-like access pattern
(e.g., [12]), the reference locality in many media workloads
is shown to be less skewed than that of web objects [13].
Accordingly, we have evaluated peer-assisted caching
designs under both the classical Zipf and the recently
observed stretched exponential (SE) distribution [14] to
obtain complementary understanding. This demonstrates
that the performance of caching in peer-assisted on-demand
streaming systems is distinctively affected by two repre-
sentative access patterns, which is consistent with the
implications from [14]. Also, server-based content delivery
networks (CDNs) have been deployed to replicate media
content across the Internet to move the content close to the
viewers. For instance, it is shown that the popularity of live
media programs hosted by Akamai CDN exhibits a two-
mode Zipf distribution [15]. Such server-based solutions can
improve the media streaming performance, yet they suffer
from prohibitive cost [8]. In contrast, we focus on the cost-
effective peer-assisted on-demand streaming, with miti-
gated server bandwidth costs demonstrated by our analysis.

3 DEMAND CHARACTERIZATION AND SERVICE

PRIORITIZATION

3.1 Characterizing Requests for Segments

We begin by stating our model of a peer-assisted on-demand
streaming system providing a rich repository of video files,
each encoded with a constant bit rate. While different videos
can have distinct lengths, each of them is divided into a
number of fixed-length segments, and the total number of

352 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 2, FEBRUARY 2013

segments is V . We assume that there exists a pool of servers,
with an aggregate upload capacity Us, deployed by the
service provider, and there are N peers participating in the
system in steady state. Let ui denote the upload capacity of
peer i, 8i 2 N . Then, the total uploading bandwidth resource
in the system isC ¼ Us þ

P
ui. Without loss of generality, we

assume that time t is slotted and each time unit corresponds to
the amount of time for a peer to play back one segment. Given
a fixed segment size as mentioned earlier, the total system
upload capacity C can be normalized as c, in terms of the
number of segments that can be served per unit time,
henceforth referred to as c service units.

As peers play back video segments over time, they will also
request segments from the system, which are represented by
the total arrival rate of segment requests �. Different from live
video streaming, there is a unique and critical differentiation
with respect to requests in on-demand streaming, which can
be represented in a taxonomy of three categories:

. Urgent playback requests that are used to meet
immediate buffering and playback needs after user
interactions, such as initial startup of a video stream,
and random seek activities.

. Normal playback requests that are used to maintain a
buffer of segments in the near future, so that a
smooth playback quality can be sustained within the
vicinity of the current playback point.

. Prefetching requests that are used to prefetch certain
desirable segments beyond the vicinity of the current
playback point (and may even be in a different
video) for local caching. Such prefetching requests
are made with the hope that the prefetched segments
can be used in the future to serve other peers, so that
server bandwidth costs will be mitigated (as we shall
elaborate in Section 4).

Each segment request requires to be satisfied by one
of the available service units (i.e., uploading bandwidth
resource from either peers or servers), in order to satisfy the
demand from peers.

3.2 Prioritizing Services: Priority Queuing Analysis

To guarantee service quality and user experience, we
advocate that when requests for segments—on the “de-
mand” side—are served, they should be prioritized in the
order of their urgencies, with three priority types J ¼
f3; 2; 1g for urgent playback requests (with arrival rate �3),
normal playback requests (with arrival rate �2), and
prefetching requests (with arrival rate �1), respectively,
where

P3
j¼1 �j ¼ �. In other words, requests belonging to a

type j ¼ 3; 2; 1 are associated with high priority, medium
priority, and low priority, respectively, while requests within
the same priority type will be served with the First-Come-
First-Served (FCFS) policy.

As illustrated in Fig. 1, the entire system is abstracted as
a service station consisting of c identical parallel service
units with the mean service rate � ¼ 1 each (i.e., one
segment per unit time). Note that though peers can have
heterogeneous upload capacities, our model can mitigate
such a complexity by transforming the overall uploading
bandwidth resource of the system to a number of
homogeneous service units, under the assumption of heavy

workloads in such on-demand streaming services that tend

to fully exploit the limited pool of bandwidth resources.

Essentially, we abstract peer-assisted on-demand streaming

with service prioritization as a multiserver multipriority

classes model, represented by Kendall’s notation [16]

M=M=c� PR, where segment requests arrive with a

Poisson process and service times follow an exponential

distribution, c is the number of parallel service units, and

PR specifies the queuing discipline as Priority, and the

system utilization factor � ¼ �=ðc�Þ 2 ½0; 1Þ for steady state

analysis. Our considerations include the following aspects:

. While still allowing peers to have heterogeneous
capacities in original practical systems, our model
can analyze the system performance through classi-
cal queuing models with homogeneous service units
to yield tractable analysis. Otherwise, an asym-
metric queuing system with heterogeneous service
units is hard to obtain tractable results, or its
analysis is only restricted to special cases such as
M=M=2 systems [16].

. Since a peer (or server) can correspond to multiple
service units depending on its upload capacities, our
model can also cover the typical scenario where a
peer (or server) is simultaneously serving multiple
segments and its uploading bandwidth is fairly
shared between these concurrent transmissions. For
practical peer-assisted systems wherein peers usual-
ly cooperate with multiple partners, such a Processor
Sharing (PS) policy is an adequate model of fair
sharing between concurrent TCP connections [3].

. Note that each service unit essentially represents the
average upload capacity of serving one segment per
unit time. Due to practical factors such as network
congestion and bandwidth fluctuation, there could
be variations in serving segments. This implies that
the service time of each service unit should be a
random variable, rather than a deterministic con-
stant that would be too idealized. To this end, we
assume that the service time of each service unit
follows an exponential distribution with mean
service rate � ¼ 1. This is considered to be a
reasonable assumption and typically used in existing
analytical studies of peer-assisted systems [17]. On

LIU ET AL.: PEER-ASSISTED ON-DEMAND STREAMING: CHARACTERIZING DEMANDS AND OPTIMIZING SUPPLIES 353

Fig. 1. A conceptual queuing system consisting of multiple parallel
service units in response to the segment requests sent from peers, with
the same aggregate upload capacity as the original peer-assisted on-
demand streaming system.

the other hand, even if one prefers to assume a
deterministic service time, our model can be easily
amended to a M=D=c system.

. We mainly focus on the nonpreemptive mode for
serving requests, though our model can also be
amended to accommodate a preemptive mode.

To analyze and justify the superiority of service prior-
itization, we next use representative performance metrics of
our queuing model to characterize the service quality and
user experience in on-demand streaming systems, includ-
ing the playback fluency and latency after user interaction (e.g.,
initial startup and random seeks).

