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Abstract—Federated learning is widely accepted as a privacy-
preserving paradigm for training a shared global model across
multiple client devices in a collaborative fashion. However, in
practice, the significantly limited computational power on client
devices has been a major barrier when we wish to train large
models with potentially hundreds of millions of parameters. In
this paper, we propose a new architecture, referred to as INFO-
COMM, that incorporates locally supervised learning in federated
learning. With locally supervised learning, the disadvantages of
split learning can be avoided by using a more flexible way to
offload training from resource constrained clients to a more
capable server. INFOCOMM enables parallel training of different
modules of the neural network in both the server and clients in a
gradient-isolated fashion. The efficacy in reducing both training
time and communication time is supported by our theoretical
analysis and empirical results. In the scenario involving larger
models and fewer available local data, INFOCOMM has been
observed to reduce the elapsed time per round by over 37%
without sacrificing accuracy compared to both conventional
federated learning or directly combining federated learning and
split learning, which showcases the advantages of INFOCOMM
under power-constrained IoT scenarios.

Index Terms—Federated learning, locally supervised learning,
split learning, large models, resource-constrained IoT devices

I. INTRODUCTION

As ubiquitous Internet of Things (IoT) devices allow for
the tremendous and continuous growth of data at the network
edge, it becomes very appealing to integrate federated learning
(FL) to utilize such data, while preserving data privacy and
avoiding the transfer of large amounts of data [1]. As an
emerging distributed learning paradigm, federated learning is a
well-explored practice of performing machine learning model
training on decentralized client devices without offloading data
to centralized servers [2], [3].

Despite the privacy advantages of federated learning over
centralized machine learning mechanisms, the integration of
federated learning and edge computing is not as practical as
many anticipated, due to extremely limited amounts of com-
putational resources available on IoT devices [4]. Recent work
has made significant strides towards mitigating this issue, by
developing new weighted global aggregation mechanisms [5],
new device sampling mechanisms [6], or by updating the
global model asynchronously [7], [8]. These approaches at-
tempted to avoid slow devices with limited computational
resources, as low-quality updates from these slow devices may
affect global convergence negatively. However, by restricting
the participation of slow devices, such approaches also limit

the utilization of data on a diverse range of IoT devices, and
may result in wasted communication and computation efforts
on these devices if they are excluded from participation.

Furthermore, the scarcity of computational power becomes
more pronounced in IoT devices equipped with CPUs when
compared to cloud servers that typically have multiple GPUs.
An IoT device may even fail to accommodate a large neural
network with the associated memory footprint during training,
let alone training a model within an expected amount of
time that can contribute local updates for the global model’s
convergence. Consequently, it becomes unrealistic to expect
edge clients, with their limited computational capabilities, to
handle all the intensive training work, while the more powerful
server merely focuses on model aggregation in federated
learning. Thus, a more equitable approach is required, with
the hope of distributing the training workload to leverage the
limited resources of edge clients and the abundant resources
of the server.

As a promising way to tackle this issue, an intuitive idea
is to split the full learning model into two modules and allow
the client to train the first smaller module based on local data,
while leaving the training of the second module to the server.
Split learning [9] utilized this approach to perform distributed
deep learning without sharing raw data. Further, SplitFed [10]
combined the strengths of both federated learning and split
learning so that multiple clients can engage with the server
in parallel in resource-constrained environments. SplitFed in-
volved separate training at both clients and the server, as
well as model aggregation at the server. However, these
mechanisms can incur significant delay and communication
overhead compared to conventional federated learning. As
clients must forward intermediate outputs (i.e., features) at the
cut layer to the server, and then wait for the server to send
its gradients back to the clients, an excessive amount of extra
communication becomes unavoidable.

In this paper, we propose a novel architecture, referred to as
INFOCOMM1, that makes federated learning more applicable
at resource-constrained client devices, and provides a more
balanced approach to training machine learning models on
these client devices. To leverage the benefits of model split-
ting without adding communication overhead and delays like
SplitFed, INFOCOMM allows for more independent training

1INFOCOMM involves the integration of InfoPro [11] for independent
training in federated learning while minimizing the communication overhead
introduced compared to split learning.
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of clients and the server using separated models. It involves
generating backpropagation signals within each module of the
neural network, rather than passing them through the entire
neural network via a global loss.

More specifically, we incorporate a state-of-the-art locally
supervised learning mechanism, called InfoPro [11], which
allows clients to perform module training via locally generated
losses without receiving gradients from the server for further
backward passes. Such locally generated loss is critical for
independent module training, enabling the learning of interme-
diate features that benefit both the local module at the clients
and the latter module at the server. With this approach, the
training workload can be offloaded from resource-constrained
client devices to the server with more computational power in
a highly independent manner, avoiding extra communication
between clients and the server for network backpropagation,
while ensuring the convergence of the global model.

Combining federated learning and locally supervised learn-
ing offers another key advantage: training at the server and
clients is separate and can be concurrently executed, as
the server can keep training upon receiving features from
clients while clients perform a new round of local training.
In INFOCOMM, we propose a unique feature aggregation
algorithm specifically tailored for our architecture, which is
not applicable to SplitFed. This algorithm allows the server to
have access to a larger dataset and provides greater flexibility
in training its module.

