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Abstract—Online hosting systems are designed to provide
versatile and convenient platforms for content hosting and
sharing, and have rapidly become a favorite among users over
the Internet. To guarantee adequate levels of service quality
while conserving prohibitive server costs, such systems are
designed to integrate peer bandwidth contributions with strategic
server resource provisioning in a complementary and transparent
manner.

Due to the large number of users in real-world online hosting
systems, it is not feasible to satisfy the resource requirements
of all users. This paper seeks to explore the design space of
new protocols to allocate scarce server resources—including both
storage space and bandwidth—in peer-assisted online hosting
systems. The focus is on the problem of resource allocation
with the presence of an increasingly large number of users
using bandwidth, and the ensuing larger number of files using
server storage space. The objective is to maximize the use of
limited server storage and bandwidth resources to guarantee
adequate levels of service quality, with respect to file availability
and downloading performance, while taking full advantage of
peer assistance. We identify a number of unique challenges
involved in such systems, and propose our design of resource
allocation protocols to address these challenges, based on both
mathematical analysis and practical implementations. Using real-
world data sets that we have collected, we evaluate our protocol
design through extensive experimental studies from different
perspectives, which demonstrate the effectiveness of our design
and offer a number of practical guidelines.

I. INTRODUCTION

Online hosting systems allow users to upload files of any

size using a web-based interface, and has gained remarkable

popularity over the Internet. In more traditional online hosting

systems, such as RapidShare, files are uploaded to dedicated

servers maintained by the service provider, to be shared among

a group of interested users. These services simply return a

URL that can be shared to other users (e.g., in discussion

forums), who can then download the file at a later time.

Due to the simplicity and versatility of its user interface,

this type of file sharing has rapidly become a favorite among

users, overtaking peer-to-peer (P2P) file sharing services of

the previous generation, such as BitTorrent.

The architectural and protocol design of online hosting sys-

tems needs to balance two extremes of the cost-performance

tradeoff. On one end of the spectrum, server-based solutions

such as content distribution networks (CDNs) can provide
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better reliability and service quality, yet they suffer from

prohibitive costs of server bandwidth and storage. Rapidshare,

one of the most well-known online hosting systems, deployed

a total of 1500 terabytes of online storage in its data centers

in Asia alone. Reportedly, their annual bandwidth cost hovers

around $15M – $20M. On the other end of the spectrum, P2P

file sharing protocols, such as BitTorrent, have shown good

scalability and robustness; however, they have no guarantees

on file availability, and the downloading performance can

become unsatisfactory, when files are not actively served by

peers alone.

To achieve a favorable spot of tradeoff between the two

extremes, online hosting systems have evolved towards a

seamless integration of peer assistance and server bandwidth

provisioning, in a complementary and transparent manner. In

such peer-assisted online hosting systems, a large number of

users will be sharing an even larger number of files, resulting

in an exorbitant volume of bandwidth being used at any given

time. In such a scenario, server resources—including both

storage space and bandwidth—are scarce and provided at a

premium. The critical challenge, which so far has not been

addressed in any other papers in the literature, is how such

scarce resources are to be allocated to the end users and their

files.

In this paper, we present Quota, our design and analysis of

a series of configurable server resource allocation protocols to

be practically used in peer-assisted online hosting systems.

In response to a number of unique challenges involved in

such systems, the design of Quota attempts to make the

best use of scarce server storage and bandwidth resources,

so that adequate levels of service quality can be guaranteed.

The quality of online hosting services is evaluated in term of

file availability and downloading performance. Rather than a

specific protocol, Quota seeks to explore the entire spectrum

of the design space, and proposes a framework with tunable

design knobs to offer flexibility to adapt to a wide range of

protocol design preferences. To evaluate the effectiveness of

Quota, we carry out extensive analytical and experimental

studies from various perspectives, based on real-world data

sets that we have collected from a peer-assisted online hosting

system operating live at a large scale.

The remainder of this paper is organized as follows. In

Sec. II, we discuss our contributions in the context of related

work. In Sec. III, we present the general architecture of peer-

assisted online hosting systems, along with a number of unique

challenges. Sec. IV presents our design and analysis of Quota,



including both storage and bandwidth allocation strategies.

Sec. V presents our extensive experimental studies to examine

various aspects of our design. Finally, we conclude the paper

in Sec. VI.

II. RELATED WORK

Traditional peer-to-peer (P2P) file sharing systems have re-

ceived significant research attention in the literature. Yang and

Veciana [1] use a branching process model to study the service

capacity of BitTorrent-like file sharing systems in the transient

regime, as well as a Markovian model for the steady-state

analysis. To overcome the computation problem in [1], Qiu

and Srikant [2] develop a deterministic fluid model to obtain

simple expressions for the average file download time in the

steady-state. B. Fan et al. [3] have analytically characterized

the tradeoff between performance and fairness in BitTorrent-

like protocols and derived relevant design implications. While

recognizing the significance of these prior efforts as well

as other modeling works on pure P2P environments for file

sharing (e.g., [4]–[6]), our work differs substantially from

them, as there exist important differences between P2P file

sharing and peer-assisted online hosting systems.

P2P file sharing systems do not use servers to store actual

file content, as all files are exchanged among users. As a

result, they have no guarantees on file availability, and files

being downloaded may become unavailable at any time when

all “seeds” (peers with a complete copy of the file) leave

the system. For example, by examining peer arrival rates and

downloading performance with traces from popular trackers of

BitTorrent, Guo et al. [7] have shown that file availability in

BitTorrent could deteriorate quickly due to the exponentially

decreasing peer arrival rate and the lack of seeds. Tian et

al. [8] observed through an analytical model that, the tit-

for-tat (TFT) mechanism used in BitTorrent cannot improve

file availability or prevent system-wide failures caused by the

sudden departure of a completed peer.