3.2.1 Playback Fluency

Formally, given a certain number of segments, d, that are
buffered ahead of the real-time playback point, it is drained
at the playback rate (i.e., one segment per unit time), while
fed by subsequent segments as a peer continuously views a
video. Hence, the playback fluency can be reflected by the
probability of PrððL� dÞW � dÞ, where W is the waiting
time for a segment request to obtain service in steady state,
and L is the time length for which the peer has been
viewing the video. For example, L can be up to the video
length. Let a factor � ¼ d

L represent the relative playback
buffer length, we have

PrððL� dÞW � dÞ ¼ Pr W � �

1� �

� �
; ð1Þ

where PrðW � �
1��Þ is essentially the waiting time distribu-

tion function for a segment request, PrðW � �Þ, with a
desired delay bound � ¼ �

1�� . Intuitively, a higher level of
PrðW � �Þ would imply a timely and sustained playback
buffer, and thus a fluent viewing experience. Specifically,
an extreme exercise with � ¼ 0 and PrðW ¼ 0Þ can
represent the most stringent timing requirement, i.e., if
the first segment in the playback buffer closest to the
playback point is missing.

Unfortunately, in our model of peer-assisted on-demand
streaming with service prioritization, the exact waiting time
distributions in the corresponding multiserver multipriority
classes model M=M=c� PR are far less tractable, and most
existing analytical studies are restricted to only two priority
classes (e.g., [18]). Instead, we resort to the following simple
approximation of the waiting time distribution for multi-
priority classes systems, with both theoretical support [19]
and simulation-based observations [20]. Such a reasonable
approximation is useful to estimate the trend of PrðWj � �Þ,
8j 2 J , and facilitate our later comparison with traditional
nonprioritization systems, especially under heavy work-
loads (i.e., �! 1):

PrðWj � �Þ � 1� �e���=Wj ; � > 0; ð2Þ

where Wj is the mean waiting time for jth priority segment
requests in steady state, as given below:

Wj ¼
ðc�Þc
c!ð1��Þ p0

h i
c�ð1� �jÞð1� �jþ1Þ

; ð3Þ

where �j ¼
PjJ j

i¼j �i, �j ¼ �j=ðc�Þ, � ¼
P

j2J �j, and

p0 ¼
Xc�1

k¼0

ðc�Þk

k!
þ ðc�Þ

c

c!

1

1� �

" #�1

is the state probability of 0 jobs in the system.
Note that though we focus on three priority types (i.e.,

J ¼ f1; 2; 3g) according to on-demand streaming features,
(3) is also general for M=M=c� PR models with any
number of priority types [16].

3.2.2 Latency after User Interaction

Another performance concern in peer-assisted on-demand
streaming is the latency to retrieve segments after initial
startups or random seeks. When a peer joins a video or
seeks to a new playback position, at least a minimum buffer
of segments, up to the playback buffer size d, need to be
requested and downloaded before the video starts play-
back. Such a latency can be modeled as a function Dðd;RÞ,
depending on the playback buffer size d and the retrieval
time R for a segment. Specifically, we use the following
monotonically increasing function as the expected latency:

Dðd;RÞ ¼ �dR; � 2 1

d
; 1

� �
; ð4Þ

where R ¼W þ 1=� is the mean retrieval time for a

segment in steady state, and � is a factor depending on

how many segment requests within the buffer are served in

parallel by the system. Alternatively, � can also be

interpreted as an acceptable buffer level for startups. For

example, a buffer level of 75 percent is empirically regarded

as satisfactory in UUSee [21]. Note that Dðd;RÞmin ¼ R
essentially places a lower bound on the achievable startup

delay [6] or seek latency, since at least the segment closest to

the playback (or seek position) needs to be downloaded.

Intuitively, a smaller value of R would imply a shorter

latency to retrieve segments.
For our model of peer-assisted on-demand streaming

with service prioritization, from (3), the lower bound of
expected latency Djðd;RjÞmin ¼ Rj for different priority
types j 2 J under the M=M=c� PR model is given as

Rj ¼
ðc�Þc
c!ð1��Þ p0

h i
c�ð1� �jÞð1� �jþ1Þ

þ 1

�
; ð5Þ

where �j ¼
PjJ j

i¼j �i, and p0 is given earlier.
According to (4) and (5), we have Djðd; RjÞ � Rj �

1=�; 8j 2 J . This is also true in real-world systems, since it
at least takes a certain amount of time to download the
target segments after a random seek or an initial startup,
even if such requests can be served immediately.

3.3 Statistical Guarantees with Service
Prioritization

We are now ready to justify and demonstrate how service
quality and user experience can be statistically guaranteed
with our service prioritization principle (henceforth referred
to as prioritization systems). Specifically, to establish a baseline
performance reference point, we also include a comparison
with traditional on-demand streaming systems without
service prioritization (henceforth referred to as nonprioritiza-
tion systems). In nonprioritization systems, all segment

354 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 2, FEBRUARY 2013

requests from downstream peers to the serving peers and

servers will be treated identically. Essentially, this corre-

sponds to M=M=c� FCFS queuing models [16], and the

corresponding performance measures PrðWFCFS � �Þ and

RFCFS can be represented by the waiting time distribution

and mean sojourn time of a job in steady state, respectively:

PrðWFCFS � �Þ ¼
1� ðc�Þc

cð1� �Þ p0; � ¼ 0;

1� ðc�Þc

c!ð1� �Þ p0e
�c�ð1��Þ� ; � > 0;

8>><
>>:

RFCFS ¼WFCFS þ
1

�
; ð6Þ

whereWFCFS ¼ ½ �
ð1��Þ��½

ðc�Þc
c!ð1��Þ p0� is the mean waiting time of a

job in the corresponding M=M=c� FCFS system in steady

state, and p0 ¼ ½
Pc�1

k¼0
ðc�Þk
k! þ

ðc�Þc
c!

1
1���

�1 is the state probability

of 0 jobs in the corresponding M=M=c� FCFS system.
First, we have the following relationship with respect to

the latency performance.