By utilizing model splitting and InfoPro loss, INFOCOMM
addresses the computational power deficiency of IoT devices
in conventional federated learning. With reduced costs of
communication, INFOCOMM is more efficient than both con-
ventional federated learning and SplitFed, which we show
using both theoretical analysis and empirical results. We
compare INFOCOMM with federated learning algorithms such
as Federated Averaging (FedAvg) [3], Stochastic Controlled
Averaging (SCAFFOLD) [12], and federated split learning
(SplitFed) [10]. Our extensive experimental results in var-
ious scenarios with different datasets and neural networks
demonstrate that our approach can significantly improve the
speed of convergence, especially for the cases of non-IID data
distribution, or small clients with fewer data samples. The
advantage of INFOCOMM in terms of reducing both training
time and communication time is more prominent when training
with large models and limited amount of local data. In certain
scenarios, INFOCOMM can achieve time savings of 28%, 54%,
and 37% compared to FedAvg, SCAFFOLD, and SplitFed,
respectively. When comparing the test accuracy of the global
model at the point where INFOCOMM already converges, it can
outperform FedAvg and SplitFed by achieving approximately
6.5× and 1.2× higher accuracy, respectively.

II. PRELIMINARIES AND MOTIVATIONS

In this section, we first introduce the basic workflows of
conventional federated learning and split learning, and then
highlight several important points that motivate our work
of incorporating both model splitting and locally supervised
learning into federated learning.

A. Preliminaries

Federated learning. Federated learning involves multiple
rounds of interaction between clients and a central server
to train a global model until convergence. Clients can be a
wide range of devices, including laptops, smartphones, and
IoT devices, which have different capabilities to participate in
the training process. In each round of federated learning, as
illustrated in Fig. 1a, the server sends the current global model
to a subset of clients selected from a pool of participants.
These selected clients then perform several epochs of training
on the model with their local data and send the model
updates back to the server. The server aggregates the model
updates received from these clients and updates the global
model accordingly. FedAvg [3] is considered a pioneer and
standard federated learning algorithm, in which clients are
randomly selected and their local updates are aggregated, with
aggregation weights computed based on the number of local
data samples used for local training. For our work, we focus
solely on the FedAvg algorithm when comparing federated
learning and other distributed learning approaches.
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Fig. 1: Illustration of the interactions between clients and the
server in federated learning and split learning.

Split learning. Split learning [9], [13] is another approach
to training a neural network in a distributed manner across
multiple clients without sharing raw data. Unlike federated
learning, the server and clients have distinct roles, as demon-
strated in Fig. 1b. In a typical split learning architecture,
instead of training the entire model, a client only trains a
portion of the network, up to a designated cut layer, based
on its local data. The client sends the cut layer’s output,
i.e., features, to the server, which then completes the forward
propagation as well as the backward propagation from the last
layer to the cut layer. After updating the weights, the server
sends the gradients till the cut layer back to the client, who
then completes the backpropagation.

Despite the separation of network modules between the
server and clients, split learning still employs end-to-end
training. The objective or loss function, which evaluates the
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overall model’s performance on the task, is calculated at
the output layer of the network residing on the server. The
gradients of the loss function need to be transmitted from the
server to the client for backpropagation from the output layer
to the input layer, in order to update the weights for the entire
model.

When multiple clients from different entities are involved
in split learning, a round-robin approach is employed, where
each client engages in alternating epochs while collaborating
with the server. Before starting the next training epoch, the
next client in the training order is required to update its model
weights, either from the server in a centralized mode or from
the last trained client in a peer-to-peer mode, to synchronize
the sub-model.

B. Motivation

Researchers investigating the application of federated learn-
ing for edge devices have underestimated the extent of the
severe computational constraints associated with edge de-
vices [1], [4], [8], [14]. Training a substantial language model,
for example, on CPUs could take days, or it might not
be feasible to run in practice at all. At first glance, split
learning [9] seems to be a promising solution for reducing
the training workload on the clients by transferring it to the
server using model splitting [15], [16]. A recent work proposed
SplitFed [10] that incorporated federated learning into split
learning.

Aggregation

⑧

Training

④

Fe
at

ur
es

 (f
or

w
ar

d 
pa

ss
)

G
radients (backw

ard pass)

Clients

② ⑥

Server

①

G
lo

ba
l 1

st
-m

od
ul

e 
m

od
el Local 1st-m

odule m
odel

③

... ...

⑤

⑦

Fig. 2: SplitFed (SFLV2)

In SplitFed, all clients perform forward propagation on their
1st-module models in parallel and send their features at the cut
layer to the server. The server is responsible for aggregating
and updating the global 1st-module model using FedAvg
aggregation, as well as training the 2nd-module model. When

it comes to 2nd-module training, SplitFed offers two differ-
ent approaches: SFLV1 and SFLV2. In SFLV1, the server
maintains a separate 2nd-module model for each participating
client and trains them in parallel using the corresponding
client’s features during each communication round. Once all
the training is completed, the SFLV1 server performs the
FedAvg aggregation to obtain a global 2nd-module model.
In contrast, in SFLV2, the server maintains a single 2nd-
module model and performs sequential forward and backward
propagations with features from different clients. The 2nd-
module model in SFLV2 is basically trained in a centralized
manner with no aggregation and may achieve higher model
accuracy compared with SFLV1. In our study, we do not
consider SFLV1 due to its high computational requirements
and lack of scalability, especially when dealing with a large
number of selected clients and when a large portion of a
complex model resides on the server. Interactions between
clients and servers in SFLV2 are illustrated in Fig. 2.

Other potential hybrid formats that combine federated learn-
ing and split learning have been explored in previous research.
In the architecture proposed by [17], multiple servers are em-
ployed, and each client-server pair conducts parallel training of
their 1st-module and 2nd-module models. A more generalized
approach, presented in [18], introduces a hierarchical architec-
ture where multiple servers are organized into different levels
at the edge. Comparative studies were carried out in [19],
[20] to assess the learning performance and training costs of
split learning, federated learning, and the hybrid frameworks
in diverse IoT scenarios.