In contrast, peer-assisted online hosting systems couple

peer assistance and strategic server provisioning in a com-

plementary manner, in order to improve file availability and

downloading performance. Along such a direction, a relevant

work [9] has extended the model in [2] to discuss the mo-

tivation and effects of server participation in BitTorrent-like

P2P file sharing systems. However, their service models, as

well as most existing studies, are still restricted to the case

of a single file. Online hosting systems, in sharp contrast,

concurrently serve a large number of users, and a even larger

number of files uploaded by these users. More recently, based

on real-world traces, Wu et al. [10] have proposed an online

server capacity provisioning algorithm for multi-channel live

P2P streaming systems. In contrast, Quota is customized for

peer-assisted online hosting systems, with its own application

features and performance concerns.

There have been no prior work that devotes attention to the

protocol design space on dedicated online hosting servers to

allocate its premium and scarce resources among a large num-

ber of files. Quota proposes a unified and general framework

to explore the full spectrum of the protocol design space in

peer-assisted online hosting systems.

III. ONLINE HOSTING: ARCHITECTURE

In general, the architecture of peer-assisted online hosting

systems represents a seamless integration of the following two

fundamental components.

Peers. Each end user is treated as a peer, inheriting the

terminology of pure P2P systems. There are two types of

peers: those who upload content (files) to hosting servers

(referred to as uploading peers), and those who download only

(referred to as downloading peers). Group of peers participat-

ing in the distribution of each file cooperatively serve one

another depending on their available bandwidth and content.

Analogous to existing P2P systems such as BitTorrent, this can

be achieved through a set of P2P mechanisms, including peer

topology construction, data delivery, incentives, etc. Without

loss of generality, we encapsulate these mechanisms as peer

assistance, as they collectively seek to take advantage of peer

bandwidth contributions to mitigate server bandwidth costs.

Hosting servers. Servers are maintained by the service

provider, not only provide online storage for a huge volume

of files uploaded by peers, but also cooperate with content

distribution to maintain service quality of files when they are

not actively served by peers alone. In order to improve file

availability and downloading performance while conserving

prohibitive bandwidth and storage costs on servers, there are

two fundamental challenges associated with the server protocol

design:

� Very different from BitTorrent, the number of files, of

both large and small sizes, being concurrently shared in

peer-assisted online hosting systems is very large. How

can the service provider make better use of a limited pool

of server storage to selectively store contents that are as

valuable to users as possible?

� As such a large number of shared files are being served

with highly diverse popularity, how can the service

provider make better use of a limited amount of server

bandwidth to satisfy a potentially large number of re-

quests across these files?

IV. Quota: DESIGN AND ANALYSIS

In response to the above challenges, in this section we

propose our design of Quota, a framework for server resource

allocation protocols in peer-assisted online hosting systems.

Specifically, by mathematically analyzing the fundamental

problems behind server protocol design, we explore two sets

of server strategies in Quota: server storage and replacement

and server bandwidth allocation, with both theoretical insights

and practical guidelines for service providers and designers.

A. General Model and Performance Metrics

We first present our mathematical model based on [2],

[9] for peer-assisted online hosting systems, which allows us

to analyze different server strategies with respect to various

performance metrics. Different from previous modeling works



on pure P2P environments with single-file sharing, our model

takes into account both multiple files of different popularity

and sizes, and server involvement with scarce storage and

bandwidth resources, in order to capture the essential aspects

of practical peer-assisted online hosting systems.

Without loss of generality, suppose there are a total of M
concurrent files to be shared in a peer-assisted online hosting

system, represented as a set M = {1, 2, . . . ,M}. For any

file i ∈ M, relevant notations and assumptions in our system

model are summarized as follows:

xi(t): The number of peers who are downloading file i in

the system at time t. xi is the equilibrium value of xi(t).

yi(t): The number of peers who have finished downloading

file i but have not yet left the system at time t. yi is the

equilibrium value of yi(t).

λi: The arrival rate of new peers in file i. We assume that

peers arrive according to a Poisson process.

fi: The size of file i. Given a limited total server storage

capacity F provisioned by the service provider, the collection

of files F ⊆ M stored on the server shall satisfy
∑

i∈F fi ≤
F ≤

∑
i∈M fi.

Si: The server bandwidth assigned to file i. S =
∑

i∈F Si

is the total amount of server bandwidth provisioned by the

service provider.

μ: The uploading bandwidth of a given peer. We assume

that all peers have the same uploading bandwidth.

c: The downloading bandwidth of a given peer. We assume

that all peers have the same downloading bandwidth and c ≥
μ.

θi: The rate at which peers abort the download of file i.

γi: The rate at which peers who have finished downloading

file i leave the system.

ηi: The file sharing effectiveness of file i. According to [2],

[9], η is defined as the fraction of the upload capacity of peers

that is being utilized, with values in [0, 1].

We are primarily interested in several important perfor-

mance metrics that characterize “good” online hosting systems

from different perspectives. First, with a limited pool of server

storage for a potentially large number of files of diverse pop-

ularity and sizes, a service provider may intend to selectively

store a collection of files F that can attract and serve as

many users as possible. This can be simply represented by

the system-wide peer arrival rate λ =
∑

i∈F λi. Alternatively,

this also reflects the file availability achieved by a certain

design of server storage and replacement strategy. Second, a

service provider may also intend to maintain as high down-

loading performance as possible, in order to improve the user

experience. This is typically represented by the system-wide

average downloading rate d =
∑

i∈F xidi/
∑

i∈F xi, where di

denotes the average downloading rate of file i in steady state.

Its correlation with the server bandwidth allocation strategy

will be derived in Sec. IV-C. Third, combining the above

two factors gives the system-wide throughput in term of the

aggregate downloading rate D =
∑

i∈F xidi.