Theorem 1. Given a limited system upload capacity, prioritiza-

tion systems with three priority types J ¼ f3; 2; 1g for urgent

playback, normal playback, and prefetching can 1) guarantee

to improve the service quality and user experience for urgent

requests (e.g., random seeks and initial startup); 2) con-

ditionally improve the normal playback fluency; and 3) at a

cost of deferring prefetching requests with a conditionally

bounded proportion to the performance of nonprioritization

systems, as characterized by the following relationship:

R3 < RFCFS < R1; for � 2 ½0; 1Þ; ð7Þ

R2 � RFCFS; for
1� �

ð1� �2 � �3Þð1� �3Þ
� 1; ð8Þ

R2 > RFCFS; for
1� �

ð1� �2 � �3Þð1� �3Þ
> 1; ð9Þ

W1

WFCFS
remains constant as � increases, when �1 increases while

�2 and �3 remain constant.

Proof. First, based on conservation law, we have W3 <

W2 < W1; 8� 2 ½0; 1Þ. By simply adding the mean service

time 1=�, we have R3 < R2 < R1; 8� 2 ½0; 1Þ.
Furthermore, to compare RFCFS and Rj; 8j 2 J , we

need to compare the corresponding WFCFS and Wj;
8j 2 J , as follows:

Wj

WFCFS

¼ 1� �
ð1� �jÞð1� �jþ1Þ

;

(by (3) and (6)), where �j ¼
PjJ j

i¼j �i.
Hence, for high priority j ¼ 3, we have

W3

WFCFS

¼ 1� �
1� �3

¼ 1� �
1� �3

< 1; ðtypically �2 þ �1 > 0Þ:

ð10Þ

Then, for low priority j ¼ 1, we have

W1

WFCFS

¼ 1� �
ð1� �1Þð1� �2Þ

¼ 1

1� �2 � �3
> 1: ð11Þ

Combining (10) and (11) gives R3 < RFCFS < R1;
8� 2 ½0; 1Þ.

In addition, (11) also indicates that W1

WFCFS
can keep

constant as � increases, when �2 and �3 keep constant

while �1 increases.
Finally, for medium priority j ¼ 2, we have

W2

WFCFS

¼ 1� �
ð1� �2Þð1� �3Þ

¼ 1� �
ð1� �2 � �3Þð1� �3Þ

: ð12Þ

From this, we can obtain the conditions (8) and (9) for
R2 � RFCFS and R2 > RFCFS , respectively. tu

Remark. Our model with Theorem 1 not only characterizes
the unique and critical differentiation in three distinct
request classes in peer-assisted on-demand streaming
systems, but also qualitatively instructs how limited
uploading bandwidth resources can be effectively utilized
through service prioritization, so as to provide statistical
guarantees on service quality and user experience. This
aims to provide a theoretical underpinning of peer-
assisted on-demand streaming systems, which is com-
plementary to existing heuristic-based studies in this area.

3.4 Service Prioritization: Performance Evaluation

To more clearly demonstrate the superiority of service
prioritization, we perform a series of performance analysis.
Fig. 2 plots the mean retrieval times for high-priority,
medium-priority, and low-priority requests in prioritization
systems compared to the mean retrieval time in nonprior-
itization systems. As the system utilization factor � increases,
the performance of traditional nonprioritization systems
will degrade as a whole, which implies an unsatisfactory
service quality and user experience, especially for urgent
requests (e.g., random seeks and initial startup) and normal
playback. This is due to the heavy competition among all
segment requests for a limited pool of uploading bandwidth
resources in the system, and the passive resource allocation
mechanism without being aware of service quality and user
experience.

In contrast, under the same system capacity and
utilization factor, prioritization systems can effectively
allocate a limited pool of uploading bandwidth resources,
and successfully maintain a nearly constant level of

LIU ET AL.: PEER-ASSISTED ON-DEMAND STREAMING: CHARACTERIZING DEMANDS AND OPTIMIZING SUPPLIES 355

Fig. 2. Mean retrieval times for high-priority, medium-priority, and low-
priority requests in prioritization on-demand streaming systems com-
pared to the mean retrieval times in traditional nonprioritization systems,
along with the increase of the system utilization factor.

performance for high-priority and medium-priority re-
quests, which implies timely responses for random seeks
and initial startup, as well as fluent playback, even though
at a cost of deferring prefetching requests that are expected
not to directly affect user viewing experiences.

Next, we quantitatively examine the performance with
respect to playback fluency. Fig. 3 plots the waiting time
distribution for high-priority, medium-priority, and low-
priority segment requests in prioritization systems, com-
pared to traditional nonprioritization systems, under a
heavy system utilization factor � ¼ 0:975. Specifically, we
examine a representative range of � ¼ �

1�� 2 ½0:01; 0:1�, and
assume L is set as an expected video length of 1 hour.

We obtain the following insights: 1) As the desired delay
bound for a segment request � increases (� ¼ d

L "), the
waiting time probabilities PrðWFCFS � �Þ and PrðWj � �Þ;
8j 2 J , all increase. This indicates that a longer playback
buffer length can help improve the playback fluency, which
is consistent with empirical experiences. 2) However,
PrðWFCFS � �Þ in nonprioritization systems is relatively
low, which implies a higher probability of interrupted
viewing experience. In contrast, the playback fluency in
prioritization systems (i.e., PrðW2 � �Þ) grows rapidly, and
can even approach 1 with more adequate buffer lengths.
This clearly demonstrates that prioritization systems can
offer a better service quality and user experience than
traditional nonprioritization systems. 3) The performance
for high-priority requests in prioritization systems is even
better with PrðW3 � �Þ quickly approaching 1, which
implies timely responses for urgent requests such as initial
startup and random seeks. On the other hand, the waiting
time for low-priority prefetching requests could become
correspondingly longer due to the conservation law. Since
prefetching requests beyond the playback buffer mainly aim
to cache and serve future demand, a relatively longer delay
for such requests is acceptable in practice, given that the
service qualities for normal playback and urgent demands are
statistically guaranteed.

Further, under the same setting of � ¼ 0:06, Fig. 4
compares the waiting time distributions of segment
requests. We observe that as we increase � by allowing
more prefetching requests, the playback fluency in non-
prioritization systems could degrade significantly. In con-
trast, the playback fluency in prioritization systems can be
maintained at a high level.

4 OPTIMIZING PREFETCHING AND CACHING UNDER

A STOCHASTIC SUPPLY-DEMAND MODEL

To jointly consider requests that make demands for content
and prefetching that augments supplies of content, we
further proceed to analyze the prefetching and caching
designs in peer-assisted on-demand streaming systems as a
global optimization problem, under a stochastic supply-
demand model as follows:

. Demand. Assume the system-wide normal playback
requests for segments arrive as a Poisson process of
rate �2, and the access probabilities of segments are
denoted as ða1; a2; . . . ; aV Þ, which satisfies

PV
i¼1 ai ¼

1. Without loss of generality, we assume ai � aj,
8i < j. Hence, the expected amount of requests for
segment i per unit time is �2ai.