While SplitFed offers potential benefits for resource-
constrained clients where full model training and deployment
may not be feasible, it’s important to note that there are several
fundamental drawbacks in combining federated learning and
split learning that may render it impractical.

SplitFed introduces a substantial amount of communi-
cation overhead into federated learning. At first glance,
sending features extracted from the cut layer instead of entire
model updates from clients to the server seems to have reduced
the upload communication overhead. However, model updates
are sent only after each round of local training, whereas
features are sent in every iteration of stochastic gradient
descent. This implies that SplitFed involves substantially more
communication rounds between clients and the server in
comparison to federated learning. Furthermore, the total size of
the features is directly affected by the number of data samples
in the batch. With a large batch size, the size of features can
become significant and potentially exceed that of the entire
model. In addition to the upload communication overhead, the
server also needs to send gradients back to the clients in every
iteration of training. This requirement significantly amplifies
the download communication overhead.

Sequential training at the SplitFed server introduces in-
herent delays that cannot be avoided. In SplitFed (SFLV2),
the features and gradients are tied to each batch of local
data on a specific client. The server is required to wait
until it completes the backpropagation process for the current
set of features before it can proceed with forwarding the
next set of features. Essentially, the server updates the 2nd-
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module parameters sequentially with respect to the features
from different clients rather than performing aggregation. In
conventional federated learning, one communication round
typically consists of multiple epochs and batches of local
training. However, when split learning is combined, clients and
the server must exchange features and gradients for forward
and backward propagations to proceed within each iteration
of training. Consequently, delays arise as each party waits
repeatedly for the other to complete local forward or backward
propagation and transmit the required information over the
network.

These limitations have motivated us to search for a more
appropriate solution to accommodate split models for fed-
erated learning, leading us to locally supervised learning.
Locally supervised learning involves training a network model
that is split into multiple modules. Unlike in traditional end-
to-end training, these successive modules are not associated
with gradients from each other and are trained with local
supervision only. To train each module, features extracted
from the last layer of the previous module are taken as input
(raw data samples are still used for the first module), and a
locally generated loss function (task-based loss for the last
module still) is used for local backpropagation. The locally
generated loss is responsible for backpropagating gradients
layer-by-layer in the current module and updating the weights
accordingly.

In this sense, locally supervised learning can substantially
mitigate the limitations discussed previously. The gradient
isolation between the modules at the two parties eliminates the
need for the server to send additional data to the clients, and
for clients to wait for gradients from the server to complete
the backpropagation in each iteration of training. Moreover,
the server can aggregate features from selected clients before
conducting mini-batch training, which can mitigate the impact
of heterogeneous data distribution among clients.

III. INFOCOMM: ARCHITECTURAL DESIGN

In this section, we introduce INFOCOMM, our proposed
new federated learning architecture. We will begin by giving
an overview of its design, followed by an explanation of its
key characteristics, including locally generated loss, auxiliary
networks, feature aggregation, and total cost analysis.

A. Workflow Overview

INFOCOMM leverages the benefits of federated learning and
split learning, allowing multiple clients to train sub-models
in parallel and offloading the bulk of the training process to
a more powerful server, all without the need of transferring
raw data. INFOCOMM empowers clients by allowing them to
utilize independent local training strategies, resulting in greater
flexibility and customization. Furthermore, it reduces both the
frequency and size of information exchanges between clients
and the server, optimizing the efficiency of the overall system.
Moreover, the server employs an innovative approach to ac-
quire mini-batches of features from various clients for training
its sub-model, as opposed to sequentially using features.
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Fig. 3: INFOCOMM: an overview of its design.

Fig. 3 illustrates our proposed framework and distinguishes
it from the standard approaches of federated learning, split
learning, and SplitFed shown in Fig. 1 and Fig. 2. In each
round t, the server and clients engage in communication and
training according to the following steps:

Step 1: At the beginning, each client k, randomly selected
by the server, downloads the current weights wt

c of the global
1st-module model θtc from the server.

Step 2: Each selected client k applies forward propagation
to its local data Dk through multiple epochs of mini-batch
training. Each iteration generates a feature extracted from the
cut layer.

Step 3: After completing the forward propagation process,
client k uploads the collected features ht

k, along with the
corresponding true labels ŷt

k for all iterations, to the server.
Meanwhile, the client generates its local loss by the auxiliary
networks and performs backpropagation to update its local
1st-module model θtck , as well as the auxiliary networks.

Step 4: The server performs forward propagation through
mini-batch training on the received features, and backpropaga-
tion based on the task-related cross-entropy loss. This process
updates the weights wt+1

s of its 2nd-module model θt+1
s .

Concurrently, client k uploads its updated weights wt
ck

to the
server.

Step 5: The server then aggregates the 1st-module models
from the selected clients to obtain a new set of global weights
wt+1

c =
∑K

k=1
nk

n wt
ck

. Once the update of the 2nd-module
model and aggregation of the 1st-module models are complete,
the server proceeds to the next round t+1 by selecting a new
subset of K clients.

Similarly to SplitFed (SFLV2), the server in INFOCOMM
trains the 2nd-module model in a centralized manner using
the features generated by the clients, which is more effi-
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cient compared to the decentralized aggregation of model
parameters in conventional federated learning. However, it is
important to note that the SplitFed approach is expected to
repeat steps 3-6 in a single global communication round, as
illustrated in Fig. 2, as each client typically performs multiple
training iterations and exchanges features and gradients with
the server for each batch. In contrast, INFOCOMM significantly
reduces the number of steps required in a single global round.
Additionally, in INFOCOMM, the model update at the clients
and the training at the server can overlap in time. This is
because clients can complete their local training using locally
generated loss without waiting for any actions or information
from the server. Furthermore, the server’s aggregation and
training processes can proceed in parallel. In this sense, locally
supervised learning eliminates the need for additional steps
of communication and the delays associated with sequential
learning in SplitFed.