B. Server Storage and Replacement Strategies

Essentially, given a constrained server storage capacity F (≤∑
i∈M fi), a server storage and replacement strategy in Quota

determines which set of files F ⊆ M to be stored on the

server, when presented with a large number of files M with

diverse popularity and sizes. The problem can be formulated

as a classical 0-1 knapsack problem with respect to different

objective functions as follows.

To attract and serve the maximum number of users in term

of the system-wide peer arrival rate λ, we need to solve the

following optimization problem:

Maximize λ =
∑
i∈M

λiwi (1)

Subject to:
∑
i∈M

fiwi ≤ F,

wi ∈ {0, 1}, i ∈ M,

where wi ∈ {0, 1} denotes whether a file i ∈ M is selected to

be stored on the server (i.e., the target set F) or evicted from

the server due to the storage capacity constraint.

On the other hand, substituting the aggregate downloading

rate D for the objective function gives the following optimiza-

tion problem, which aims to store those files that can achieve

the maximum system-wide throughput. In particular, let Ti

denotes the average downloading time of file i in steady state,

then we have xidi = xi(fi/Ti) = λifi based on Little’s Law.

Maximize D =
∑
i∈M

xidiwi =
∑
i∈M

λifiwi (2)

Subject to:
∑
i∈M

fiwi ≤ F,

wi ∈ {0, 1}, i ∈ M.

Both of the above problems (1) and (2) are NP-

complete [11]. Though they can be solved using a dynamic

programming algorithm with a complexity of O(|M|F ) [11],

it is not efficient enough to be used in practical large-scale

systems. Furthermore, it is not suitable to be used for the

eviction or replacement operation on server storage, in face of

not only the dynamic evolution of user interests on currently

stored files, but also a continuous flow of newly uploaded files

from users.

To this end, in Quota, we design a simple framework

of server storage and replacement strategy as described in

Algorithm 1, which follows two principles as the following:

First, the strategy should be simple yet practical, in the sense

that simplicity and efficiency are more of a concern in real-

world system implementations and operations, even though at

a cost of acceptable sub-optimal solution. Hence, our strategy

adopts a simple greedy algorithm to approximately approach

the optimal solution with a complexity of O(|M|lg|M|).
Specifically, each file i is associated with a profit-to-weight

index Hi, wherein the profit is related to specific objectives

and the weight is related to the file size. Files are ranked

in descending order, by the profit-to-weight index Hi, and

those files with relatively higher ranks are preferentially stored



on the server. Alternatively, it can simply and efficiently

identify those files with lower ranks, and perform evictions or

replacements whenever necessary. Second, rather than solely

focusing on a particular aspect, our design unifies both of

the important aspects indicated by (1) and (2) into a general

framework Hi = λi(fi)
−k, with a tunable knob k ∈ [0, 1]

providing flexible design choices.

For instance, when k is customized to 0, it becomes

a unpopular-first-eviction strategy that ranks files merely

by their popularity (i.e., Hi = λi), and preferentially

evicts/replaces those with least user interests. Such an intu-

itive strategy essentially tends to maximize the system-wide

throughput as revealed by (2); and it is typically used in tradi-

tional server-based online hosting systems such as Rapidshare.

When k is customized to 1, it makes a balanced consideration

between file popularity and size (i.e., Hi = λi/fi), leading to

a strategy to approach the maximum system-wide peer arrival

rate (thus better system-wide file availability) as revealed

by (1). Its practical implication is to store large files only

if substantial user interests and popularity persist, in order to

avoid excessive use of server storage. By tuning k in between

0 and 1, Quota can implement various degree of throughput

and availability requirements.

Algorithm 1 A Framework of Server Storage and Replace-

ment Strategy in Quota

1: Monitoring a profit-to-weight index for each file, Hi, ∀i ∈
M, where k ∈ [0, 1] is a tunable parameter controlled by

the service provider:

Hi ← λi(fi)
−k.

2: Sorting files in decreasing order according to their profit-

to-weight indices.

3: Obeying a greedy strategy to determine which set of files

to be stored on or evicted from the server storage:

F ← Files with higher ranks are preferentially stored;

alternatively, files with lowest ranks are preferentially

evicted/replaced.

Remark: The above framework can be flexibly applied

in practical systems with regard to the following aspects.

First, to adapt to the evolution of user interests, Hi can

be dynamically updated; and file ranking can be performed

periodically in either a fine or coarse grained manner, under

the control of the service provider. Second, for the eviction

or replacement operation, a service provider can either start

from the files with lowest ranks until a certain volume of files

are evicted, or customize a threshold of Hi below which are

the candidate files for eviction∗. Third, as illustrated above,

different strategies can be implemented by adjusting k. We

will demonstrate that simple strategies in Quota can work well

in practice, with evidences from our extensive performance

∗In real-world online hosting services, the decision on server storage and
eviction may also be affected by the service agreement between the service
provider and users, e.g., whether it is offered free of charge or as a billable
service. In this paper, we do not include such specific details.

evaluation in Sec. V.

C. Server Bandwidth Allocation Strategies

As a potentially large number of files are being concurrently

shared in the system, it is essential to understand how to make

better use of limited server bandwidth resources to guarantee

adequate levels of downloading performance. Formally, given

a specific total amount of server bandwidth S, a server

bandwidth allocation strategy determines how to assign the

bandwidth to each file, Si, ∀i ∈ F , s.t.
∑

i∈F Si ≤ S, in

order to guarantee a desired level of system-wide average

downloading rate d.