. Supply. Assume that each peer in the system main-
tains a limited size of local cache, up to B segments.
The system-wide caching state of segments at time t is
denoted as XðtÞ ¼ ðx1ðtÞ; x2ðtÞ; . . . ; xV ðtÞÞ, where
xiðtÞ � N represents the number of peers holding
segment i in their local caches at time t. Without loss
of generality, we assume peer local caches will be
completely filled as time progresses, and hencePV

i¼1 xiðtÞ ¼ NB; 8t. To fully utilize their local caches
to serve one another, peers can proactively prefetch
certain segments to their local caches, and replace
certain segments due to the limited cache size. We are
interested in the optimal prefetching and cache
replacement strategies to produce the optimal sys-
tem-wide cache state, so that system-wide normal
playback demand can be satisfied by peers holding
those segments, rather than by servers.

As peers cache and prefetch segments, each segment is
associated with a certain service capacity, denoted as
ðo1ðtÞ; o2ðtÞ; . . . ; oV ðtÞÞ, in terms of the number of segments
that can be served by peers per unit time. Generally, we
assume

PV
i¼1 oiðtÞ ¼ "Cp, where Cp ¼

PN
j¼1 uj is the total

uploading capacity of peers, and " 2 ð0; 1� represents the
efficiency of utilizing peer uploading bandwidth. Intui-
tively, the larger the number of peers holding segment i, the
larger the capacity there exists to serve this segment. To
facilitate our analysis, we use a proportion function for the
expected service capacity of a segment, oiðtÞ ¼ ðxiðtÞNB Þ "Cp,
which is considered to be reasonable and typically assumed
in existing modeling studies of peer-assisted systems [22].

356 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 2, FEBRUARY 2013

Fig. 3. Waiting time distribution for high-priority, medium-priority, and
low-priority requests in prioritization on-demand streaming systems
compared to traditional nonprioritization systems, under a heavy system
utilization factor � ¼ 0:975.

Fig. 4. Waiting time probability (with a desired � ¼ 0:06) for high-priority,
medium-priority, and low-priority requests in prioritization on-demand
streaming systems compared to traditional nonprioritization systems,
along with the increase of system utilization factor.

Instead of directly optimizing the prefetching and cache
replacement of segments—which would lead to an over-
whelming number of variables—we first derive the desired
optimal cache profile X�ðtÞ ¼ ðx�1ðtÞ; x�2ðtÞ; . . . ; x�V ðtÞÞ in
response to a given system-wide normal playback demand,
represented by �2 and ða1; a2; . . . ; aV Þ. Then, by examining
the discrepancy between X�ðtÞ and the current peer cache
state XðtÞ, we can determine which segments are relatively
undersupplied (to be prefetched) or oversupplied (to be
replaced), so as to provide guidelines and insights toward
optimal prefetching and cache replacement strategies.

4.1 Stochastic Queuing Analysis

We mainly consider two stochastic evaluation modes [3]
based on queuing theory: the waiting mode wherein system
performance is measured by the waiting time probability,
and the blocking mode wherein system performance is
measured by the request blocking probability. In the
waiting mode, our supply-demand model of each segment
corresponds to an M=M=1 system, by assuming Poisson
arrival of normal playback requests for segment i with
mean rate �2ai, and exponentially distributed service times
with mean rate oiðtÞ. Then, the waiting time distribution for
segment i in our supply-demand model is given as

PrðWi � �Þ ¼
1� �2ai

oiðtÞ
; � ¼ 0;

1� �2ai
oiðtÞ

eð�2ai�oiðtÞÞ� ; � > 0:

8<
: ð13Þ

Using (13), we can derive the optimal cache profile X�ðtÞ by
maximizing the expected amount of normal playback
requests that can be served within a certain desired delay
bound � , i.e.,

PV
i¼1 �2aiPrðWi � �Þ. However, such a waiting

mode intrinsically assumes �i ¼ �2ai
oiðtÞ

< 1, i ¼ 1; 2; . . . ; V , for
the system to be stable. Such an assumption may not always
hold across all segments in the system, as the demand for
certain highly popular segments could possibly exceed their
corresponding service capacities in the system. Hence, we
consider the blocking mode without such a restriction.

In the blocking mode, our supply-demand model of
segment i corresponds to a Processor Sharing system
M=M=1=Ki � PS with a finite queuing capacity Ki repre-
senting the allowed number of simultaneous downloads for
segment i, which depends on the service capacity oiðtÞ. For
simplicity, we can let Ki ¼ doiðtÞe in order for each
concurrent transmission of segment to be roughly served
with the playback rate (i.e., one segment per unit time). If a
request for segment i arrives when Ki is saturated, it is
dropped and redirected to the servers. It is revealed by
insensitivity results [23] that the blocking probability Pbi for
an M=M=1=Ki � PS system is identical to that for the
corresponding M=M=1=Ki system, as given below:

Pbi ¼
�
doiðtÞe
i ð1� �iÞ

1� �doiðtÞeþ1
i

; ð14Þ

�i ¼
�2ai

oiðtÞ
¼ �2aiNB

"CpxiðtÞ
; i ¼ 1; 2; . . . ; V : ð15Þ

As such, intrinsically, a blocking mode queuing model
does not need to assume �i < 1 for the system to be stable [16],
it can be used to evaluate the performance of peer-assisted

on-demand streaming systems under any supply-demand
conditions across all segments, e.g., either deficit (�i > 1) or
surplus (�i < 1).

To minimize server cost, we essentially need to max-
imize the system-wide effective throughput over all segments
(i.e., the total number of unblocked segment requests served
by peers):

Maximize
XV
i¼1

�2aið1� PbiÞ; ð16Þ

Subject to :
XV
i¼1

xiðtÞ ¼ NB; 8t; ð17Þ

0 � xiðtÞ � N; i ¼ 1; 2; . . . ; V ; ð18Þ

xiðtÞ 2 IN; i ¼ 1; 2; . . . ; V ; 8t; ð19Þ

where
PV

i¼1 ai ¼ 1. With a specific amount of demand �2, the
problem above can be transformed to minimize the system-
wide blocking probability as follows: differing from the cache
hit ratio derived in a relevant cache redundancy model [8]
with the constraint of the total cache size, our model and
performance metric cohesively incorporate the constraints
on both the upload bandwidth and storage of peers. The
rationale is that even if a segment is cached by peer(s), there
is no guarantee that the currently available bandwidth from
peer(s) is sufficient to satisfy the video playback rate.

