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AbstrAct
Federated unlearning has emerged very 

recently as an attempt to realize “the right to 
be forgotten” in the context of federated learn-
ing. While the current literature is making efforts 
on designing efficient retraining or approximate 
unlearning approaches, they ignore the informa-
tion leakage risks brought by the discrepancy 
between the models before and after unlearning. 
In this paper, we perform a comprehensive review 
of prior studies on federated unlearning and pri-
vacy leakage from model updating. We propose 
new taxonomies to categorize and summarize 
the state-of-the-art federated unlearning algo-
rithms. We present our findings on the inherent 
vulnerability to inference attacks of the federated 
unlearning paradigm and summarize defense 
techniques with the potential of preventing infor-
mation leakage. Finally, we suggest a privacy 
preserving federated unlearning framework with 
promising research directions to facilitate further 
studies as future work.

IntroductIon
“The right to be forgotten” in recent privacy leg-
islation, such as the GDPR, grants users a right 
to request their private data be deleted. First 
introduced in the literature as machine unlearn-
ing problems, solutions were proposed to allow 
trained machine learning models to forget the 
data to be removed [1], [2]. In contrast to most 
existing studies that focused on centralized 
machine unlearning where the model owner has 
access to all the data, a new line of research, 
called federated unlearning, has emerged with an 
objective of extending the investigation of data 
removal and unlearning to the federated learn-
ing context. In federated learning (FL), multiple 
devices collaboratively train a shared model with-
out transmitting their private data, and may join 
or leave the training process at any time. Erasing 
a client’s entire or part of data from the global 
model can help improve the flexibility and reliabil-
ity of the FL systems.

Inherited from conventional machine unlearn-
ing, federated unlearning was proposed to meet 
the “right to be forgotten” requirement, but in a 
distributed setting. Federated learning adds some 
distinctive challenges to designing an effective 
unlearning algorithm, which have been identified 
by some prior work [3], [4]. New mechanisms 
have recently been designed [3], [4], [5], [6] for 

machine unlearning in the federated learning set-
ting, generally referred to as federated unlearning.

Existing work on federated unlearning usually 
assumes that all the data to be removed belongs 
to one client [3], [5] and thus the goal of the 
unlearning process is to erase the historical con-
tributions of that particular client to the global 
model training. An intuitive, yet naïve, way to 
perform unlearning is to retrain the model from 
scratch after removing the data requested to be 
deleted. However, it is quite computationally 
expensive to do so, and it is not practical to have 
the same set of clients participating in the retrain-
ing process again, which was assumed by some 
existing rapid retraining mechanisms [4]. Rather 
than retraining from scratch, we believe that the 
only feasible way in practice to perform federated 
unlearning is to use approximation algorithms.

There are, however, several unique challenges 
in federated learning that make it unlikely to apply 
existing approximation algorithms in conventional 
machine unlearning to the federated unlearning 
setting. In federated learning, individual contribu-
tions from one client in each communication round 
will be quickly spread across the other clients, due 
to global aggregation at the server in subsequent 
rounds. As such, these contributions are difficult 
to be isolated and removed. In addition, in feder-
ated learning, a client always keeps its own dataset 
privately, restricting access from either the server 
or the other clients participating in the same train-
ing session. Therefore, approximation algorithms 
in machine unlearning, such as dataset splitting or 
partitioning [2], cannot be readily applied.

However, existing studies on federated 
unlearning only focused on the efficiency of 
the unlearning process, but largely overlooked 
its inherent vulnerability, which diminished the 
expected benefits of preserving privacy with 
federated learning. The capability of identify-
ing if a data sample has been used for training 
a model, or that of reconstructing data samples 
from the trained model or even gradients, have 
been demonstrated by existing attacks such as 
membership inference attacks [7], [8], model 
inversion attacks [9], and gradient leakage attacks 
[10]. The unlearning framework can bring bene-
fits to these attackers and violate the intention of 
erasing a client’s private data without trace. From 
the perspective of a honest-but-curious server or 
an adversarial client, by taking advantage of the 
discrepancy between two versions of the global 
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model, i.e., models before and after the unlearn-
ing process, they are able to extract private data 
from these two model versions. This defeats the 
purpose of federated unlearning, where such 
private data are supposed to be deleted and pro-
tected from further exposure.

In this paper, we provide a comprehen-
sive review of the latest advances in federated 
unlearning, including its privacy risks that can 
compromise the goal of protecting clients’ pri-
vate data by erasing, with particular attention to 
membership inference attacks, as well as potential 
defense mechanisms. Throughout this paper, we 
will present original insights and commentary that 
have not been previously considered or empha-
sized in the literature.

the emergence of federAted unleArnIng
FedEraser [3] was proposed as the first attempt 
to approximate unlearning in the context of fed-
erated learning. It used a calibration technique 
to separate the individual contributions of cli-
ents as much as possible. The prerequisite is that 
the server has to store the history of parameter 
updates for every client. While this assumption 
is not unreasonable in practice, if there are more 
than a few hundred clients participating in an FL 
session, it may take up a large amount of stor-
age at the server. FedEraser is simply a retraining 
method that relies on extra rounds of communica-
tion between the server and clients where all the 
client participants adjust their historical updates 
with their historical dataset.