Proposition 1: Given a certain server bandwidth allocation

strategy across files, Si, ∀i ∈ F , s.t.
∑

i∈F Si ≤ S, the

system-wide average downloading rate d in steady state can

be expressed as

d =
∑
i∈F

λifi

(∑
i∈F

λi(1 − Siνi

λiμηi

)

νi(1 + θi

νi

)

)−1

, (3)

where 1

νi

= 1

ηi

( fi

μ
− 1

γi

).
Proof: Based on [9], when the system is in steady state,

the number of peers who are downloading file i can be

expressed as follows:

When the downloading bandwidth is the constraint, i.e., if

cxi ≤ μ(ηixi + yi) + Si, we have

xi =
λi

θi + c
fi

yi =
λi

γi + γiθifi

c

. (4)

When the uploading bandwidth is the constraint, i.e., if

cxi ≥ μ(ηixi + yi) + Si, we have

xi =
λi

νi(1 + θi

νi

)
−

Si

μηi(1 + θi

νi

)

yi =
λi

γi(1 + θi

νi

)
−

Siθi

fiγiηi(1 + θi

νi

)
, (5)

where 1

νi

= 1

ηi

( fi

μ
− 1

γi

).
In accordance with most of the recent Internet access tech-

nologies and measurement studies on existing P2P systems [7],

we assume that c ≥ μ and peers will stay in the system only for

a short random period of time after completing the download.

Hence, the uploading bandwidth of peers in the system is

most likely the constraint and we shall focus on the case of

Eq. (5). Furthermore, to guarantee the corresponding condition

cxi ≥ μ(ηixi + yi) + Si, the amount of server bandwidth

provisioned to file i by the service provider shall satisfy:

Si ≤ λi

(
c−μηi

νi

− μ
γi

1 + θi

νi

+ c−μηi

μηi

+ θi

γiμηi

)
. (6)

To calculate the average downloading time Ti for peers

downloading file i in steady state, we can use Little’s Law

as:
λi − θixi

λi

xi = (λi − θixi)Ti. (7)



Using Eq. (5), we can obtain the average downloading time

of file i as:

Ti =
1

νi(1 + θi

νi

)
(1 −

Siνi

λiμηi

). (8)

Again, based on Little’s Law, the system-wide average

downloading rate in steady state can be derived as:

d =

∑
i∈F

xidi∑
i∈F

xi

=

∑
i∈F

xi(
fi

Ti

)∑
i∈F

λiTi

=

∑
i∈F

λifi∑
i∈F

λiTi

. (9)

Hence, through Eq. (8), d can be expressed as Eq. (3).

Furthermore, we assume that no peers would abort the

download (i.e., θ = 0), and no peers would stay in the

system after finishing downloading the file (i.e., γ → ∞), as

a conservative (pessimistic) approximation from the service

provider’s perspective. Then, Eq. (3) can be simplified to:

d =
∑
i∈F

λifi(
∑
i∈F

λifi

μηi

− R)−1, (10)

where R =
∑

i∈F ( Si

μηi

) is referred to as a critical factor

reflecting the system-wide server bandwidth provisioning rel-

ative to the peer uploading bandwidth contributions.

Meanwhile, the corresponding condition in Eq. (6) can be

simplified to:

Si ≤ (1 −
μηi

c
)λifi. (11)

Thus, the maximum amount of server bandwidth that can be

assigned to file i is Smaxi = (1 − μηi/c)λifi.

Both Eq. (3) and Eq. (10) indicate that server involvement

can help improve the downloading performance compared to

a pure P2P system; however, the challenge is how to design a

near-optimal allocation strategy, that is simple enough to be

implemented in practical systems. To this end, we start from

investigating the optimal server bandwidth allocation across

files to achieve the upper bound of the system-wide average

downloading rate.

Theorem 1: Given a limited amount of server bandwidth

resource S and the condition in Eq. (11), the upper bound of

the system-wide average downloading rate can be achieved:

dmax =

∑
i∈F

λifi

∑
i∈F

λifi

μηi

−
z−1∑
i=1

Smaxi

μηi

− 1

μηz

(S −
z−1∑
i=1

Smaxi)

, (12)

by a greedy algorithm with the optimal server bandwidth

allocation as below:

Si =

⎧⎨
⎩

Smaxi, for i = 1, . . . , z − 1;

0, for i = z + 1, . . . , |F|;

S −
∑z−1

j=1
Smaxj , for i = z,

(13)

where files are sorted as 1

μη1

≥ 1

μη2

≥ . . . ≥ 1

μη|F|
without

loss of generality, and z = min{j :
∑j

i=1
Smaxi > S}.

Proof: Observed from Eq. (10), to maximize the system-

wide average downloading rate d, we need to minimize the

term of
∑

i∈F (λifi

μηi

) − R, which in turn is equivalent to

maximize the critical factor R =
∑

i∈F ( Si

μηi

). Hence, the

problem can be transform into the following optimization

problem, which is essentially a classical continuous knapsack

problem with bounded variables.

Maximize R =
∑
i∈F

(
1

μηi

)Si (14)

Subject to:
∑
i∈F

wiSi ≤ S,

Si ≤ Smaxi = (1 −
μηi

c
)λifi, i ∈ F ,

where wi = 1, ∀i ∈ F , in this problem. The optimal

solution of Eq. (14) can be obtained by a greedy algorithm

as follows [12], [13]: sort files in non-increasing order of the

ratio ( 1

μηi

)/wi = 1

μηi

, so that 1

μη1

≥ 1

μη2

≥ . . . ≥ 1

μη|F|
. Then,

we can use the critical index z = min{j :
∑j

i=1
Smaxi > S}

to obtain the optimal server bandwidth allocation expressed as

Eq. (13), and the maximum value of the critical factor R:

Rmax =

z−1∑
i=1

Smaxi

μηi

+
1

μηz

(S −

z−1∑
i=1

Smaxi). (15)

Then, combining Eq. (10) and Eq. (15) gives the maximum

system-wide average downloading rate dmax expressed as

Eq. (12).