Minimize
XV
i¼1

aiPbi ¼
XV
i¼1

ai�
doiðtÞe
i ð1� �iÞ

1� �doiðtÞeþ1
i

Subject to : constraintsð17Þ; ð18Þ; ð19Þ:

ð20Þ

This is a nonlinear integer programming problem, which
is NP-hard in general, and even harder to solve than integer
linear programming problems [24]. More specifically, by
plugging (15) into (20), the structure of the objective
function can be viewed as a sum-of-ratios problem in fractional
programming, which still remains a hard problem in the
literature of global optimization [25]. Though it is mathe-
matically challenging to reach global optimality, our
construction of (20) analytically characterizes critical factors
that are general in any caching and prefetching designs in
peer-assisted on-demand streaming systems.

Due to the intractability of solving the general optimiza-
tion problem, we seek to derive near-optimal solutions that
reveal helpful insights. To simplify the problem, we utilize a
reasonable upper bound of the system-wide blocking
probability.

Lemma 1. Under any given cache profile XðtÞ, the system-wide
blocking probability has the following corresponding upper
bound:

XV
i¼1

aiPbi �
XV
i¼1

ai�i
1þ �i

: ð21Þ

Proof. By limiting the queuing capacity of each segment to
Ki ¼ 1, i ¼ 1; 2; . . . ; V , our supply-demand model of each
segment M=M=1=Ki � PS becomes the corresponding
M=M=1=1� PS system. This essentially imposes more

LIU ET AL.: PEER-ASSISTED ON-DEMAND STREAMING: CHARACTERIZING DEMANDS AND OPTIMIZING SUPPLIES 357

stringent timing requirements for segment requests, and
as such a limited queuing capacity results in lower chances
for segment requests to wait, which alternatively means
that segment requests become less tolerant to delay.

Specifically, the blocking probability of segment i
under M=M=1=1� PS becomes �i=ð1þ �iÞ. Then, we
have the following relationship for both �i < 1 and �i � 1:

ai�i
1þ �i

¼ ai�
doiðtÞe
i ð1� �iÞ

�
doiðtÞe�1
i � �doiðtÞeþ1

i

� ai�
doiðtÞe
i ð1� �iÞ

1� �doiðtÞeþ1
i

¼ aiPbi:

Note that given any cache profile XðtÞ, it is possible
that certain segments may not be cached by any peers in
the system, i.e., 9i, xiðtÞ ¼ 0, and oiðtÞ ¼ 0. In such cases,
we have both �i=ð1þ �iÞ ¼ 1 and Pbi ¼ 1, and hence the
above still holds.

Then, since the above relationship holds for any
segment i ¼ 1; 2; . . . ; V , the summation over all segments
gives (21). Specifically, when xiðtÞ ¼ 0; 8i, both sides of
(21) degenerate to 1, which also captures the traditional
server-based on-demand streaming systems without peer
assistance, where all segment requests need to be satisfied
by the servers. tu

Since such an upper bound is able to preserve relevant
factors in problem (20) while being more reflective of
stringent timing requirements, it is reasonable to simplify
problem (20) by minimizing such an upper bound.

Theorem 2. In response to a given system-wide normal playback
demand represented by �2 and ða1; a2; . . . ; aV Þ, to minimize
the upper bound of system-wide blocking probability given by
Lemma 1, the optimal cache profile X�ðtÞ should match the
demand as x�i ðtÞ ¼ NBai, i ¼ 1; 2; . . . ; V .

Proof. To minimize the upper bound of system-wide
blocking probability, we need to solve the following
optimization problem:

Minimize
XV
i¼1

ai�i
1þ �i

Subject to: constraintsð17Þ; ð18Þ; ð19Þ:

By relaxing the integer constraints (19) and the
inequality constraints (18) (this does not undermine the
optimality of the solution as discussed later), we can use
Lagrangian multiplier and Karush-Kuhn-Tucker condi-
tions [26] to solve it:

� ¼
XV
i¼1

ai�i
1þ �i

þ !
�XV

i¼1

xiðtÞ �NB
�
;

@�

@xiðtÞ
¼ !� �2a

2
i NB"Cp

ð"CpxiðtÞ þ �2aiNBÞ2
¼ 0;

w h i c h g i v e s x�i ðtÞ ¼ ð ai"CpÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2NB"Cp

!

q
� �2aiNB

"Cp
. T h e n ,

through the equality constraint (17), we can obtain the
optimal cache profile x�i ðtÞ ¼ NBai, i ¼ 1; 2; . . . ; V . tu

Remark. Though the optimal cache profile above does not
guarantee the inequality constraint xiðtÞ � N; i ¼ 1; 2;
. . . ; V , it is still a “good” approximation. According to
the heavy tail effect of content popularity observed in real-
world on-demand streaming systems [27], a considerable

portion of x�i ðtÞ in the optimal cache profile could satisfy
x�i ðtÞ ¼ NBai � N . For those highly popular segments
resulting in x�i ðtÞ ¼ NBai > N , we can simply adjust their
corresponding x�i ðtÞ ¼ N , and shift the surplus portion to
replicate other less popular ones. Such a near-optimal
cache profile does not undermine the optimality of the
solution. It conveys the fundamental principle for caching
and prefetching designs in peer-assisted on-demand
streaming systems: optimal prefetching and caching
strategies should help the peer cache state evolve toward
the optimal cache profile, which tends to balance the
system-wide demand and supply.

Our aforementioned insights can lead to a general
framework of optimal caching principle as described in
Algorithm 1. Rather than a specific heuristic, this abstracts a
family of prefetching and caching strategies toward the
optimal cache profile. For instance, a popularity-based
caching heuristic in [9] estimates the segment popularity
and peer cache state through a distributed averaging scheme
[28]; and the discrepancy between demand and supply is
captured by the difference between normalized segment
popularity and the average number of replicas. Another
weight-based replication heuristic in [1] relies on the
tracking server to provide the availability to demand ratio
(ATD) for each video, which captures the discrepancy
between supply and demand in a different form. These
heuristics, albeit with different schemes to capture the
system-wide supply-demand relationship and their discre-
pancy, essentially follow the key principle of our framework
to better match demand and supply. While neither of them
base their designs upon sound theoretical foundations, our
general framework based on stochastic queuing analysis and
global optimization can be used to characterize and under-
stand the essence of such prefetching and caching designs.