B. Locally Generated Loss
Locally supervised learning tries to optimize individual

components separately based on local loss, which may de-
viate from the big picture of optimizing the overall model’s
performance on the task [21]. Therefore, it is vital to design
a proper local loss function that is not only informative
for local training, but also aligns with the overall objective
of optimizing the full model’s performance. Limitations of
traditional locally supervised learning methods can lead to
suboptimal results due to short-sighted local loss functions
(such as local classification loss), as they collapse task-relevant
information at early layers that may be useless for short-term
performance but is actually useful for the full model.

To address these limitations, we have selected to employ the
information propagation (InfoPro) loss introduced in recent
research [11]. The InfoPro loss has proven to be highly
effective in retaining important information of the input while
discarding task-irrelevant information, ultimately leading to
enhanced performance of the overall model. The InfoPro loss
function is written as:
LInfoPro (h) = α [−I(h,x) + βI(r∗,h)] , α, β ≥ 0,

s.t. r∗ = argmax
r,I(r,x)>0,I(r,y)=0

I(r,h),
(1)

where x, y, and h denote the input data, the label, and
the features, respectively. The nuisance r∗ [22] captures as
much task-irrelevant information in the features h, which are
the intermediate outputs of the local module, as possible.
The first term of the loss function aims to retain as much
information of the input as possible, while the second term
aims to maximally discard the task-irrelevant information. The
coefficient β controls the effects of these two goals, while α
balances the loss of the 1st-module at clients and the loss of
the 2nd-module at the server in our application. Subsequently,
an upper bound of LInfoPro can be derived as an surrogate
objective [11] that is easier to optimize compared to Eq. (1):

LInfoPro ≤ −α(1− β)I(h,x)− αβI(h, y) ≜ L̄InfoPro. (2)

In line with the approach described in [11], we utilize two
small auxiliary networks to estimate the mutual information

I(h,x) and I(h, y) in L̄InfoPro, respectively. The estimation
works as follows.
I(h,x) ← decoder w: According to [23], [24], the rela-

tionship I(h,x) = H(x)−H(x|h) ≥ H(x)−R(x|h) holds
for I(h,x) and R(x|h), the expected error for reconstructing
x from h. This implies that I(h,x) can be approximated
by I(h,x) ≈ maxw [H(x)−Rw(x|h)], where H(x) is a
constant and Rw(x|h) is the reconstruction loss obtained by
an auxiliary decoder parameterized by w. In this case, the
auxiliary decoder takes the feature at the cut layer as input
and produces a reconstructed input. The reconstruction loss
is calculated as the binary cross-entropy loss between the
reconstructed input and the original input.
I(h, y) ← classifier ψ: I(h, y) can be expanded as

I(h, y) = H(y) − H(y|h) = H(y) − E(h,y)[− log p(y|h)].
Training an auxiliary classifier parameterized by ψ to approx-
imate the conditional distribution p(y|h) leads to I(h, y) ≈
maxψ{H(y) − Eh[

∑
y −p(y|h) log qψ(y|h)]}. The auxiliary

classifier qψ(yi|hi) can be trained using the cross-entropy loss
between the network output and the true labels.

As a result, the auxiliary networks w and ψ are trained
collaboratively with the 1st-module model θc at the clients
with an optimization objective:

minimize
θc,w,ψ

α(1− β) Rw(x|h)

+ αβ
1

N

N∑
i=1

− log qψ(yi|hi).
(3)

The architecture of the auxiliary networks. Based on
the findings of the study by [11], including at least one
convolutional layer in the auxiliary network architecture is
important. However, the study also demonstrates that using
larger networks does not offer a significant improvement in
performance and instead increases computational overhead.
Therefore, as presented in Table I, we designed the auxiliary
decoder w and the auxiliary classifier ψ for generating the
InfoPro loss. The two auxiliary networks are small compared
to the entire primary network, which allows for efficient
computation at the client side. As our subsequent experimental
results will show, the design of the auxiliary networks we
employed is generalizable and effective for both LeNet-5 and
ResNets. Adjustments, such as including additional convolu-
tional layers in the auxiliary network, may be necessary for
other models. These adjustments can enhance the decoding
and classifying capabilities of the auxiliary networks, ensuring
that the locally generated loss facilitates independent model
training.

Aggregation for auxiliary networks. When employing lo-
cally supervised learning in federated learning, we face a new
issue: auxiliary networks at different clients are trained in dif-
ferent directions. Will the discrepancy between these auxiliary
networks affect the global learning performance or facilitate
clients’ personalized local losses? Intuitively, we can either let
clients train their auxiliary networks completely locally or al-
low them to upload their auxiliary networks to the server along
with their 1st-module main network, then download the global
auxiliary network after aggregation. We empirically investigate
the effects of aggregating auxiliary networks across different
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TABLE I: The architecture of the auxiliary decoder and the
auxiliary classifier.