Remark: Theorem 1 with Eq. (12) and Eq. (13) provides

a benchmark for the design of server bandwidth allocation

strategy and performance evaluation. However, such an op-

timal strategy is hard to be implemented in reality due to

the following reasons: First, it is hard to exactly capture ηi,

∀i ∈ F , in real-world systems. Second, it is infeasible to

directly use Smaxi for bandwidth allocation, as it is hard to

proactively determine Smaxi without sufficient knowledge on

ηi, μ, c in realistic scenarios.

However, being aware of an intuitive relationship ηi ∼ λi

as pointed in [2], Theorem 1 still conveys important design

guidelines for the service provider. The optimal strategy in

Eq. (13) implies to allocate as much as possible of the

bandwidth resource to less popular files with lower file sharing

effectiveness ηi, while allowing popular files with higher ηi

to largely rely on peer assistance rather than server. Based

on this, we design a simple framework of server bandwidth

allocation strategy with file popularity awareness, as described

in Algorithm 2. Specifically, each file is associated with a pri-

ority index Pi, ∀i ∈ F , which is inversely proportional to file

popularity represented by λi, with a tunable knob l controlled

by the service provider. Then, according to a relative weighting

Wi normalized among Pi, i.e., Wi = Pi/
∑

i∈F Pi, server

bandwidth is proactively allocated as Si = WiS, ∀i ∈ F .

Implicitly, if Si cannot be fully consumed by certain files due

to the downloading bandwidth constraint (i.e., Si > Smaxi),

the residual server bandwidth will be uniformly consumed by

the requests from other files.

By tuning the knob l, Quota provides a wide design

spectrum for the service provider. For example, when l is



customized to −1, it becomes a request-driven strategy with

Pi = λi and Si = Sλi/λ, where popular files with more

requests from peers are provisioned with more server band-

width resource. Such an intuitive strategy is typically used

in traditional server-based systems without peer assistance.

When l is customized to 0, it becomes a water-leveling strategy

with Pi = 1 and Si = S/|F|, where the server bandwidth is

equally allocated across all the files. Compared to the request-

driven strategy, such a strategy shifts a considerable portion

of server bandwidth occupied by popular files to support less

popular files, while allowing popular files to rely more on

peer assistance. As we further increase l → ∞, Quota can

also mimic the optimal strategy in Theorem 1 by primarily

satisfying less popular files (while peer assistance is pervasive

for popular files), so as to approach the optimal system-wide

average downloading rate.

Algorithm 2 A Framework of Server Bandwidth Allocation

Strategy in Quota

1: Monitoring a priority index for each file, Pi, ∀i ∈ F ,

where l is a tunable parameter controlled by the service

provider:

Pi ← λi
−l.

2: Compute the relative weighting for each file, Wi, ∀i ∈ F ,

and allocate server bandwidth:

Wi ← Pi/
∑
i∈F

Pi, Si ← WiS.

3: Server bandwidth usage of each file i ∈ F :

min{Smaxi,max{S −
∑

j∈F,j �=i

Sj , Si}}.

Remark: Our strategy framework can be easily applied in

practical systems. First, Pi can be periodically updated to

adapt to the evolution of user interests, wherein file popularity

can be captured by recording the file request count over a

certain period. Second, Quota does not require the computation

of Smaxi, as such a bound is implicitly satisfied once the

downloading bandwidth constraint is meet. Third, as illustrated

above, different strategies with various degree of file popu-

larity awareness (implying peer assistance awareness) can be

implemented by adjusting l. We will evaluate these strategies

in Quota from various perspectives in Sec. V, and compare

them with the benchmark provided by Theorem 1.

V. PERFORMANCE EVALUATION

In this section, we carry out a series of numerical exper-

iments using real-world data sets to evaluate our design of

Quota from different perspectives.

A. Real-world Traces

To make our evaluation practical and comprehensive, we use

a real-world data set extracted from our measurement trace of

a large-scale peer-assisted online hosting system, FS2You [14],

which is actively used in China at the time of this writing. The

data set contains 87, 848 distinct files (corresponding to 15.5
TB) with diverse popularity and sizes.

For each file, we focus on the following statistics on a

representative day: (1) File size. We record the size of each

file which has received at least one request within the day.

(2) Peer arrival rate. This is alternatively represented by the

number of requests for each file within the day. By treating

the peer arrival rate of the most popular file as 1, the peer

arrival rates of other files are normalized by dividing the

number of requests of each file by the number of requests

of the most popular file. Though such a measure may not

exactly capture the peer arrival rate, it can indeed reflect the

relative popularity of each file. (3) File sharing effectiveness.

We record the average uploading rate contributed by peers for

each file within the day. According to the analysis in [2], the

file sharing effectiveness is close to 1 when the file is popular

enough. Hence, we treat the maximum value of this measure

over all the files as an estimate of peers’ upload capacity.

Then, the file sharing effectiveness of each file can be roughly

captured by dividing their respective average uploading rates

by the estimated peers’ upload capacity.

Note that these statistics reflect the inherent file character-

istics and general user interests, which are independent of the

detailed implementation of the hosting system.

To emulate different application scenarios, we further distill

three representative file sets based on the above statistics, as

summarized in Table I: (1) The random file set containing

1000 files that are randomly sampled from our data set. (2)

The popular file set containing 1000 files that are randomly

sampled from the top 5000 popular files in our data set. (3) The

small file set containing 1000 files that are randomly sampled

from those files with sizes below 100 MB (< the mean over

our data set).

Most of our numerical experiments are based on the random

file set, as it represents the generic scenario. Meanwhile, we

also use the popular file set and small file set to obtain

complementary insights, and exercise our design of server

strategies to the extent possible.

TABLE I
STATISTICS OF THREE REPRESENTATIVE FILE SETS.