Algorithm 1. A General Framework of Optimal Caching

(with Prefetching) Principle

1: Obtaining information on system-wide demand and

supply (either in a centralized or distributed manner as
illustrated later):

i) Estimating segment popularity ai, i ¼ 1; 2; . . . ; V ;

ii) Estimating the peer cache state XðtÞ, i ¼ 1; 2; . . . ; V .

2: Examining the discrepancy between the peer cache state

XðtÞ and the optimal cache profile X�ðtÞ in response to

ai, i ¼ 1; 2; . . . ; V .

3: Balancing the system-wide demand and supply

according to the discrepancy:
i) Preferentially prefetch those under-supplied

segments (e.g., popular yet less cached in the

system) to meet the demand;

ii) Preferentially replace those over-supplied segments

(e.g., unpopular yet excessively cached in the

system).

4.2 Performance Evaluation

We now quantitatively examine the optimal caching and
prefetching principle represented by Theorem 2 and Algo-
rithm 1 (henceforth referred to as optimal), its corresponding
upper bound in Lemma 1, as well as one of the representative
weight-based replication heuristic used in a real-world
system [1]. The original heuristic in [1] is primarily limited
to cache replacement at the video level, without allowing

358 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 2, FEBRUARY 2013

prefetching. To perform a fair comparison, we modify it to a
segment level and extend it to allow active prefetching, also
using the hints based on the ATD information. Specifically,
the lower the ATD of a segment, the relatively higher
probability will be prefetched. In addition, we also include a
randomized segment replication as a baseline performance
benchmark, where peers randomly choose segments to
replicate with an equal probability.

First, in Fig. 5, we examine the performance of the
aforementioned candidates in terms of the system-wide
blocking probability versus the increase of relative peer
cache size B=V , under a heavy relative system-wide
workload �2=ð"CpÞ ¼ 0:9 and a Zipf popularity distribution
of segments, as typically observed in real-world Internet
media workloads. We observe that: 1) The performance of
all candidates improves as the relative peer cache size
increases, which demonstrates the potential benefits of peer
caching and prefetching to meet user demand by peers
alone and thus offload the servers. 2) The optimal
consistently outperforms the others. Meanwhile, by follow-
ing the key principle to balance the system-wide demand
and supply, the heuristic shows a comparable performance
to the optimal. 3) The upper bound of system-wide blocking
probability under the optimal cache profile is insensitive to
the relative peer cache size as long as the relative system-
wide workload is fixed, which represents a conservative
estimation of system performance.

Second, in Fig. 6, we further investigate the performance
of the aforementioned candidates by varying the relative
system-wide workload �2=ð"CpÞ from a moderate level of
0.8 to an intense level of 1.25, under a setting of B=V ¼ 10%.

We observe that: 1) The system-wide blocking probability
notably increases along with relatively more demand
imposed on the entire system. However, the optimal and
the heuristic are still able to mitigate a substantial portion of
server load. 2) While the gap between the optimal and the
heuristic is insignificant under moderate workloads, it
becomes relatively more profound under heavy workloads.
Meanwhile, the upper bound of system-wide blocking
probability under the optimal cache profile becomes
relatively tighter under heavy workloads.

Third, since a recent measurement study has argued that
access patterns in many media workloads could follow the
stretched exponential distribution [29] that deviates from Zipf,
we further exercise the aforementioned candidates under
such access patterns in Fig. 7. Under the same settings as in
Fig. 6, we observe that the performance of the optimal and
the heuristic notably decreases compared to that in Fig. 6;
and their performance margin over the randomized one
becomes less substantial. This is essentially because that the
SE popularity distribution usually considers a much longer
measurement duration (e.g., weeks or even months), which
results in less skewed popularity distribution compared to
Zipf, and thus potentially renders the caching benefit
relatively restricted [29]. Nevertheless, we believe that the
performance gain would be more profound over a shorter
period of time and under larger cache sizes.

Finally, it is also essential to examine the system-wide
performance with respect to the segment retrieval latency in
our model. To this end, we define the system-wide segment
retrieval latency as F ¼

PV
i¼1 aiðFnb

i þ Fb
i Þ, where Fnb

i ¼
ð1� PbiÞwi is the expected latency for unblocked requests
for segment i, and wi is the mean sojourn time [16] of a job in
the corresponding M=M=1=Ki system based on Little’s
Law. In addition, Fb

i ¼ Pbi	 is the expected latency for
blocked requests for segment i, where 	 represents an
expected tolerance threshold beyond which such blocked
ones shall be satisfied by the servers as the last resort. Then,
the system-wide relative retrieval latency can be obtained
through normalizing F by 	, since relative values yield more
relevant insights. Figs. 8, 9, and 10 plot the system-wide
relative segment retrieval latency under the same setting as
in Figs. 5, 6, and 7, respectively.

As the relative peer cache size increases in Fig. 8, the
system-wide segment retrieval latencies of all the candi-
dates have notably decreased, which implies an improved

LIU ET AL.: PEER-ASSISTED ON-DEMAND STREAMING: CHARACTERIZING DEMANDS AND OPTIMIZING SUPPLIES 359

Fig. 5. System-wide blocking probability versus the increase of relative
peer cache size, under a heavy relative system-wide workload of
�2=ð"CpÞ ¼ 0:9 and a Zipf popularity distribution of segments.

Fig. 6. System-wide blocking probability versus the increase of relative
system-wide workload �2=ð"CpÞ, under a relative peer cache size of
B=V ¼ 10% and a Zipf popularity distribution of segments.

Fig. 7. System-wide blocking probability versus the increase of
relative system-wide workload �2=ð"CpÞ, under a relative peer cache
size of B=V ¼ 10% and stretched exponential distribution of segment
popularity.

streaming performance under more adequate caching
capacities. On the other hand, as shown in Fig. 9, the
performance could degrade under excessive system-wide
workloads, and the performance gap between the optimal
and the heuristic expands. A similar trend is also observed
under the SE popularity distribution in Fig. 10, yet the
performance margin enjoyed by the optimal and heuristic
over the randomized alternative becomes less substantial,
which is consistent with our previous discussions.

5 CONCLUDING REMARKS

Despite a large variety of heuristics proposed in existing
peer-assisted on-demand streaming designs, there is a lack
of sound theoretical principles and analytical insights to
guide the design of two critical aspects: serving requests and
prefetching. In this paper, we construct a new theoretical
framework for peer-assisted on-demand streaming systems
based on queuing models. In particular, we characterize
demands with different levels of urgency through a priority
queuing analysis, which both qualitatively and quantita-
tively justifies how service quality and user experience can
be statistically guaranteed through service prioritization.
Based on a fine-grained stochastic supply-demand model
that we developed, we further investigate peer caching and
prefetching as a global optimization problem. Our study not
only provides insights in understanding the fundamental
characterization of the demand, but also offers guidelines
toward optimal prefetching and caching strategies in peer-
assisted on-demand streaming systems.

