
1	
  
2	
  
3	
  
4	
  
5	
  
6	
  
7	
  
8	
  
9	
  
10	
  
11	
  
12	
  
13	
  
14	
  
15	
  
16	
  
17	
  
18	
  
19	
  
20	
  
21	
  
22	
  
23	
  
24	
  
25	
  
26	
  
27	
  
28	
  
29	
  
30	
  
31	
  
32	
  
33	
  
34	
  
35	
  
36	
  
37	
  
38	
  
39	
  
40	
  
41	
  
42	
  
43	
  
44	
  
45	
  
46	
  
47	
  
48	
  
49	
  
50	
  
51	
  
52	
  
53	
  
54	
  
55	
  
56	
  
57	
  
60	
  
61	
  
62	
  
63	
  
64	
  
65	
  

More than Enough is Too Much:
Adaptive Defenses against Gradient Leakage in

Production Federated Learning
Fei Wang, Ethan Hugh, Baochun Li

Department of Electrical and Computer Engineering
University of Toronto

Abstract—With increasing concerns on privacy leakage from
gradients, a variety of attack mechanisms emerged to recover
private data from gradients at an honest-but-curious server,
which challenged the primary advantage of privacy protection
in federated learning. However, we cast doubt upon the real
impact of these gradient attacks on production federated learning
systems. By taking away several impractical assumptions that the
literature has made, we find that gradient attacks pose a limited
degree of threat to the privacy of raw data.

Through a comprehensive evaluation on existing gradient
attacks in a federated learning system with practical assumptions,
we have systematically analyzed their effectiveness under a wide
range of configurations. We present key priors required to make
the attack possible or stronger, such as a narrow distribution
of initial model weights, as well as inversion at early stages of
training. We then propose a new lightweight defense mechanism
that provides sufficient and self-adaptive protection against time-
varying levels of the privacy leakage risk throughout the feder-
ated learning process. As a variation of gradient perturbation
method, our proposed defense, called OUTPOST, selectively adds
Gaussian noise to gradients at each update iteration according
to the Fisher information matrix, where the level of noise is
determined by the privacy leakage risk quantified by the spread
of model weights at each layer. To limit the computation overhead
and training performance degradation, OUTPOST only performs
perturbation with iteration-based decay. Our experimental re-
sults demonstrate that OUTPOST can achieve a much better
tradeoff than the state-of-the-art with respect to convergence
performance, computational overhead, and protection against
gradient attacks.

I. INTRODUCTION

As an emerging distributed machine learning paradigm,
federated learning (FL) allows clients to train machine learning
models collaboratively with private data, without transmitting
them to the server. Though federated learning is celebrated
as a privacy-preserving paradigm of training machine learning
models, it was pointed out in the recent literature [1] that
sharing gradients with the server may lead to the potential
reconstruction of raw private data, such as images and texts,
used in the training process. The discovery of this new attack,
known as Deep Leakage from Gradients (DLG), has stimulated
a new line of research to improve the attack efficiency [2]–[4]
and to provide stronger defenses against known DLG-family
attacks [5], [6] as well.

As existing studies have made significant efforts to indicate
that federated learning is vulnerable to gradient attacks from
a malicious participant or eavesdropper, a lightweight defense

that provides adequate privacy protection with guaranteed
training accuracy is sought by recent work to prevent this
attack [6]. However, before designing for even more efficient
and effective defense mechanisms, we begin to have second
thoughts on how severe the threat is in practice, even without
any defense mechanisms in place. Existing works focused
on reconstructing raw data from known gradients or model
weights in ideal settings, rather than considering practical
settings in production federated learning.

As its name suggests, DLG proved that sharing gradients
has the potential of leaking private data. However, when this
attack was first proposed and later improved, most works in the
literature considered sharing model updates as equivalent to
sharing gradients. In production FL, however, multiple epochs
are used routinely, and gradients are only accessible locally
in a single step of gradient descent. No gradient — in its
strict, original connotation — is transmitted to the server at all.
Instead, only model updates — the delta between local models
and the server’s global model in the preceding round — are
transmitted from clients to the server. Yet, to the best of our
knowledge, very little is known on the effectiveness of gradient
attacks in practical contexts in production federated learning.
It was shown [7] that gradients can be calculated from model
updates with a known learning rate; but with multiple epochs,
we find that this calculation is far from accurate. Only [4],
[6] considered the possibility of reconstructing raw data with
model updates directly, without estimating the gradients.

Even with the assumption of direct gradient sharing, existing
works have mainly validated the efficiency when reconstruct-
ing one or multiple images (using a larger batch size) in
full gradient descent, i.e., merely one local step of Stochastic
Gradient Descent (SGD). None of them has shown convinc-
ing evidence that reconstructed images are recognizable by
humans under the standard settings of production federated
learning, where clients perform more local computation and
less communication (i.e., multiple update steps on a local
model) [8]. Moreover, existing attacks neglect the change of
model status through FL training and tend to use untrained
neural networks that are explicitly initialized with weights of a
wide distribution for deriving gradients, which we have found
makes the model and shared gradients fundamentally more
vulnerable. Our empirical results disclose very limited privacy
leakage even when gradients are shared, not to mention the

INFOCOM 2023 1570829294

1



privacy leakage with model updates, delta, only.
Existing defenses in the literature were designed explicitly

for gradient inversion attacks [5], [6], and evaluated their
performance with respect to privacy metrics (such as the
peak signal-to-noise ratio) and utility metrics (such as the
validation accuracy of the global model). However, they failed
to show the feasibility of data reconstruction by the DLG
attack in the first place before any defense is even applied,
especially in the context of production FL [9] with federated
averaging (FedAvg). Given that gradient leakage attacks are
much weaker as we will discover in this paper, we argue
that a new defense mechanism against such attacks can be
much more lightweight, without introducing extra overhead
or incurring the risk of sacrificing the utility of the global
model after training completes.