File Set
Average file Average peer Average file sharing
size (MB) arrival rate effectiveness

Random 209.6 0.023 0.851

Popular 204.7 0.049 0.925

Small 39.7 0.028 0.841

B. Evaluation of Server Storage and Replacement Strategies

1) Flexible Choices of Design Knob k: As indicated in

Sec. IV-B, the design knob k of our server storage and re-

placement strategy framework provides flexible design choices

for the service provider. Here we quantitatively demonstrate

how k can be customized by the service provider with regard

to various degree of file availability and system-wide through-

put. Specifically, we use the ratio of
∑

i∈F λi/
∑

i∈M λi to

represent file availability, as it gives an intuitive view on the

percentage of file requests that can be served. We use the

random file set as M, and server storage capacity F is limited



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.8

0.82

0.84

0.86

0.88

0.9

0.92
Fi

le
 a

va
ila

bi
lit

y

k
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2.6

2.7

2.8

2.9

3

3.1

3.2

S
ys

te
m

 th
ro

ug
hp

ut
 (G

B
/s

ec
on

d)

File availability

System throughput

Fig. 1. File availability and system-wide
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Fig. 3. System-wide throughput vs. server
storage capacity F , under different settings of the
design knob k of server storage and replacement
strategy.

to 100 GB, which is half of the total size of the file set. Further

discussion under different settings of server storage capacity

will be presented in the next subsection.

Fig. 1 depicts file availability and system-wide throughput

as functions of k. The curve corresponding to file availability

first increases dramatically when k < 0.4, and then slows

down when k > 0.4. When k = 1, the peak value of

file availability, 91.4%, is reached, after which the curve

slightly decreases. The curve corresponding to system-wide

throughput goes down almost linearly as k increases. When

k > 1, system-wide throughput decreases more slowly.

The peak value of system-wide throughput is reached when

k = 0, which is consistent with our discussion in Sec. IV-B.

Combining the trends of the two curves, we find that both

file availability and system-wide throughput stay at a high

level when k varies between 0.3 and 0.5, which shows an

opportunity to design a strategy that can achieve both high

file availability and system-wide throughput.

Based on our discussion in Sec. IV-B and the above observa-

tions, apparently k = 0 and k = 1 are two interesting extreme

cases that are worthy of further investigation. Besides, from

the perspective of service provider, a strategy to achieve both

high file availability and system-wide throughput is even more

desired. Hence, the strategy with k = 0.4 is also chosen for

further discussion in the following subsections. In addition, we

also consider the case of k = 2, which though leads to poor

system-wide throughput, will further reveal some surprising

results in Sec. V-B3.

2) File Availability and System Throughput: We further

compare the strategies with different choices of k that are

identified previously (i.e., k = 0, 0.4, 1 and 2), by plotting file

availability and system-wide throughput when server storage

capacity varies in Fig. 2 and Fig. 3, respectively.

From Fig. 2, we have made the following observations.

(1) Despite the choice of k, file availability first increases

dramatically when server storage capacity is less than 50
GB and then slows down as server storage capacity further

increases. Specifically, when server storage capacity is 40
GB (i.e., only 20% of the total size of random file set

in our experiment), the strategy with k = 1 can already

achieve file availability of nearly 80% while the strategy with

k = 0 can achieve file availability of 60%. This gives service

providers very useful implications when they are determining

appropriate server storage capacity: it is feasible to use a

relatively smaller server storage capacity to satisfy most of

the user interests; furthermore, using our strategy framework

with fine-tuned k, the efficacy can be further improved. When

server storage capacity is larger than 200 GB (i.e., the server

can host all the files of random file set in our experiment), file

availability reaches 100% for all the four strategies. (2) The

gaps between different strategies first expand and then shrink

when server storage capacity is larger than 50 GB. Specifically,

the gaps between the strategies with k = 0.4, k = 2, and

the strategy with k = 1 are very small. When server storage

capacity is larger than 100 GB (i.e., 50% of the total size of

random file set in our experiment), their curves are very close.

This implies that, in addition to k = 1, k = 0.4 and k = 2 are

also two practical choices to gain high file availability.

Similar curves are observed for system-wide throughput

from Fig. 3. As server storage capacity increases, system-

wide throughput grows for all the four strategies. Consistent

with our previous discussion, the strategy with k = 0 outper-

forms the other three strategies. However, the performance

gaps between these strategies shown in Fig. 3 are not as

significant as that in Fig. 2. Similar to the observations on file

availability, the strategy with k = 0.4 achieves high system-

wide throughput close to that of the strategy with k = 0. This

observation again strengthens the argument that k = 0.4 is

practical for server storage and replacement strategy to achieve

both high file availability and system-wide throughput.

3) Downloading Performance: Finally, we examine the

system-wide average downloading rate under different server

storage and replacement strategies. In this experiment, the

amount of server bandwidth is set to 1 GB/second, which is

moderate enough for the system-wide average downloading

rate to vary significantly as server storage capacity increases.

In addition, we use the optimal server bandwidth allocation

strategy derived in Theorem 1 (Sec. IV-C), as it can make

the performance gapes between different server storage and

replacement strategies more profound. The uploading and

downloading bandwidth of peers are set as μ = 512 Kbps

and c = 1024 Kbps, respectively.

From Fig. 4, we have made the following observations. (1)

For all the four strategies, the system-wide average download-
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Fig. 5. System-wide average downloading rate
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server bandwidth allocation strategy.
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Fig. 6. Percentage of satisfied peers vs. the
amount of server bandwidth resource S, under
random file set and different settings of the design
knob l of server bandwidth allocation strategy.

ing rate declines as server storage capacity increases. The

reasons are two-folded. First, despite the setting of k, the

strategies in Quota inherently tend to host popular files first.

As a result, when server storage capacity increases, though

more files can be hosted, such “later arrivals” are relatively

less popular with lower file sharing effectiveness, which leads

to lower system-wide uploading contributions from peers.