ACKNOWLEDGMENTS

The research was support in part by a grant from The

National Natural Science Foundation of China (NSFC) under
grant No. 61103176, by a grant from the NSFC under grant

No. 61133006, by a grant from the Independent Innovation
Research Fund of Huazhong University of Science and
Technology under grant No. 2011QN051. The authors would

like to thank the editor and anonymous reviewers of the
IEEE Transactions on Computers for their helpful comments

and suggestions in improving the quality of the paper.

REFERENCES

[1] Y. Huang, T. Fu, D. Chiu, J. Lui, and C. Huang, “Challenges,
Design and Analysis of a Large-Scale P2P-VoD System,” Proc.
ACM SIGCOMM, Aug. 2008.

[2] Y. Hall, P. Piemonte, and M. Weyant, “Joost: A Measurement
Study,” technical report, School of Computer Science, Carnegie-
Mellon Univ., May 2007.

[3] K. Suh, C. Diot, J. Kurose, L. Massoulie, C. Neumann, D. Towsley,
and M. Varvello, “Push-to-Peer Video-on-Demand System: De-
sign and Evaluation,” IEEE J. Selected Areas in Comm., vol. 25, no. 9,
pp. 1706-1716, Dec. 2007.

[4] C. Huang, J. Li, and K. Ross, “Can Internet Video-on-Demand Be
Profitable?” Proc. ACM SIGCOMM, Aug. 2007.

[5] Y. Boufkhad, F. Mathieu, F. de Montgolfier, D. Perino, and L.
Viennot, “Achievable Catalog Size in Peer-to-Peer Video-on-
Demand Systems,” Proc. Int’l Workshop Peer-to-Peer Systems,
Feb. 2008.

[6] N. Parvez, C. Williamson, A. Mahanti, and N. Carlsson, “Analysis
of Bittorrent-Like Protocols for On-Demand Stored Media
Streaming,” Proc. ACM SIGMETRICS Int’l Conf. Measurement and
Modeling of Computer Systems, June 2008.

[7] Y. Choe, D. Schuff, J. Dyaberi, and V. Pai, “Improving VoD
Server Efficiency with Bittorrent,” Proc. Int’l Conf. Multimedia,
Sept. 2007.

[8] L. Guo, S. Chen, and X. Zhang, “Design and Evaluation of a
Scalable and Reliable P2P Assisted Proxy for On-Demand
Streaming Media Delivery,” IEEE Trans. Knowledge and Data
Eng., vol. 18, no. 5, pp. 669-682, May 2006.

[9] W. Yiu, X. Jin, and S. Chan, “VMesh: Distributed Segment Storage
for Peer-to-Peer Interactive Video Streaming,” IEEE J. Selected
Areas in Comm., vol. 25, no. 9, pp. 1717-1731, Dec. 2007.

[10] Y. He, G. Shen, Y. Xiong, and L. Guan, “Optimal Prefetching
Scheme in P2P VoD Applications with Guided Seeks,” IEEE Trans.
Multimedia, vol. 11, no. 1, pp. 138-151, Jan. 2009.

[11] S. Tewari and L. Kleinrock, “Proportional Replication in Peer-to-
Peer Networks,” Proc. IEEE INFOCOM, Apr. 2006.

[12] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
Caching and Zipf-Like Distributions: Evidence and Implications,”
Proc. IEEE INFOCOM, Mar. 1999.

[13] M. Chesire, A. Wolman, G. Voelker, and H. Levy, “Measurement
and Analysis of a Streaming Media Workload,” Proc. Third
USENIX Symp. Internet Technologies and Systems, Mar. 2001.

360 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 2, FEBRUARY 2013

Fig. 9. System-wide relative segment retrieval latency versus the
increase of relative system-wide workload �2=ð"CpÞ, under a relative
peer cache size of B=V ¼ 10% and a Zipf popularity distribution of
segments.

Fig. 10. System-wide relative segment retrieval latency versus the
increase of relative system-wide workload �2=ð"CpÞ, under a relative
peer cache size of B=V ¼ 10% and stretched exponential distribution of
segment popularity.

Fig. 8. System-wide relative segment retrieval latency versus the
increase of relative peer cache size, under a heavy relative system-wide
workload of �2=ð"CpÞ ¼ 0:9 and a Zipf popularity distribution of
segments.

[14] L. Guo, E. Tan, S. Chen, Z. Xiao, and X. Zhang, “The Stretched
Exponential Distribution of Internet Media Access Patterns,”
Proc. ACM Symp. Principles of Distributed Computing (PODC ’08),
Aug. 2008.

[15] K. Sripanidkulchai, B. Maggs, and H. Zhang, “An Analysis of Live
Streaming Workloads on the Internet,” Proc. ACM SIGCOMM
Conf. Internet Measurement (IMC), Oct. 2004.

[16] G. Bolch, S. Greiner, H. de Meer, and K. Trivedi, Queueing
Networks and Markov Chains: Modeling and Performance Evaluation
with Computer Science Applications. Wiley-Interscience, 2006.

[17] X. Yang and G. de Veciana, “Service Capacity of Peer to Peer
Networks,” Proc. IEEE INFOCOM, Mar. 2004.

[18] W. Feng, M. Kowada, and K. Adachi, “Analysis of a Multi-Server
Queue with Two Priority Classes and (M, N)-Threshold Service
Schedule I: Non-Preemptive Priority,” Int’l Trans. Operational
Research, vol. 7, no. 6, pp. 653-671, 2000.

[19] Y. Jiang, C. Tham, and C. Ko, “An Approximation for Waiting
Time Tail Probabilities in Multi-Class Systems,” IEEE Comm.
Letters, vol. 5, no. 4, pp. 175-177, Apr. 2001.

[20] B. Walke, “Improved Bounds and an Approximation for a
Dynamic Priority Queue,” Proc. Third Int’l Symp. Measuring,
Modelling and Evaluating Computer Systems, Oct. 1977.

[21] C. Wu, B. Li, and S. Zhao, “Exploring Large-Scale Peer-to-Peer
Live Streaming Topologies,” ACM Trans. Multimedia Computing,
Comm. and Applications, vol. 4, no. 3, pp. 175-177, 2008.