Inspired by our empirical observations that models with
weights from a narrower distribution and more local SGD
update steps will effectively make potential attacks weaker,
we propose a new defense mechanism, called OUTPOST,
that provides sufficient and self-adaptive protection throughout
the federated learning process against time-varying levels of
privacy leakage risks. As its highlight, OUTPOST is designed
to apply biased perturbation to gradients based on how
spread out and how informative model weights are at different
local update steps. Specifically, OUTPOST uses a probability
threshold to decide whether we perform a perturbation to
the gradients at the current step or not; and to limit the
computation overhead, such a threshold decays as local update
steps progress over time. When performing the perturbation,
OUTPOST first evaluates privacy leakage risks of the current
local model by the variance statistics of the model weights at
each layer, and then adds Gaussian noise to each layer of the
gradients of the current step based on the Fisher information
matrix, whose range is decided by the quantified privacy
leakage risks.

We have evaluated OUTPOST and four state-of-the-art
defense mechanisms in the literature, against two gradient
leakage attacks under both production FL settings and a
simplistic, yet unrealistic, FL scenario where the attack is the
most efficient1. We seek to evaluate both utility metrics —
regarding both the wall-clock time needed to converge and the
converged accuracy — and privacy metrics, which shows the
effectiveness of the defenses against gradient leakage attacks
in the worst case. With two image classification datasets
and the same LeNet neural network architecture used in
the literature [1], our experimental results have demonstrated
convincing evidence that OUTPOST can achieve a much better
accuracy compared with the state-of-the-art, incurs a much
smaller amount of computational overhead, while effectively
providing a sufficient level of protection against DLG attacks
when evaluated using common privacy metrics in the litera-
ture.

1Our implementation is available as an open-source git repository at
https://github.com/TL-System/plato/tree/main/examples/dlg.

II. PRELIMINARIES

Recent research has discovered that, by simply exchanging
gradients of neural network models rather than raw data among
multiple clients, privacy leakage still cannot be prevented in
distributed machine learning. An honest-but-curious server can
recover the private data from the obtained gradients through
an optimization process [1], [2].

Essentially, DLG and other existing gradient inversion at-
tacks tried to solve an optimization problem. With the given
target gradient ∇∗ : ∇k

t =
∂Lgrad(Fw(x∗),y∗)

∂w received from
a participant k at a certain step t, the attacker can steal the
inputs with labels (xk

t ,y
k
t ) such as an image in pixels or a

sentence in tokens in this training step. To do so, the attacker
first generates random (dummy) inputs with labels (x′

0,y
′
0)

of the same size as the target data. The attacker then (1)
derives dummy gradient ∇′

0 =
∂Lgrad(Fw(x′

0),y
′
0)

∂w w.r.t. the
model weights from the dummy data by feeding the dummy
data into the machine learning model Fw shared between the
participants; (2) updates the dummy data (x′

1,y
′
1) by gradient-

based methods, in which the loss function is the distance
between the dummy gradient and the given gradient ∇∗. By
iterating these steps, the dummy data (x′

i,y
′
i) will move closer

to the target training data as the dummy gradient matches the
given gradient based on the following objective:

x′∗,y′∗ = argmin
x′,y′

D(∇′,∇∗). (1)

The distance D(∇′,∇∗) is a function differentiable w.r.t. the
dummy data, which can be the L2 distance ∥∇′−∇∗∥2 [1] or
the cosine distance 1− ⟨∇′,∇∗⟩

∥∇′∥∥∇∗∥ [2]. We illustrate the process
that DLG attacks use in Fig. 1. More comprehensive objec-
tive functions incorporating regularization terms have been
designed by some existing works to make the reconstructed
images less noisy [2].

...

 
 

Target gradient
 

Dummy gradient

Fig. 1: Matching the dummy gradient with the target gradient.

Existing gradient inversion attacks, including [1]–[4], [7],
[10], explored the space of this attack in a wider set of
circumstances, such as reconstructing multiple images and
allowing multiple training steps. However, none of them
considered these settings in the context of production FL. We
now proceed to systematically evaluate the effectiveness of
these attacks, considering both the required assumptions and
applicable coverage, in the context of production FL.

III. RE-EVALUATING GRADIENT LEAKAGE ATTACKS IN
PRODUCTION FEDERATED LEARNING

In this section, we first show that existing gradient inversion
attacks do not work effectively in production FL, as some of
their implicit assumptions fail to hold.

2



 

N

...

kClients 1

...

Optimize

Dummy data

Loss

Match

Server

Fig. 2: Three different ways of performing data reconstruction
from deep leakage in federated learning: [Red] matching the
dummy gradient with the target gradient; [Green] matching
the dummy gradient with the approximated gradient converted
from the model update; [Blue] matching the dummy model
update with the model update directly. The shadow area indi-
cates that matching dummy gradients directly from gradients
is not possible in production FL, as local gradients will not
be accessible by the server.

A. Assumptions: Re-evaluating their Validity in Production FL

Gradients are not shared directly with the server. Exist-
ing gradient inversion attacks in the literature (e.g., [1], [3], [7],
[10]) contained a technical misconception that model updates
(delta ∆k

t ) are equivalent to gradients∇k
t . They assumed that a

client will send either a gradient computed from a single local
training step or an average gradient over multiple local training
steps (such as multiple epochs or multiple mini-batches) to
the server. However, in production FL using FedAvg [9],
computation over multiple local training steps are typically
used, and gradients in each step as intermediate outputs are
not visible to the other clients or to the server.

Neural network models are not initialized explicitly
before training. Existing gradient inversion attacks in the
literature assumed that the neural network model used by the
attack was untrained. Yet, we discovered that initial weights in
the neural network model substantially affect the difficulty of
performing the gradient inversion attack. As a rule of thumb,
to launch a successful attack, gradients need to have large
magnitudes and contain the most information to recover the
data. In fact, we discovered an explicit weight initialization
step in the source code of both the DLG algorithm [1] and
other alternatives derived from DLG [2], [3], [10]. Such
an initialization step uses initial random weights and biases
with a broader range of values using an uniform distribution,
compared to the range of values that is initialized by PyTorch.