Second, since the amount of server bandwidth is limited, the

increase of number of hosted files and peers in the system

along with the increase of server storage capacity, will make

the server bandwidth obtained by each peer become less. (2)

The system-wide average downloading rate increases as k
increases, which is surprising at the first glance. Recall that

in previous subsection, the strategy with k = 2 performs the

worst in term of system-wide throughput, while it is near-

optimal in term of file availability. Intuitively, the system-

wide average downloading rate would be proportional to the

system-wide throughput, rather than file availability. However,

our result here demonstrates that such an intuition is not

true. The rationale is that, the strategies with larger values

of k tend to host files of smaller sizes, which leads to

shorter downloading time and thus smaller number of peers in

the system in steady state. Hence, with fewer peers staying

in the system, such strategies can achieve higher system-

wide average downloading rate despite the lower system-wide

throughput.

C. Evaluation of Server Bandwidth Allocation Strategies

1) Flexible Choices of Design Knob l: As discussed in

Sec. IV-C, our design framework of server bandwidth allo-

cation strategy also provides flexible choices for the service

provider. We first identify some representative settings of the

design knob l to cover a wide design spectrum. Apparently,

two of the most interesting choices are l = −1 and l = 0,

which correspond to the request-driven strategy and water-

leveling strategy, respectively. In addition, we also consider

the case of l = −0.5, which lies in between the above two

strategies. Furthermore, as discussed in Sec. IV-C, Quota,

with l → ∞, can mimic the optimal strategy derived in

Theorem 1. Along this direction, we choose l = 4, which will

be demonstrated to be able to achieve a near-optimal strategy.

All the above strategies will be compared with the optimal

one from different perspectives in the following.

2) Downloading Performance: First, we examine the

system-wide average downloading rate under different server

bandwidth allocation strategies that we identified above. We

use the random file set to obtain more generic insights, and

further discussion under the popular and small file sets will be

presented later. Here we assume that all the files in the file set

are hosted on the server, so as to focus on server bandwidth

allocation strategies.

Fig. 5 depicts the system-wide average downloading rate as

a function of the amount of server bandwidth, under different

settings of l. In general, the system-wide average downloading

rate rises as the amount of server bandwidth and l increase.

The rationale is that as l increases, the strategies in Quota

are tuned to allocate larger portion of server bandwidth to

unpopular files, which is more efficient to enhance system-

wide average downloading rate according to our theoretical

analysis in Sec. IV-C. The performance gaps between different

strategies can be remarkably large. For example, the download-

ing performance under the strategy with l = 4 outperforms

that of the strategy with l = −1 by 90 KB/second, when the

amount of server bandwidth is 2 GB/second. This evidences

that, the design of server bandwidth allocation strategy plays

an important role in practical peer-assisted online hosting

systems; and a fine-tuned strategy can be very efficient in

improving system performance. We also find that our strategy

framework is successful to mimic the optimal strategy which

is hard to implement in reality, when l is customized to 4 and

the amount of server bandwidth is above 0.5 GB/second.

Another interesting phenomenon is that, despite the setting

of l, all the curves except the optimal one follow the same

pattern. As the amount of server bandwidth increases, the

system-wide average downloading rate first increases slowly

and then jumps up rapidly. When the downloading perfor-

mance is close to optimal, the growth of the curves slows

down again; and then downloading performance increases

linearly until reaching the downloading bandwidth constraint

of peers. As l increases, the amount of server bandwidth
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under which the significant jump of downloading performance

occurs, is getting smaller. There are two extreme cases: (1)

Under the optimal strategy, the downloading performance

jumps up immediately when server bandwidth is injected into

the system. (2) Under the strategy with l = −1 (i.e., request-

driven strategy), the jump of downloading performance only

occurs when the amount of server bandwidth is close to

the maximum volume that the system can consume (i.e., the

downloading bandwidth constraint of peers).

To explain the above phenomenon, we take a closer look at a

single file. Based on Eq. (8), the average downloading rate of

file i in steady state is di = fi/Ti = λifiηiμ/(λifi − Si),
where di can be treated as a function of Si. Hence, the

derivative of di is d′i = λifiηiμ/(λifi − Si)
2, which stands

for the changing velocity of di as Si increases. We find that

d′i is an increasing function of Si, which implies that as Si

increases, the growth of di will accelerate and finally jump up

rapidly. Intuitively, di is improved with more server bandwidth

provisioned, leading to shorter downloading time and thus

fewer peers staying in the system in steady state. This in turn

allows each peer to obtain more server bandwidth to enhance

its downloading performance.

Furthermore, given a limited amount of server bandwidth,

d′i has a bounded range of [ ηiμ
λifi

, c2

λifiηiμ
]. As ηi ∼ λi, the

differences in the lower bound of d′
i among different files

are not significant. In contrast, the upper bound of d′
i varies

significantly depending on file popularity. For example, the

upper bound of d′i for a unpopular file with λi = 0.1 and

ηi = 0.5 is twenty times of that for a popular file with

λj = 1, ηj = 1, and the same file size. Hence, when the

same amount of server bandwidth is allocated to popular

files and unpopular files, respectively, the latter obtained more

improvement in downloading performance than the former.

Following this principle, as l increases, our strategy framework

tends to allocate more server bandwidth to unpopular files, and

hence the system-wide average downloading rate can jump up

“earlier” with relatively lower server bandwidth cost.