[22] Z. Ge, D. Figueiredo, S. Jaiswal, J. Kurose, and D. Towsley,
“Modeling Peer-Peer File Sharing Systems,” Proc. IEEE INFO-
COM, Apr. 2003.

[23] D. Burman, “Insensitivity in Queueing Systems,” Advances in
Applied Probability, vol. 13, pp. 846-859, 1981.

[24] R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel, “Nonlinear
Integer Programming,” 50 Years of Integer Programming 1958-2008:
The Early Years and State-of-the-Art Surveys, Springer-Verlag, 2009.

[25] S. Schaible and J. Shi, “Fractional Programming: The Sum-of-
Ratios Case,” Optimization Methods and Software, vol. 18, no. 2,
pp. 219-229, 2003.

[26] D. Bersekas, Nonlinear Programming. Athena Scientific, 1999.
[27] B. Cheng, L. Stein, H. Jin, and Z. Zhang, “Towards Cinematic

Internet Video-on-Demand,” Proc. Third ACM SIGOPS/EuroSys
European Conf. Computer Systems, Apr. 2008.

[28] M. Mehyar, D. Spanos, J. Pongsajapan, S. Low, and R. Murray,
“Asynchronous Distributed Averaging on Communication Net-
works,” IEEE/ACM Trans. Networking, vol. 15, no. 3, pp. 512-520,
June 2007.

[29] L. Guo, E. Tan, S. Chen, Z. Xiao, and X. Zhang, “The Stretched
Exponential Distribution of Internet Media Access Patterns,” Proc.
ACM Symp. Principles of Distributed Computing (PODC), Aug. 2008.

Fangming Liu (S’08-M’11) received the BEngr
degree in 2005 from the Department of Compu-
ter Science and Technology, Tsinghua Univer-
sity, Beijing, China; and the PhD degree in
computer science and engineering from the
Hong Kong University of Science and Technol-
ogy in 2011. He is currently an associate
professor in the School of Computer Science
and Technology, Huazhong University of
Science and Technology, Wuhan, China. In

2007, he worked as a research assistant at the Department of Computer
Science and Engineering, Chinese University of Hong Kong. From
August 2009 to February 2010, he was a visiting student at the
Department of Electrical and Computer Engineering, University of
Toronto, Canada. Since 2010, he has also been collaborating with the
ChinaCache Content Delivery Network Research Institute in Tsinghua
University. His research interests are in the areas of peer-to-peer
networks, rich-media distribution, cloud computing, and large-scale
datacenter networking. He is a member of the IEEE and the IEEE
Communications Society, and a member of the ACM.

Bo Li (S’89-M’92-SM’99-F’11) received the
BEngr degree in computer science from Tsin-
ghua University, Beijing, and the PhD degree in
electrical and computer engineering from the
University of Massachusetts at Amherst. He is a
professor in the Department of Computer
Science and Engineering, Hong Kong University
of Science and Technology. He was with IBM
Networking System, Research Triangle Park,
between 1993 and 1996. He was an adjunct

researcher at Microsoft Research Asia (MSRA) from 1999 to 2006,
where he spent his sabbatical leave from 2003 to 2004. He has made
original contributions on Internet proxy placement, capacity provisioning
in wireless networks, routing in WDM optical networks, and Internet
video streaming. He is best known for a series of works on a system
called Coolstreaming (Google entries over 1,000,000 in 2008 and
Google scholar citations over 800), which attracted millions of down-
loads and was credited as the first large-scale Peer-to-Peer live video
streaming system in the world. His recent work on the peer-assisted
online hosting system, FS2You (2007-2009) (Google entries 800,000 in
2009) has also attracted millions of downloads worldwide. He has been
an editor or guest editor for 17 IEEE/ACM journals and magazines. He
was the co-TPC chair for IEEE Infocom ’04. He is a fellow of the IEEE.

Baochun Li (S’98-M’00-SM’05) received the
BEngr degree in 1995 from the Department of
Computer Science and Technology, Tsinghua
University, Beijing, China, and the MS and PhD
degrees in 1997 and 2000 from the Department
of Computer Science, University of Illinois at
Urbana-Champaign. Since 2000, he has been
with the Department of Electrical and Computer
Engineering at the University of Toronto, where
he is currently a professor. He has been holding

the Bell University Laboratories Endowed Chair in computer engineering
since August 2005. In 2000, he was the recipient of the IEEE
Communications Society Leonard G. Abraham Award in the Field of
Communications Systems. In 2009, he was the recipient of the
Multimedia Communications Best Paper Award from the IEEE Com-
munications Society. His research interests include large-scale multi-
media systems, peer-to-peer networks, applications of network coding,
and wireless networks. He is a senior member of the IEEE, and a
member of the ACM.

Hai Jin received the PhD degree in computer
engineering from Huazhong University of
Science and Technology (HUST), China, in
1994. He is a Cheung Kung Scholars chair
professor of computer science and engineering
at the Huazhong University of Science and
Technology. He is now the dean of the School
of Computer Science and Technology at HUST.
In 1996, he was awarded a German Academic
Exchange Service fellowship to visit the Techni-

cal University of Chemnitz in Germany. He worked at The University of
Hong Kong between 1998 and 2000, and as a visiting scholar at the
University of Southern California between 1999 and 2000. He was
awarded Excellent Youth Award from the National Science Foundation of
China in 2001. He is the chief scientist of ChinaGrid, the largest grid
computing project in China, and the chief scientist of National 973 Basic
Research Program Project of Virtualization Technology of Computing
System. He is the member of Grid Forum Steering Group (GFSG). He
has coauthored 15 books and published more than 400 research papers.
His research interests include computer architecture, virtualization
technology, cluster computing and grid computing, peer-to-peer comput-
ing, network storage, and network security. He is the steering committee
chair of International Conference on Grid and Pervasive Computing
(GPC), Asia-Pacific Services Computing Conference (APSCC), Interna-
tional Conference on Frontier of Computer Science and Technology
(FCST), and Annual ChinaGrid Conference. He is a member of the
steering committee of the IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid), the IFIP International Conference on
Network and Parallel Computing (NPC), and the International Con-
ference on Grid and Cooperative Computing (GCC), International
Conference on Autonomic and Trusted Computing (ATC), International
Conference on Ubiquitous Intelligence and Computing (UIC). He is a
senior member of the IEEE and a member of the ACM.

LIU ET AL.: PEER-ASSISTED ON-DEMAND STREAMING: CHARACTERIZING DEMANDS AND OPTIMIZING SUPPLIES 361

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