Network structure of w Network structure of ψ
nn.Conv2d nn.Conv2d

nn.BatchNorm2d nn.BatchNorm2d
nn.ReLU nn.ReLU
nn.Conv2d nn.AdaptiveAvgPool2d
nn.Sigmoid nn.Flatten

nn.Linear
nn.ReLU
nn.Linear

clients, along with the 1st-module networks at the server, in
various datasets with different learning models, as summarized
in Table II. In the same settings, we noticed that aggregating
auxiliary networks leads to improvements in global accuracy
upon convergence. Specifically, for LeNet-5 on MNIST and
LeNet-5 on FashionMNIST, the global accuracy increased
by 6.86% and 14.37% respectively. However, in the case of
ResNet-18 on CIFAR10, the accuracy decreased by 9.23%.
The results indicate that aggregating the auxiliary networks at
the server does not always facilitate learning, as each client
might have quite divergent auxiliary networks, especially for
more complicated primary networks like ResNet. Keeping the
auxiliary networks locally, without aggregating them at the
server side, can be beneficial for generating personalized local
loss for different clients. This approach also avoids the need
for additional communication between clients and the server.
We will further compare the training and communication costs
associated with both auxiliary network aggregation and non-
aggregation methods in Section III-D.

TABLE II: Comparison of global test accuracy upon conver-
gence with and without aggregation for auxiliary networks at
the server.

Scenario w/ aux aggregation w/o aux aggregation

MNIST, LeNet-5 98.1% 91.8%
FashionMNIST, LeNet-5 87.23% 76.27%

CIFAR10, ResNet-18 76.7% 84.5%

C. Feature Aggregation

As previously discussed in Section II, SplitFed requires the
server to process features from clients sequentially so that it
can send back the corresponding gradients of loss for each
batch of features to complete the backpropagation process
at clients. However, by combining federated learning with
locally supervised learning, our proposed architecture provides
an advantage on this issue. As the server no longer needs to
send back gradients, it can aggregate the features hk received
from the selected K clients to form a larger feature dataset
denoted as Dh. This dataset consists of features generated
from each raw data sample through the 1st-module model at a
client, along with the corresponding true labels. Dh then can
be used to sample data for training the 2nd-module model in a
flexible and isolated manner, using different epoch and batch
sizes for mini-batch training.
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Fig. 4: Comparison of test accuracy across rounds with and
without aggregation for features.

Algorithm 1 INFOCOMM: Server Side

Initialize: Global 1st-module model weights w0
c ; 2nd-module

model weights w0
s

2nd-Module Model Update:
Send wt

c to all K clients for ClientUpdate(wt
ck
)

for each client k ∈ St in parallel do
for each gradient descent iteration do

Receive features ht
k and labels Yt

k from
ClientUpdate(wt

ck
)

Aggregate features ht
k for k ∈ St into feature dataset

Dt
h

end for
for each mini-batch b do

Perform forward propagation with a batch of features
ht
b from Dt

h on the 2nd-module model wt
s and get the

corresponding predictions Ŷb

Calculate loss with Yb and Ŷb and perform back-
propagation

Update 2nd-module model weights wt+1
s ← wt

s −
η∇ℓ(Ŷb;Yb)

end for
end for

1st-Module Model Aggregation:
for each client k ∈ St in parallel do

Receive wt+1
ck

from each selected client k
end for
Update global 1nd-module model weights wt+1

c ←∑K
k=1

nk

n wt+1
ck

We show the benefits of aggregating features at each round
by presenting empirical results in Fig. 4. We conducted experi-
ments on the CIFAR10 dataset with ResNet-18 using federated
learning with InfoPro, where the server selects 20 or 30 clients
from a pool of 100 clients and each client has 500 or 300 data
samples. The results we obtained in both scenarios strongly
support our statement that aggregating features from different
clients into a larger dataset for training the 2nd-module model
at the server leads to a significant improvement in convergence



7

TABLE III: Total cost analysis of different schemes in one global round.

Scheme Downlink comm time Uplink comm time Client training time Server training time

FedAvg |w|
Rs

|w|
Rc

(E⌈P/B⌉)L
rc

0

SplitFed η|w|
Rs

+ (E⌈P/B⌉)Bq
Rs

η|w|
Rc

+ (E⌈P/B⌉)Bq
Rc

(E⌈P/B⌉)ηL
rc

K
(E⌈P/B⌉)(1−η)L

rs

INFOCOMM (w/ aux aggregation) η|w|+|wa|
Rs

η|w|+|wa|
Rc

+ EPq
Rc

(E⌈P/B⌉)(ηL+La)
rc

(E⌈KP/B⌉)(1−η)L
rsINFOCOMM (w/o aux aggregation) η|w|

Rs

η|w|
Rc

+ EPq
Rc

speed.
The algorithms conducted at the server and client sides are

depicted in Algorithms 1 and 2.

Algorithm 2 INFOCOMM: Client Side

ClientUpdate (wt
ck
):

Update local 1nd-module model weights from the current
global one wt

ck
← wt

c

for each local epoch e from 1 to E do
Perform forward propagation with raw data Xk up to

the final layer in wt
ck

Obtain features ht
k, i.e., the representations of the final

layer
Send features ht

k and corresponding labels Yt
k to the

server
Calculate locally generated loss ℓk with the auxiliary

networks w and ψ according to Eq. (3) and perform
backpropagation

Update 1nd-module model weights wt+1
ck
← wt

ck
−

η∇ℓk
end for
Send wt+1

ck
to the server

D. Total Cost Analysis

In the analysis of SplitFed [10], both the communication
time and training time in one global round for different
learning schemes have been studied. However, such analysis
only considered the simplest case, where there is only one
batch of training in each global round. This contradicts the
realistic settings in conventional federated learning where
clients perform multiple iterations of mini-batch training, and
in practice, SplitFed may result in significant communication
overhead and delays in training as its actual cost is much larger
than FedAvg in one global round.