3) User Satisfaction Level: From the perspective of the

service provider, in addition to the objective of maximizing

the downloading performance of the entire system, another

important concern is to guarantee that as many users as

possible can enjoy a promised level of service quality. To

this end, we use the measure of the percentage of satisfied

peers, to evaluate the system-wide satisfaction level. This is

quantified as the percentage of peers whose downloading rates

exceed a given threshold over all the peers staying in the

system. Note that in our experiment, the maximum average

downloading rate of peers without the supplement of server

bandwidth is μ, the uploading bandwidth of a peer. Based on

this, we use 1.2μ as a promised downloading rate (also referred

to as the threshold), which though is unreachable by pure P2P,

can be achieved with server bandwidth provisioning. In the

following, we will compare the system-wide satisfaction level

under different server bandwidth allocation strategies, using

the three file sets described in Sec. V-A.

Fig. 6 plots the percentage of satisfied peers based on the

random file set. We have made the following observations.

(1) The system-wide satisfaction level of the strategy with

l = 4 is close to that of the optimal strategy, which goes

up almost linearly. (2) Roughly speaking, the system-wide

satisfaction level rises as l increases. However, the strategies

with l = 0 and l = −0.5 outperform the optimal one when

server bandwidth is sufficient. The strategy with l = −1
always performs worse compared to other strategies. (3) When

l is small (e.g., l = −1,−0.5, 0), the percentage of satisfied

peers increases at first slowly and then dramatically as the

amount of server bandwidth increases. The pattern is very

similar to that of the system-wide average downloading rate

observed in previous subsection. This implies that unpopular

files are the major cause resulting in low percentage of satisfied

peers under these strategies.

We also run the experiment under the other two file sets

to obtain complementary insights. Fig. 7 plots the percentage

of satisfied peers based on popular file set. Since the similar

pattern is observed for the small file set, we omit its figure

here. The pattern is totally different from that of Fig. 6. In

Fig. 7, we find that the percentage of satisfied peers increases

as l decreases. When l is small (e.g., l = −1), the percentage of

satisfied peers increases fast as the amount of server bandwidth

increases. The strategy with l = −1 can even outperform



the optimal one by nearly 30% when the amount of server

bandwidth is 3.6 GB/second. The rationale is that, all the files

in the popular file set have high peer arrival rates and file

sharing effectiveness. Leaving their file sizes out of account,

these files require less and similar amount of server bandwidth

to achieve the promised service quality. In such a scenario, the

strategies with more emphasis on less popular files (e.g., l = 4)

dedicate too much sever bandwidth to those less popular files

even if they’ve already achieved the promised downloading

performance. In contrast, the strategies that tend to equally

allocate server bandwidth across all the peers is more efficient

to enhance system-wide satisfaction level under this scenario.

Combining the above discussion gives practical guidelines

for the service provider: when the files hosted in the system

have highly diverse popularity, a strategy which aims to

enhance the system-wide average downloading rate is more

efficient in improving the system-wide user satisfaction level.

Otherwise, a strategy which treats each request fairly can

perform better in guaranteeing a promised service quality.

4) Service Quality Differentiation: Finally, it is also essen-

tial to consider the differences in service quality across peers

involved in files of different popularity. We use the standard

deviation to quantify the service quality differentiation as

σ =
√∑

i∈F xi(di − d)2/
∑

i∈F xi. Fig. 8 depicts the service

quality differentiation as a function of the amount of server

bandwidth and l, under the random file set. We observed

that: (1) In general, despite the setting of l, service quality

differentiation grows at first and then falls down, as the amount

of server bandwidth increases. The optimal strategy shows a

different phenomenon compared to others. Its resulting service

quality differentiation falls down when server bandwidth starts

to be injected into the system. The rationale is that this strategy

allocates as much as possible of server bandwidth to unpopular

files, which improves the average downloading rates of these

files and thus reduces the number of peers involved in them in

steady state. This results in the reduction of weights of these

files in the computation of σ. (2) The strategies with small l
(e.g., l = −1,−0.5, 0) result in more profound service quality

differentiation compared to the optimal one, due to their less

supplement to unpopular files.

Again, we also run the experiment under the other two

file sets to obtain complementary insights. Fig. 9 depicts the

service quality differentiation as a function of the amount

of server bandwidth, under the popular file set. Since we

observed the similar pattern for the small file set, we omit its

figure here. Fig. 9 shows completely different results compared

to the random file set. For the random file set, the service

quality differentiation is 25 when there is no server bandwidth

provisioned; while that of the popular file set and the small

file set is 11.4 and 16.5, respectively. Consistent with the

discussion in previous subsection, the files in the popular file

set have similar characteristics, and so does the small file set.

Hence, a strategy which tends to serve each file and peer fairly

performs better. For example, under the popular file set, the

strategies with small l (e.g., l = −1,−0.5, 0) perform similarly

and better than the other two.

In summary, our strategy framework can practically work

well in various scenarios, with flexible design choices for the

service provider. The strategies with large l (e.g., l = 4) are

successful in approaching the optimal strategy to achieve high

system-wide downloading performance, which are suitable

in scenarios where files have highly diverse popularity. On

the other hand, for those scenarios where files have similar

characteristics, small l (e.g., l = 0) would be a good choice

to keep low differences in service quality across the files.

VI. CONCLUSIONS

In response to a number of unique challenges involved when

a large number of files share scarce server resources in peer-

assisted online hosting systems, this paper proposes Quota,

which explores the design space of new protocols to allocate

server resources. Based on both mathematical analysis and

practical concerns, Quota seeks to make better use of limited

server storage and bandwidth resources to guarantee adequate

levels of service quality, in terms of both file availability

and downloading performance. Through extensive experimen-

tal studies using real-world data sets that we collected, we

demonstrate the applicability and flexibility of Quota. With

fine-tuned design knobs controlled by the service provider,

Quota can achieve both high file availability and system

throughput with a relatively smaller server storage capacity,

and the server bandwidth allocation strategy can potentially

approach the optimal system-wide downloading performance.

Last but not the least, our results in Quota have also revealed

practical implications with respect to the user satisfaction level

and service quality differentiation.
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