This initialization step produces a neural network model that
is more naive, which conveys more informative gradients to
the attacker.

In production FL, training a pre-trained global model is
more common than training from scratch. Even if we intend to
train a model from scratch, the model will evolve into different
states over multiple communication rounds. The gradient will
be closer to zero over an appropriate training process as
the loss is approaching the minimum, leading to a more
challenging attack on a trained model. Unless an attacker
performs gradient inversion at the beginning of a federated
learning session with a naïve model, there is very limited
information about the raw data carried by the gradients.

To compare the capability of image reconstruction under
different scenarios of model initialization and training stages,
we ran the DLG attack on arbitrary images in the CIFAR-10
dataset and show the converged results in Table I, where
different random seeds (RS1, RS2, and RS3) were used to
generate dummy data in multiple trials. By comparing the
results with the same random seeds, we can observe that
there is a significant amount of noise in the recovered image
when the shared gradients come from an untrained network
initialized by PyTorch. When a pre-trained network model is
used, we can hardly recognize the recovered images. Even for
the best cases where shared gradients come from an untrained
model with random weights explicitly initialized with a wider
distribution, the attack is challenging to realize without using
a particularly delicate choice of random seeds for generating
the dummy data.

There are multiple update steps (across batches and
epoches) in local training. With FedAvg [9], a client selected
by the server performs τ = E ·n/B steps of gradient descent
in each communication round, where n is the number of
data samples at the client, E denotes the number of local
training epochs in each communication round over the local
dataset, and B is the local mini-batch size in each epoch.
However, existing attacks are only capable of reconstructing
one or multiple images when they are used as a full batch for
training in a single gradient descent step (i.e., B = n ≥ 1
and E = 1). In production FL, however, multiple images are
used across multiple update steps (i.e., n > 1, B < n,E > 1)
in training, with each of these steps corresponding to a mini-
batch in an epoch. The attacker’s ability to reconstruct images
using gradient matching may be substantially affected as the
local model evolves throughout multiple update steps, since the
attacker only has access to the global model at the beginning
of each communication round, and the assumption of having
only a single gradient descent step is no longer valid.

Label estimation is more challenging with non-i.i.d. data
distributions. It was shown that labels of a single image [3] or
even of a batch of images [4] can be estimated from the aver-
aged gradients. However, the accuracy of such label estimation
will be reduced if multiple images belong to one label [11]. In
production FL, the distribution of local data across different
clients is non-i.i.d. (independent and identically distributed),
and data samples on the same client will correspond to fewer

3



TABLE I: Reconstructing a single image using the DLG attack, with different model initialization methods or training stages.

Ground truth Untrained network with
explicit initialization

Untrained network with
default PyTorch initialization

Trained network pre-trained
with the same data

RS1 RS2 RS3 RS1 RS2 RS3 RS1 RS2 RS3

TABLE II: Assumptions and settings: production FL vs. what was used in existing gradient leakage attacks.

Parameters/Settings What is practical in production FL Used in previous attacks

Network model state Model in an arbitrary communication
round Untrained model with explicit initialization

The number of epochs E, Multiple local steps with

E:stronger−−−−−−→ n:stronger−−−−−→ B:stronger−−−−−−→ Examples
1 ≥ 1 1 ≥ 1 = n ≤ n
✓ ✓ ✓ DLG [1]
✓ ✓ ✓ iDLG [3]

the number of data samples n, E ≥ 1, n ≥ 1, B ≤ n ✓ ✓ ✓ csDLG [2]and batch size B ✓ ✓ ✓
✓ ✓ ✓ GradInversion [4]

Data heterogeneity non-i.i.d. distribution Not fully investigated

Gradient descent optimizer Incorporating learning rate, momentum,
weight decay, learning rate schedule Fixed learning rate only

Other prior knowledge Not accessible for the server Batch normalization statistics [2], [4], private labels [2], etc.

labels as a result of such a non-i.i.d. distribution. Under
these circumstances, the accuracy of label estimation may be
significantly affected.

B. More Sophisticated DLG Attacks

Approximating gradients from updates. As we have
argued, instead of gradients, model updates are transmitted
from clients to the server in production FL. When training
a neural network in federated learning, each client tries to
optimize the network parameters θ using a loss function Lθ

on local training data. With a model Fwk
t

, the gradient ∇k
t

at a local training step can be evaluated by ∇Lθ(Fwk
t
) and

the new model weights can be updated with a learning rate
η as wk

t+1 = wk
t − η∇k

t . With τk steps of local training
completed, the model weights at the end of this commu-
nication round can be expressed as wk(t + 1) : wk

t+τk .
After multiple local steps of training in a communication, the
server updates the global model by the local model updates
(delta) as w(t + 1) = w(t) +

∑
k

nk

n ∆k(t, t + 1), where
∆k(t, t+ 1) = wk(t+ 1)− wk(t).

Existing work in the literature [7], [12] considered gradients
and model updates as mathematically equivalent, and used
Eq. (2) to convert the delta ∆k(t, t + 1) to gradients before
performing gradient matching. Note that, for such an approxi-
mation to be accurate, the fixed learning rate used at the victim
client (or shared between all the clients) must be known by
the attacker.

∇k(t, t+ 1) = −∆k(t, t+ 1)

η
(2)

Even with a known learning rate, such an approximation
only works effectively in the simplest case where only the
learning rate is used in the local gradient descent steps. In
production FL, however, there are a number of other factors,
such as momentum, weight decay, and learning rate schedules,
that are used routinely as best practices when training neural
networks. Gradient approximation from model updates will
fail in these more realistic settings as the computation is not
fully reversible for the attacker [13].