To address the limitations of such analysis, we provide a
more accurate and elaborated analysis of the communication
time and training time at the server and client in each global
round for FedAvg, SplitFed, and INFOCOMM. We assume that
in each round, the server selects K clients, each client has
P data samples and conducts E local epochs of training with
batch size B. We use |w| to represent the corresponding actual
size of model weights, and use q to represent the size of
features or gradients at the cut layer per data sample. We
denote η as the fraction of the size of the 1st-module model at

the client of the full model, i.e., |wc| = η|w|. We also denote
Rs and Rc as the downlink and uplink data transmission rate,
respectively, L as the workload for a forward and backward
propagation through the full model for one batch of data, and
La as the workload for training the auxiliary network for one
batch of data. Note that, we consider the case where the server
and clients have different computational power due to the use
of GPUs or CPUs, and thus, the server’s training rate is rs
while the client’s training rate is rc, which is smaller than rs.

The complete breakdown of the total cost in terms of
communication and training time is presented in Table III. The
communication time is calculated per client, and the training
time does not include the time taken for aggregation or other
processing time. In our proposed scheme, INFOCOMM, the
communication time is always lower than SplitFed by at least
(E⌈P/B⌉)Bq

Rs
, as INFOCOMM does not require the server to

send back gradients at the cut layer per batch to each client.
Increasing the depth of the auxiliary network with additional
convolutional or fully connected layers can potentially improve
the learning performance as it can generate a more informative
local loss. However, a stronger auxiliary network can also
introduce extra training time at the client.

Compared to FedAvg, INFOCOMM can significantly reduce
the client training time by offloading the workload to the
server. Although the server needs to train the 2nd-module
model with the feature data from all selected clients, it has
much more powerful computational capacity to do so than
clients, which may result in a total training time that is smaller
than FedAvg’s. Additionally, INFOCOMM can actually reduce
the communication time when P is small enough, which is a
common scenario for federated learning in edge devices. We
have validated our analysis with additional empirical results,
as described in Section IV-B.

IV. PERFORMANCE EVALUATION

To evaluate the performance of INFOCOMM experimentally,
we have implemented both SplitFed [10] and INFOCOMM in
the open-source federated learning framework, PLATO [25],
which is designed to support real-world federated learning
experiments using a limited amount of computing resources.
Our implementation will be released as open-source as well
to support the best possible reproducibility of this work. With
our implementation, we conducted a diverse array of exper-
iments comparing our proposed method, INFOCOMM, with
FedAvg [3], SCAFFOLD [12], and SplitFed [10]. Through our
experiments, we investigated and validated the learning and
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communication efficiency of these approaches from various
perspectives, including non-IID data, large neural networks,
small clients, and server-side training flexibility. All of our
experiments were conducted on an Mac Studio with an Apple
M1 Max processor, featuring a 10-core CPU, a 24-core GPU,
and 64GB of unified memory.

Datasets and models. We conducted our experiments on
various datasets including MNIST [26], FashionMNIST [27],
and CIFAR10 [28], with LeNet-5 [29] and several variants of
ResNet [30] neural network architectures including ResNet-
18, ResNet-101, ResNet-152, which have approximately 11,
42, 58 million trainable parameters, respectively. For model
splitting in SplitFed and INFOCOMM, we set the cut layer at
ReLU2 for LeNet-5 and at Layer1 for all variants of ResNets.
The decoder network and auxiliary classifier network have 2k
and 10k trainable parameters, respectively. The total size of
them is only 0.49% of the entire ResNet-18. We choose to
aggregate the auxiliary networks at the server for LeNet-5 and
not for ResNets to achieve optimal performance.

Setups. In our experiments, we follow a standard federated
learning setting where the server randomly selects K clients
in each round. The entire dataset is evenly distributed among
a pool of clients, where each client even has P data samples.
For example, if we consider the entire MNIST dataset, which
consists of 50, 000 samples, and we have a total of 100 clients,
then each client would hold 500 samples. Unless otherwise
specified in experiment scenarios such as Section IV-A, the
data is independent and identically distributed (IID) across
clients, and the server in SplitFed and INFOCOMM has the
same training settings as the clients. We train each client’s
local model with a mini-batch size of B and epoch number
E (E = 1 as default). To train LeNet-5, we use the SGD
optimizer with a learning rate of 0.01 and momentum of
0.9; while for ResNets, we use the same optimizer with a
learning rate, momentum, and weight decay of 0.01, 0.9,
and 0.0001, respectively. Additionally, we bind the optimizer
with a PyTorch LambdaLR learning rate scheduler for training
ResNets. We use the default hyperparameters used in [11] for
the auxiliary networks in INFOCOMM, such as α(1− β) = 5
and αβ = 1. Settings and configurations, such as the number
of clients selected K, the number of samples on each client P ,
and the batch size B, will be specified in different experiment
scenarios below.

A. Convergence Performance

The convergence performance of different schemes when
applied to IID or non-IID data distributions is demonstrated
in Fig. 5. We tested these schemes on MNIST and FashionM-
NIST datasets with the LeNet-5 model, and set the parameters
K = 10, P = 300, B = 128 and K = 10, P = 300, B = 32
for them, respectively. To simulate non-IID conditions, we em-
ployed a Dirichlet distribution with a concentration parameter
of 0.5 and 0.1 for the two scenarios, respectively.

For the MNIST dataset, the test accuracies of SplitFed and
INFOCOMM ramp up very quickly and steadily in the first
20 rounds compared to FedAvg and SCAFFOLD, even for
the non-IID setting, as shown in Fig. 5a. Although the gap is
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Fig. 5: Global model test accuracy over rounds on IID or non-
IID data.

not as significant with the more complicated FashionMNIST
dataset, SplitFed and INFOCOMM still outperform FedAvg and
SCAFFOLD in terms of the speed of convergence in both
IID and non-IID settings. SCAFFOLD excels over FedAvg,
particularly in the non-IID setting. At round 150 in Fig. 5a,
INFOCOMM has already converged with an accuracy 2.65%
and 4.96% higher than FedAvg in IID setting and non-IID
setting, respectively. The primary reason for this improvement
is that SplitFed (SFLV2) and INFOCOMM use a single 2nd-
module model at the server that is trained consistently with
batches of feature data collected from different clients, instead
of having multiple full models trained separately at clients and
then aggregated with weights as in standard federated learning.

We can also notice that INFOCOMM is marginally inferior to
SplitFed in terms of model accuracy per round, which can be
attributed to the fact that locally generated loss in INFOCOMM
does not capture the same information as the global classi-
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Fig. 6: A breakdown of elapsed time in each round of training
different model with different methods.

fication loss. Nevertheless, the reduction of communication
overhead and delay brought by locally generated loss can make
up for this drawback, as we will show in the following results.

B. Elapsed Time Breakdown when Training Different Models

To assess the impact of different schemes on delays (mea-
sured with the elapsed time), we measured the average training
time at the clients, the communication time between the server
and one client, and the server training time, when using various
ResNet models with different numbers of layers.

To reflect real-world scenarios, all client training was per-
formed on CPUs while the server was equipped with GPUs.
The breakdown of the average time taken during a single
training round for each scheme is displayed in Fig. 6. We
evaluated different values for K and P , as they are the major
factors that affect the time in SplitFed and INFOCOMM with
model splitting and server-side training. The batch size is set
to B = 128 for both cases.

We can observe that INFOCOMM consistently has a shorter
client training time compared to FedAvg and SCAFFOLD due
to the model split, including the training time for auxiliary
networks, as they are relatively small compared to the main
network. As the model size increases and P decreases, the
communication time of INFOCOMM can get closer to, and
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Fig. 7: Global model test accuracy over elapsed time of
different number of local data samples.

even become smaller than, that of FedAvg or SCAFFOLD,
since the addition of EPq

Rc
can be compensated by the reduction

of (1−η)|w|
Rc

+ (1−η)|w|
Rs

by INFOCOMM. SCAFFOLD requires
slightly more client training time and nearly double the com-
munication time compared to FedAvg because the server and
clients need to update and send the client control variates.

Compared with SplitFed, INFOCOMM has a slightly longer
client training time due to the auxiliary network training, but
it significantly reduces communication overhead and delay
introduced by downloading gradients in each batch of training.
The server training time in SplitFed is longer compared to
that of INFOCOMM, which is somewhat inconsistent with our
theoretical analysis. The reason for this discrepancy is that
during implementation, SplitFed needs to prepare all the model
and optimizer states every time for propagating each batch of
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Fig. 8: Global model test accuracy over elapsed time of
different number of local data samples.

feature data, whereas INFOCOMM only requires preparation
once with a single large feature dataset.

In the most favorable scenario among these experiments,
where the model is relatively the largest, INFOCOMM can
achieve a time reduction of 28%, 54%, and 37%, compared to
FedAvg, SCAFFOLD, and SplitFed, respectively. It is worth
emphasizing that in INFOCOMM, clients do not need to wait for
the server to send back gradients or other information during
their local training, so the client training and server training
time can overlap. In this sense, INFOCOMM can achieve more
time-efficient training than its alternatives.

C. Better Efficiency for Less Capable Clients

Compared to standard federated learning approaches like
FedAvg and SCAFFOLD, INFOCOMM is particularly efficient

for less capable clients such as edge devices, which often have
a limited amount of data samples and computational power.
To validate this claim, we conducted experiments on MNIST
with LeNet-5 and on CIFAR10 with ResNet-18, varying the
number of data samples per client P . The results are shown
in Fig. 7 and Fig. 8.

In the scenario of MNIST with LeNet-5 as shown in Figs. 7a
and 7b, both SplitFed and INFOCOMM still demonstrated faster
convergence speed and higher ultimate model accuracy than
FedAvg. Furthermore, each round of INFOCOMM saved about
25% − 30% of the time compared to SplitFed. For instance,
as illustrated by the dashed lines in Fig. 7a, SplitFed requires
approximately 1.18× more elapsed time than FedAvg, whereas
INFOCOMM only incurs a 0.53× increase in elapsed time
compared to FedAvg. In Fig. 7b, SplitFed experiences an
increase of 0.26× in elapsed time compared to FedAvg, while
INFOCOMM demonstrates a reduction of 5.4% in elapsed time
compared to FedAvg. These results also align with our analysis
in Section III-D and Section IV-B that, with smaller values of
P , the total elapsed time per round of INFOCOMM can be even
smaller than that of FedAvg.

In the scenario of CIFAR10 with ResNet-18, we observed
that INFOCOMM achieved similar learning progress over the
elapsed time as FedAvg as seen in Fig. 8a. However, in a more
challenging scenario with a limited number of data samples,
as depicted in Fig. 8b, INFOCOMM demonstrated superior
performance compared to FedAvg, resulting in a 15.3% higher
accuracy at time 60, 000s when reaching convergence. In
contrast, SplitFed failed to converge in both cases. SplitFed
only achieved approximately 30% accuracy in average for both
cases. The authors of SplitFed also mentioned this similar
phenomenon in their paper [10]. We suspect that one of
the reasons for SplitFed’s failure to converge could be that
communication between the server and clients can result in
losing important information in the optimizer states and other
factors. This might lead to inconsistent settings of the 1st-
and 2nd-module networks for backpropagation with the same
global loss. In contrast, INFOCOMM is not affected by the
separate training for the two modules because they use local
losses to update the model weights. This ensures that the
optimizer states and other factors of each module during back-
propagation are consistent with corresponding loss. In all the
four scenarios shown in Figs. 7 and 8, SCAFFOLD is unable
to match FedAvg in terms of test accuracy versus elapsed time.
This observation aligns with our analysis in Section IV-B that
SCAFFOLD requires more training and communication time
due to the updating and sharing of client control variates.