Matching deltas from updates. As an alternative to ap-
proximating gradients from updates, Geiping et al. [2] di-
rectly conducted the matching process over model updates
(or updated weights), with a similar matching mechanism to
conventional gradient matching. The attacker directly matches
its dummy weights or weight delta with the absolute weights
or model updates.

For delta matching to be effective, the server requires a
series of prior knowledge to realize the same gradient descent
process using the dummy data instead, including the number
of images to be reconstructed n, the batch size B, the learning
rate η, and other gradient descent factors such as weight
decay and momentum. What’s more, the effectiveness of the
delta matching process relies heavily on the assumption that
attackers know the data labels [2]. Without known labels as
prior, data reconstruction will become harder. But as we have
pointed out earlier in this section, label recovery often fails
in production FL, where client data distributions are usually
non-i.i.d.

Summary. Based on our analysis so far, the most feasible

4



way to perform this kind of attack in federated learning is
by matching deltas from updates. Therefore, when we devise
our new defense and conduct experiments, we only consider
matching deltas from updates, which does not imply that our
defense is ineffective against attacks that approximate gradi-
ents from updates. We show in Table II the stark differences
between assumptions in the gradient leakage literature and
practical settings in production FL.

IV. OUTPOST: OUR LIGHTWEIGHT DEFENSE

Thanks to the inherent resilience against gradient leakage
attacks in production FL, such as multiple local iterations
and more complex gradient descent optimizers, it becomes
feasible to design a simple, lightweight, yet effective gradient
protection mechanism as a proactive defense, without sacrific-
ing the training performance in FL sessions. In this section,
we propose a new defense mechanism, called OUTPOST, to
achieve these objectives.

A. OUTPOST: Mechanism Design

Privacy leakage risk. The scale of the initial distribution
has a significant effect on both the outcome of the opti-
mization procedure and on the ability of the neural network
model to generalize [14]. To elaborate what we have found
in Section III, the default model initialization in PyTorch
uses the Kaiming Uniform method [15] for both linear and
convolutional layers. The weights (and biases) of each layer
are values drawn randomly from a uniform distribution of
U(−

√
1

in_features ,
√

1
in_features ), where in_features is the size

of the previous layer. However, the explicit model weight ini-
tialization in those existing attacks for generating the gradients
uses a distribution of U(−0.5, 0.5), which is of a much larger
scale. This phenomenon gives us insights that the magnitude
of neural network weights can intuitively reveal the privacy
leakage risks of the corresponding gradients. Therefore, we
employ the variance statistics of the neural network weights
as a way to quantify the privacy leakage risks per layer. We
denote the scalar variance of all weights at layer d as Var [wd].
Then, the privacy leakage risk at the d-th layer of the client
k’s local model at communication round t iteration i can be
expressed as rkt+id

= Var
[
wk

t+id

]
.

Selective perturbation. Existing defenses based on gradient
compression or pruning techniques are designed for pruning
gradients with small magnitudes to zeros. As these gradients
have insignificant effects when weights are updated, the ac-
curacy and convergence speed are both preserved with these
techniques in place. However, we doubt the effectiveness of
this method in the context of gradient leakage attacks, as the
remaining gradients still carry the primary information for data
reconstruction. With this insight, we suspect that perturbing
those insignificant gradients cannot sufficiently protect privacy
information from recovering. Therefore, we tend to also per-
turb gradients of which the model parameters contain more
important information.

We choose the diagonal of the Fisher information matrix
(FIM) to estimate how important a certain parameter is.

FIM [16] is strongly related to the Hessian Matrix, indicating
the curvature of the loss function for efficient optimization.
The Fisher information of the model can be expressed as:

Iθ = Ep(x|θ)
[
∇θ log p(x | θ)∇θ log p(x | θ)T

]
, (3)

where log p(x | θ) is a the log-likelihood function given by
the model with parameter θ.

However, it is infeasible to directly use FIM or Hessian
information in the context of deep learning as the likelihood
is intractable. We use the empirical Fisher information matrix
instead, which crudely approximates the FIM, and is often
used to make computation easier [17]. We express the empir-
ical Fisher as

F̂ =
1

n/B

n/B∑
i=1

∇Lθi · ∇Lθ
⊤
i , (4)

where ∇Lθi denotes the gradient w.r.t. the i-th samples at the
given point, and · is the outer product of individual gradients.

In the given iteration, we can compute the empirical Fisher
for each model parameter based on average gradients over
this batch of data. When performing the perturbation, we only
choose gradients with the φ% highest values of empirical
Fisher in each layer to add noise, at a level determined by
the privacy leakage risk.

Perturbation with iteration-based decay. As we have
found that model updates shared after multiple local training
steps have a decreased risk of leaking information about
the raw training data, we propose to devise a schedule in
OUTPOST to adaptively perturb gradients in different local
training steps. Unlike existing defenses that treat gradients in
each local step equally, we introduce a bias on the probability
of perturbating gradients according to the number of local
iterations. Specifically, in each local training iteration i, the
probability of a client applying perturbation on its gradients
averaged over a mini-batch at the current iteration is deter-
mined by Pr = 1/(1 + β · i), where β is the hyperparameter
to control how fast the probability decay is as the number of
iterations grows.

The layer-based perturbation consists of two steps: (1)
compressing gradients by their magnitudes: ρ% of the smallest
gradients in each layer l are pruned to zeros; (2) adding
noise to gradients by their privacy leakage risks: noise is
added to each layer l of the gradients following the Gaussian
distribution N (0,

(
λrkt+id

)2
), where λ controls the range of

variance. With such a design, OUTPOST is a simple and self-
adaptive defense mechanism against time-varying levels of
privacy leakage risks, yet without introducing a substantial
amount of computation overhead. The overall random pertur-
bation mechanism in OUTPOST is shown as Algorithm 1.