D. Server- and Client-specific Epoch and Batch Sizes

Here we show another bonus of INFOCOMM that FedAvg,
and SplitFed cannot benefit from. When the server and clients
have a consistent batch size of B and the number of epochs
E, we refer to the method as vanilla INFOCOMM. Since the
training at the server and clients is separated and does not
require each batch to be the same between them, the server
can use a smaller batch size B and a larger number of epochs
E to train the 2nd-module model, which can further enhance
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TABLE IV: Comparison of global model test accuracy at certain rounds, when the server uses different epoch sizes or batch
sizes than the clients.

Scenario Client-side Server-side Accuracy
FedAvg SplitFed INFOCOMM FedAvg SplitFed INFOCOMM

Round #15 Round #150
MNIST & LeNet-5

E = 1, B = 32
E = 1, B = 32 15.38% 43.55% 58.43% 73.07% 93.77% 86.39%

K = 5, P = 50 E = 5, B = 32 87.80% 94.37%
Round #10 Round #50

FashionMNIST & LeNet-5
E = 1, B = 128

E = 1, B = 128 10% 55.72% 60.06% 62.02% 78.1% 76.02%
K = 10, P = 300 E = 1, B = 5 75.49% 80.77%

Round #15 Round #100
CIFAR10 & ResNet-18

E = 1, B = 128
E = 1, B = 128 36.65% 27.83% 44.04% 75.86% 25.1% 78.68%

K = 20, P = 500 E = 5, B = 32 60.86% 79.55%

the learning efficiency. In this case, we refer to the method
as advanced INFOCOMM. We show the global model accuracy
at different specific rounds during training in different settings
in Table IV, comparing FedAvg, SplitFed, vanilla INFOCOMM,
and advanced INFOCOMM.

As shown in the results, regardless of the specific setting,
the advanced INFOCOMM can achieve higher global model
accuracy than FedAvg and vanilla INFOCOMM by using a
smaller batch size B and a larger number of epochs E at the
server to train the 2nd-module model. In the best-case sce-
nario, when comparing the test accuracy of the global model
during the early stage of training, the advanced INFOCOMM
outperforms FedAvg and SplitFed by achieving 6.5× and 1.2×
higher accuracy, respectively. During the later stage of training,
the advanced INFOCOMM consistently achieves an average
accuracy that is 0.21% higher than FedAvg across all three
different scenarios.

In our previous experiments, the vanilla INFOCOMM may
be outperformed by SplitFed on MNIST and FashionMNIST
in terms of accuracy versus round (instead of accuracy versus
elapsed time shown in Section IV-C) when approaching con-
vergence, due to the fact that its locally generated loss poten-
tially might lose specific task-relevant information compared
to the global classification loss used in SplitFed. Fortunately,
however, adjusting the epoch and batch sizes at the server
can more than make up for this small negative impact, fully
utilizing the abundant computational power available at the
server. For example, in the first scenario, when the vanilla
INFOCOMM approached convergence, its accuracy was 7.87%
lower than SplitFed. However, the advanced INFOCOMM ex-
hibited a notable improvement, with an accuracy that was
3.4% higher than SplitFed.

V. FURTHER DISCUSSIONS AND CONCLUDING REMARKS

In this paper, we proposed INFOCOMM, a novel architecture
that addresses significant obstacles due to severely limited
computational power on IoT devices in federated learning. The
upshot of our original contributions lies in the utilization of
model splitting and InfoPro loss to enable locally supervised
learning, as well as a unique feature aggregation algorithm
designed for our architectural design. We have presented
a theoretical analysis of the total cost in comparison with
SplitFed, a state-of-the-art alternative, as well as an extensive
array of experimental results that demonstrate INFOCOMM’s

efficiency in reducing both the training and communication
times. Our approach is particularly suitable for large learning
models, non-IID data distribution, and limited local data.
Overall, our work offers a promising direction for improving
the efficiency and scalability of federated learning in edge
computing scenarios.

It is worth pointing out that our proposed architecture for
federated learning offers a much greater degree of flexibility
compared to traditional federated learning in terms of client
selection and workload distribution. As training can occur con-
currently at both the client and server, clients can proactively
upload their local features instead of being passively selected
by the server at the beginning of each round. Specifically,
clients can download the global 1st-module model weights at
any time and perform local training to generate new features,
while the server is training the 2nd-module model with the
updated feature datasets. Clients only need to train a minimum
number of necessary layers, reducing their training workload
by a substantial margin. The remaining layers can be further
separated and trained by a group of servers with more powerful
computing capacities, while still preserving data privacy and
security.

So far, there has been limited research conducted on the
privacy and security of the hybrid approach that combines split
learning and federated learning. Such a learning framework
may introduce extra vulnerabilities due to the exposure of
intermediate outputs and gradients related to the cut layer.
Instead, by incorporating locally supervised learning into
federated learning in our approach, we can avoid the expo-
sure of gradients and enhance the security of the learning
framework. Nevertheless, it is still important to protect the
features and labels transmitted from clients to the server.
We can leverage existing methods from secure split learning
to prevent information leakage in our work. For example,
we can extend techniques such as incorporating the distance
correlation between the raw data and the features at the
cut layer into the loss function [31]. Additionally, we can
enhance privacy by adding Laplacian noise to the features
before transmitting them to the server [32]. To protect labels,
we may also adopt the U-shaped configuration [9] where the
clients retain the end layers and generate the gradients from
them, which are then transmitted to the server for subsequent
backpropagation.
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