B. Convergence Guarantee with the FedAvg Algorithm

Our convergence analysis of FedAvg on non-i.i.d. data with
the OUTPOST defense mechanism is based on the following
assumptions. We use the same assumptions (Assumptions 1
to 5) as [8] on local objective functions F1, · · · , FN and partial
device participation.

5



Algorithm 1 FedAvg local training at client k with OUTPOST

Input: Broadcast the global model Fwt with weights w(t) of
the current communication round t; learning rate η; the
number of local data samples n; the number of epochs E;
batch size B; Initial iteration number as 0

Output: Local model update ∆k(t, t+ 1)
1: Set local model weights same as the global one wk(t) =

w(t)
2: for each epoch 1 to E do
3: for each batch 1 to n/B do
4: Iteration i = i+ 1
5: Compute loss and derive gradient at the current

iteration ∇k
t+i = ∇Lθ(Fwk

t+i
)

6: if a random value (∈ [0, 1)) ≤ Pr = 1/(1 + β · i)
or i = 1 then

7: Evaluate privacy leakage risks based on current
model per layer by rkt+id

= Var
[
wk

t+id

]
8: Perform pruning with threshold ρ% and update

perturbed gradient to ∇̃k
t+i

9: Add noise to the selected φ% gradient at each
layer and update the perturbed gradient as ∇̃k

t+i = ∇̃k
t+i+

m where m ∈ N (0,
(
λrkt+id

)2
)

10: else
11: Update perturbed gradient as ∇̃k

t+i = ∇k
t+i

12: end if
13: Update local model weights with the perturbed

gradient and learning rate as wt+i = wt+i−1 − η∇̃k
t+i

14: end for
15: end for
16: Send the model update ∆k(t, t+1) = wk(t+1)−wk(t)

to the server

Assumption 1. F1, · · · , FN are all L-smooth: for all v and
w, Fk(v) ≤ Fk(w) + (v− w)T∇Fk(w) + L

2 ∥v −w∥22.

Assumption 2. F1, · · · , FN are all µ-strongly convex: for all
v and w, Fk(v) ≥ Fk(w)+ (v− w)T∇Fk(w)+ µ

2 ∥v−w∥22
Assumption 3. Let ξkt be sampled from the k-th
device’s local data uniformly at random. The vari-
ance of stochastic gradients in each device is bounded:
E
∥∥∇Fk

(
wk

t , ξ
k
t

)
−∇Fk

(
wk

t

)∥∥2 ≤ σ2
k for k = 1, · · · , N .

Assumption 4. The expected squared norm of stochastic gra-
dients is uniformly bounded, i.e., E

∥∥∇Fk

(
wk

t , ξ
k
t

)∥∥2 ≤ G2

for all k = 1, · · · , N and t = 1, · · · , T − 1

Assumption 5. Assume St contains a subset of K indices
uniformly sampled from [N ] without replacement. Assume the
data is balanced in the sense that p1 = · · · = pN = 1

N . The
aggregation step of FedAvg performs wt ←− N

K

∑
k∈St

pkw
k
t .

We now derive new bounds for Assumption 3 with our
defense. The expected norm of the distance between the
perturbed gradients ∇F ′

k

(
W k

t , ξ
k
t

)
and the original gradients

∇Fk

(
W k

t , ξ
k
t

)
of the whole model is the sum of that of every

layer. Thus,

E
∥∥∥∇F ′

k

(
W k

t , ξ
k
t

)
−∇Fk

(
W k

t , ξ
k
t

)∥∥∥2
=

D∑
d=1

E
∥∥∇F ′

k

(
wk

dt, ξ
k
t

)
−∇Fk

(
wk

dt, ξ
k
t

)∥∥2
≤
(
λrkd

)2 ·D,

(5)

according to our perturbation noise distribution N (0,
(
λrkd

)2
),

where rkd ∈ [0, 1] is the privacy risk of the d-th layer, and D
is the total number of layers of the stochastic gradients.

By using the norm triangle inequality, we can bound the
variance of stochastic gradients after perturbation in each
device as

E
∥∥∥∇F ′

k

(
W k

t , ξ
k
t

)
−∇Fk

(
W k

t

)∥∥∥2
≤E

∥∥∥∇F ′
k

(
W k

t , ξ
k
t

)
−∇Fk

(
W k

t , ξ
k
t

)∥∥∥2
+ E

∥∥∥∇Fk

(
W k

t , ξ
k
t

)
−∇Fk

(
W k

t

)∥∥∥2
≤
(
λrkd

)2 ·D + σ2
k,

(6)

in which we use Assumption 3 and Eq. (5).
Similarly, we can derive new bounds for Assumption 4

of the expected squared norm of stochastic gradients af-
ter pertuerbation in each device as E

∥∥∇F ′
k

(
wk

t , ξ
k
t

)∥∥2 ≤(
λrkd

)2 ·D +G2 for all k = 1, · · · , N and t = 1, · · · , T − 1.
Similar to [8], let F ∗ and F ∗

k be the minimum values of F
and Fk, respectively. The term Γ = F ∗ −

∑N
k=1 pkF

∗
k > 0

can be used for quantifying the degree of non-i.i.d. We then
have the following convergence guarantee with FedAvg on
non-i.i.d. data, and with the OUTPOST defense mechanism.

Theorem 1. Let Assumptions 1 to 5 hold and L, µ, σk, G be
defined therein. Choose κ = L

µ , γ = max{8κ,E} and the
learning rate ηt =

2
µ(γ+t) . Then

E [F (wT )]− F ∗ ≤
κ

γ + T − 1

(
2(B + C)

µ
+

µγ

2
E ∥w1 −w∗∥2

)
,

where

B =

N∑
k=1

p2k(σ
2
k+

(
λrkd

)2·D)+6LΓ+8(E−1)2(
(
λrkd

)2·D+G2),

C =
N −K

N − 1

4

K
E2(

(
λrkd

)2 ·D +G2).

V. EXPERIMENTAL RESULTS

We are now ready to compare OUTPOST with state-of-
the-art defense mechanisms in the literature, against different
gradient leakage attacks and under a variety of experimental
settings. All our experiments are conducted on a server with
two Intel Xeon Silver 4210R CPUs and one NVIDIA RTX
A4500 GPU with 20 GB CUDA memory.

Defense and attack baselines. We compare OUTPOST
with two state-of-the-art defense mechanisms: Soteria [5]

6



and GradDefense (GD) [6], along with two commonly used
defenses for general attacks in federated learning — gradient
compression (GC) [1], which prunes small values in gradi-
ents; and differential privacy (DP) [18], which adds noise
to gradients. We evaluate these defense mechanisms against
two gradient leakage attacks: DLG [1] and csDLG [2]. When
applying these attacks, we use the mechanism of matching
deltas from updates, which is the most practical choice in
production FL.

Datasets and models. We evaluate both gradient leakage
attacks and defenses in PLATO,2 an open-source research
framework for federated learning. We show data reconstruction
results over two image classification datasets: EMNIST and
CIFAR-10. We use the same LeNet model evaluated in [1], [2],
which consists of 4 convolutional layers and 1 fully-connected
layer.

Evaluation metrics. To evaluate the effectiveness of the
defense mechanisms, we use mean-square-error (MSE), struc-
tural similarity index measure (SSIM), and learned perceptual
image patch similarity (LPIPS) as our metrics to measure
the distance between the reconstructed image and raw image.
To evaluate the impact of the defenses on the convergence
performance of FL training, we show the accuracy of the
global model on the validation dataset over multiple commu-
nication rounds using the FedAvg algorithm. To evaluate the
computation overhead introduced by the defenses, we measure
the wall-clock time averaged across multiple communication
rounds.

Hyperparameter configurations. We evaluate OUTPOST
with respect to two aspects: (1) training performance, where
we examine how our defense affects the FL training time and
the validation accuracy of the converged model in production
FL settings; and (2) defense effectiveness, where we evaluate
how effective OUTPOST is under settings where the gradient
leakage attacks are as threatening as possible. For alternative
defense mechanisms, we have the following configurations.
For GC, we set the pruning rate of gradients to 80%; for DP,
we use Laplacian noise and set the noise variance to 0.1; for
Soteria, we set the pruning rate of the the fully connected
layer’s gradients to 50%; for GradDefense, we turn on the
local clipping operation and use the same settings in their
source code with 0.01 as the Gaussian noise variance; and
for OUTPOST, we set our hyperparameters as λ = 0.8, φ =
40, β = 0.1, ρ = 80.

A. Evaluating the Training Performance

With respect to the training performance, for both datasets,
data is non-i.i.d. distributed across 100 clients, each holding
1% of the total training samples (i.e., 1128 for EMNIST and
500 for CIFAR-10). Regarding the local epoch E and batch
size B, we set them as E = 5, B = 32 for both datasets.
We apply the SGD optimizer for local training and set the
learning rate η to 0.01. In each communication round, the
server randomly selects 10 clients out of 100 and aggregates

2Available online at https://github.com/TL-System/plato.

No defense
GC

DP
Soteria

GradDefense
Outpost

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

Wall clock time elapsed (s)
0 200 400 600 10,000 20,000 30,000 40,000

(a) EMNIST
No defense
GC

DP
Soteria

GradDefense
Outpost

Ac
cu

ra
cy

 (%
)

10

20

30

40

50

60

Wall clock time elapsed (s)
0 1000 2000 5×104 10×104 15×104

(b) CIFAR-10

Fig. 3: The impact of defenses on FL training.

their model updates. We terminate FedAvg training sessions
with various defenses when the number of communication
rounds reaches 100 on EMNIST and 150 CIFAR-10, where the
global models converge.

With respect to the validation accuracy of the converged
model and the elapsed wall-clock time, our results over EMNIST
and CIFAR-10 have been shown in Fig. 3. If we examine the
ultimate global model accuracy at the end of each training
session, it can be observed that all the defenses incurred
a certain amount of losses. DP affected the convergence
performance the most, and only reached 91.5% and 83.1% of
the validation accuracy without any defense, over EMNIST and
CIFAR-10 datasets, respectively. This observation is consistent
with our expectations based on these defense mechanisms.
GC and Soteria both prune gradients with small magnitudes
to zeros, which have insignificant effects on weights to be
updated. Though GradDefense and OUTPOST also add noise to
gradients, the level of noise is controlled with model sensitivity
and model status, respectively. Overall, OUTPOST induces
only 3.28% and 2.19% accuracy loss with 3.54% and 1.47%
delay, over EMNIST and CIFAR-10 datasets, respectively.

When we examine the wall-clock time elapsed in the same
number of communication rounds, it is apparent from Fig. 3
that GC, DP and OUTPOST as defenses did not introduce
any significant delays due to the computation overhead, while

7



TABLE III: The effectiveness of various defense mechanisms against different attack baselines, datasets, hyperparameter
configurations.

DLG csDLG

[Scenario 1] EMNIST: E = 1, n = 1, B = 1

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE ↑ 6.6e-3 13.96 113.63 95.19 32.57 77.05 2.6e-7 199.08 297.84 296.76 360.98 294.678

LPIPS ↑ 7.1e-2 0.55 0.60 0.63 0.64 0.58 5.8e-7 0.60 0.66 0.63 0.64 0.68
SSIM ↓ 0.99 0.30 0.19 3.3e-2 1.0e-2 0.13 1.00 0.32 6.5e-2 4.1e-2 1.7e-2 1.6e-2

[Scenario 2] EMNIST: E = 1, n = 2, B = 1

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE ↑ 5.8e-2 69.87 319.30 16.07 25.50 75.92 0.14 336.05 1231.82 782.93 668.79 277.73

LPIPS ↑ 0.31 0.61 0.66 0.70 0.65 0.67 0.40 0.60 0.65 0.59 0.63 0.66
SSIM ↓ 0.77 3.7e-2 2.4e-2 4.7e-2 2.7e-2 6.4e-2 0.70 3.3e-2 1.4e-2 1.6e-2 3.4e-2 3.8e-2

[Scenario 3] CIFAR-10: E = 1, n = 1, B = 1

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE ↑ 5.1e-2 7.83 34.08 25.91 11.46 13.10 5.9e-5 27.50 34.51 25.91 56.66 35.24

LPIPS ↑ 0.53 0.77 0.77 0.76 0.74 0.77 1.8e-3 0.76 0.78 0.76 0.77 0.77
SSIM ↓ 0.57 4.4e-2 3.6e-2 5.5e-2 2.2e-2 2.1e-2 0.99 2.6e-2 2.9e-2 5.5e-2 1.7e-2 3.4e-2

[Scenario 4] CIFAR-10: E = 1, n = 16, B = 16

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE ↑ 1.37 4.82 19.92 2.85 4.04 15.85 6.2e-2 6.85 13.68 14.87 2.1e10 13.03

LPIPS ↑ 0.67 0.69 0.71 0.70 0.69 0.70 0.51 0.69 0.71 0.69 0.71 0.70
SSIM ↓ 2.9e-2 1.9e-2 1.5e-2 2.2e-2 2.2e-2 1.7e-2 0.30 4.5e-2 1.6e-2 2.7e-2 3.8e-2 3.1e-2

GradDefense and Soteria extended the training session an
order of magnitude longer than FedAvg without any de-
fenses. This is because Soteria has to learn the perturbed
data representation in each local SGD iteration based on data
representation in the FC layer of the model trained after
that iteration. Similarly, GradDefense needs to compute model
sensitivity in each iteration based on which it adds Gaussian
noise to selected slices of gradients. In contrast, OUTPOST is
an order of magnitude less time-consuming than these state-of-
the-art alternatives, thanks to its fast evaluation of the privacy
leakage risk based on model status and its perturbation with
iteration-based decay.

One may wonder why Soteria and GradDefense are not
applied to model updates at the end of each communication
round instead, since the notions of gradients and model
updates are not clearly differentiated in their papers. This is
due to the fact that, to compute the mask for pruning, Soteria

needs detailed information such as the gradient of the loss
with respect to the input batch data, which is only accessible
in each SGD iteration. The slicing and perturbation methods
in GradDefense are also gradient specific.

B. How Effective are the Defenses?

For our defense evaluation, we make the attack as strong as
possible by having only one client participate in the training,
with the attack performed in the first round of training. The
model is explicitly initialized with a wider distribution, and no
momentum, weight decay, or learning rate scheduler is applied
to the SGD optimizer. Although we’ve shown in Section III
that this setting is completely unrealistic, we only use it to
demonstrate the effectiveness of the defenses, and exaggerate
the difference between various defense mechanisms in this
extreme case. For both DLG and csDLG attacks, we applied
the L-BFGS optimizer with 3000 iterations of reconstruction to

8



guarantee convergence, and presented the worst defense result
in 10 trials with different dummy data.

Table III shows the results from our experiments, evaluating
a variety of metrics for each defense. The up and down
arrows indicate the direction of better defense performance.
We also put the reconstructed images along with ground truth
images in the last row of each experiment scenario to show if
they are recognizable by human eyes. Note that the order of
reconstructed images may be inconsistent with the raw ones
in Scenario 4, which is an inherent issue of the attacks.

Our previous argument — that gradient leakage attacks are
not practical when there are multiple update steps in local
training — can be supported by our results in the columns
of attacks without defense in Table III, even though csDLG
demonstrates a better data reconstruction capability in general.
As shown in Scenario 2, the performance of attacks is heavily
affected with merely two update steps each having a batch
of one data sample as the color difference in reconstructed
images is less clear compared to Scenario 1. Performing the
attack on a larger batch size not only makes the attacks
significantly slower, but also worse, with only one image out of
16 being reconstructed using csDLG without defense. Realistic
FL settings use batch sizes that are many magnitudes greater
than 16, meaning that attacks are unlikely to ever converge;
and even if they were to converge, a successful reconstruction
would be nearly impossible.

We notice that MSE is the most inconsistent metric and
a higher MSE does not correlate to a reconstructed image
containing fewer key features of ground truth. Most related
works use this metric as a basis for their conclusions, which
means we may need to revisit some of their claims. Compared
to CIFAR-10 images with 32 × 32 pixels and three channels,
images in EMNIST have 28× 28 pixels in resolution with only
one channel, which makes it easier, not only to leak privacy
information in gradients but also to recognize visually from
the reconstructed images, even with defenses such as GC.
Our OUTPOST does not achieve the highest LPIPS and lowest
SSIM in every scenario with both attack methods; however,
it can still provide solid and sufficient protection resulting in
highly noisy images.

VI. RELATED WORK

Starting from the pioneering work in [1], researchers have
made efforts to improve the capability and efficiency of
gradient leakage attacks. One of the highlights of such efforts,
iDLG [3], further discovered that ground-truth labels can be
directly extracted from the given gradients, which simplified
the gradient matching process since it only needed to recover
the inputs x′ in Eq. (1). Different from using the Euclidean
distance as the objective function in DLG, Geiping et al. [2]
utilized cosine similarity between the target gradient and the
dummy gradient to optimize the reconstructed data during
local updates. GradInversion [4] demonstrated even higher
fidelity and better localization as compared with [1], [2].
GIAS [10] revealed more severe privacy leakage of raw data
from gradients with prior knowledge about the pre-trained

generative model. These variants have made up the landscape
of gradient leakage attacks to date.

To preserve the privacy from the gradients, researchers
have applied several categories of general-purpose defenses
to the gradient leakage attack, such as gradient compres-
sion and local differential privacy. But as [6] argued, these
mechanisms were not custom tailored to this specific attack,
and may incur either unacceptable computational overhead or
significant degradation of performance, with respect to the
converged accuracy after the FL training process completes. A
particular defense, Soteria [5], was proposed specifically for
the gradient leakage attack. In order to reduce the quality of
the reconstructed data, and based on their finding that privacy
leakage mainly comes from data representations embedded in
the fully connected (FC) layer, it proposed a delicate design
of perturbation on the data representation in the FC layer
of shared gradients. Yet, GradDefense [6] showed that the
raw data can still be recovered from the remaining gradients
by muting the perturbed layer, and thus proposed a stronger
defense by perturbing all the layers of the shared gradients
by their measured sensitivity. Setting aside its statements
contradictory to [5], GradDefense [6] demanded a substan-
tial amount of computation for sensitivity measurements and
perturbation by all the layers. Based on our own empirical
observations and evaluations of the threat of gradient leakage
attacks in the context of production FL, we are motivated
to devise OUTPOST, a defense mechanism that is simple but
good enough to defend against the small attack surface in
production FL. OUTPOST is designed to optimize the trade-
off between computation overhead, accuracy guarantee, and
privacy preservation.

VII. CONCLUDING REMARKS

In this paper, we have thoroughly investigated gradient leak-
age attacks, a popular category of attacks in federated learning.
Our original objective was to conduct an in-depth study of
these attacks in the context of production federated learning
systems, and to design a practical, simple, and lightweight
defense mechanism that can be used to defend against real-
world threats. Along our journey to achieve this goal, we
discovered that the effectiveness and efficiency of existing
gradient leakage attacks are weakened by a substantial margin
in standard federated learning settings, where clients send
model updates rather than gradients, perform multiple local
training iterations over local data with a non-i.i.d. distribution,
and initialize model weights normally. With weakened attacks,
we proposed OUTPOST, a new defense mechanism that can
provide sufficient protection on shared model updates without
sacrificing accuracy and convergence speed, and can adapt
to time-varying levels of the privacy leakage risk throughout
the federated learning process. We showed convincing results
from a wide array of experiments that OUTPOST incurs much
less computational overhead, achieves better accuracy, and
converges much faster than its state-of-the-art alternatives in
the literature. The authors have provided public access to their
code at OUTPOST.

9



REFERENCES

[1] L. Zhu, Z. Liu, , and S. Han, “Deep Leakage from Gradients,” in
Advances in Neural Information Processing Systems (NeurIPS), 2019.

[2] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting
Gradients — How Easy Is It to Break Privacy in Federated Learning?”
Advances in Neural Information Processing Systems (NeurIPS), vol. 33,
pp. 16 937–16 947, 2020.

[3] B. Zhao, K. R. Mopuri, and H. Bilen, “iDLG: Improved Deep Leakage
from Gradients,” arXiv preprint arXiv:2001.02610, 2020.

[4] H. Yin, A. Mallya, A. Vahdat, J. M. Alvarez, J. Kautz, and P. Molchanov,
“See through Gradients: Image Batch Recovery via GradInversion,” in
Proc. IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2021, pp. 16 337–16 346.

[5] J. Sun, A. Li, B. Wang, H. Yang, H. Li, and Y. Chen, “Soteria: Provable
Defense against Privacy Leakage in Federated Learning from Represen-
tation Perspective,” in Proc. IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2021, pp. 9311–9319.

[6] J. Wang, S. Guo, X. Xie, and H. Qi, “Protect Privacy from Gradient
Leakage Attack in Federated Learning,” in Proc. IEEE INFOCOM,
2022.

[7] W. Wei, L. Liu, M. Loper, K.-H. Chow, M. E. Gursoy, S. Truex,
and Y. Wu, “A Framework for Evaluating Client Privacy Leakages
in Federated Learning,” in Proc. European Symposium on Research in
Computer Security. Springer, 2020.

[8] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the Convergence
of FedAvg on Non-IID Data,” in Proc. International Conference on
Learning Representations (ICLR), 2020.

[9] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-Efficient Learning of Deep Networks from Decentral-
ized Data,” in Proc. International Conference on Artificial Intelligence
and Statistics (AISTATS), 2017, pp. 1273–1282.

[10] J. Jeon, K. Lee, S. Oh, J. Ok et al., “Gradient Inversion with Generative
Image Prior,” Advances in Neural Information Processing Systems
(NeurIPS), vol. 34, pp. 29 898–29 908, 2021.

[11] Y. Huang, S. Gupta, Z. Song, K. Li, and S. Arora, “Evaluating Gradient
Inversion Attacks and Defenses in Federated Learning,” Advances in
Neural Information Processing Systems (NeurIPS), vol. 34, 2021.

[12] H. Wu and P. Wang, “Fast-Convergent Federated Learning with Adaptive
Weighting,” IEEE Trans. on Cognitive Communications and Networking,
vol. 7, no. 4, pp. 1078–1088, 2021.

[13] D. Maclaurin, D. Duvenaud, and R. Adams, “Gradient-Based Hyperpa-
rameter Optimization through Reversible Learning,” in Proc. Interna-
tional Conference on Machine Learning (ICML), 2015, pp. 2113–2122.

[14] I. J. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cam-
bridge, MA, USA: MIT Press, 2016, http://www.deeplearningbook.org.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification,” in
Proc. IEEE International Conference on Computer Vision (ICCV), 2015,
pp. 1026–1034.

[16] S.-I. Amari, “Natural Gradient Works Efficiently in Learning,” Neural
Computation, vol. 10, no. 2, pp. 251–276, 1998.

[17] J. Martens, “Deep Learning via Hessian-Free Optimization,” in Proc. In-
ternational Conference on Machine Learning (ICML), vol. 27, 2010, pp.
735–742.

[18] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning Dif-
ferentially Private Recurrent Language Models,” in Proc. International
Conference on Learning Representations (ICLR), 2018.

10