Similarly, Wu et al. [5] also required the server 
to store the history of updates for every client. 
However, instead of asking clients to retrain the 
model as FedEraser did, Wu et al.’s [5] method 
only asked the server to subtract all the histori-
cally averaged updates from the target client from 
the final global model to get a skewed unlearn-
ing model and then use knowledge distillation to 
train such a skewed unlearning model, using the 
original global model as the teacher model on 
an outsourced unlabelled dataset. This method 
needed to sample synthetic data with the same 
distribution of the entire dataset, and the accu-
racy of such a sampling process can be negatively 
affected by non-IID (not independent and iden-
tically distributed) data distribution, which is 
typically assumed in federated learning.

Liu et al. [4] proposed a rapid retraining 
method that retrained the global model on the 
remaining dataset by approximating the loss func-
tion using the first-order Taylor expansion, which 
relied on the participation of all the clients. This 
algorithm could simply be regarded as a rapid 

local training algorithm, not necessarily an approx-
imation algorithm for federated unlearning.

Halimi et al. [6] did not require the server to 
store parameter updates of clients and only relied 
on the target client who wished to opt out. The 
target client performed projected gradient ascent 
to train the global model to maximize the empiri-
cal loss on its local data before the deletion. The 
average of the remaining clients’ models is used 
as a reference model to measure the quality of 
unlearning.

Assumptions in Existing Work. Overall, the 
topic of federated unlearning has not been exten-
sively investigated yet. None of the existing studies 
has compared the performance of the model after 
unlearning with each other, except for the model 
after naïve retraining from scratch. As a result, it 
is not clear which existing algorithm performed 
the best with respect to the wall-clock time con-
sumed for unlearning, or the impact on global 
model accuracy. Moreover, existing work used sur-
prisingly different assumptions on the unlearning 
scenarios, including different unlearning targets and 
unlearning performers. These diverging assump-
tions intrinsically determine the limitations of their 
algorithms. In what follows, we present a detailed 
account of these assumptions in the existing work.

Data to be Unlearned. Existing work usually 
assumed that unlearning happens when a client 
completely opts out of the current FL session. 
However, there are many cases in federated 
learning where only a portion of a client’s data 
is requested to be removed. Such a difference is 
illustrated visually in Fig. 1. Existing work that only 
considered one of these scenarios may fail in the 
other. For example, the unlearning mechanism in 
Wu et al. [5] will not work as expected when the 
target client only requests to remove a portion of 
its data, since the server will remove all its histori-
cal average updates from the global model.

Different clients may have similar, or to some 
extent, shared training samples. In this case, 
removing (all or part of the) data of a client from 
the global model will also affect the performance 
of the unlearned model on the remaining data of 
other clients. Training the global model to maxi-
mize the empirical loss on the target client’s local 
data as Halimi et al. [6] did will naturally lead to 
a high loss on the same data at the other clients.

The Unlearner. Having different roles in fed-
erated learning — the server, the target client, or 
the remaining clients — to perform the unlearning 
leads to different benefits and deficiencies, since 
these roles have very different capabilities, access 
to data, and privacy leakage risks. As shown in 
Table 1, we categorize the existing work according 

FIGURE 1. Different assumptions on data to be unlearned.
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to the role that carries out the unlearning process, 
called the unlearner in this paper, and summarize 
the pros and cons with each role. Figs. 2a to 2c 
give an overview of the unlearning process under 
scenarios of different unlearners. We analyze each 
role as the unlearner as follows.

The Server (Fig. 2a). When a client requests 
to opt out of the ongoing FL session, the server 
is responsible for erasing the target client’s train-
ing data from the current global model before 
continuing the session, and to send it out to the 
remaining clients in the next communication 
round. To do this, the server has to store the his-
tory of updates and the check-in round for each 
client, in order to rebuild the global model as 
proposed in [5]. Some papers argued that the 
server is competent to perform the unlearning 
task because it has more computation power or 
storage capacity than the clients. In addition, no 
additional rounds of communication between 
the server and the clients are needed for unlearn-
ing purposes. One implied limitation is that it 
cannot accommodate the second unlearning tar-
get, where only parts of local data is requested 
to be removed from a client. This is due to the 
fact that the server cannot distinguish the cor-
relation between those local updates and the 
corresponding training data of the target client 
when rebuilding the global model.

The Remaining Clients or All Clients (Fig. 2b). 
The server may need to first roll back the global 
model to a previous checkpoint right before the 
target client was chosen for the first time. All 
the clients are then asked to participate in the 
retraining process, similar to regular FL with local 
fine-tuning or calibration if necessary [3], [4]. The 
target client may opt out prior to the retraining 
process commences, or may participate in the 
retraining process with the remaining data, for 
the corresponding unlearning target. This scheme 

requires the most extra participation and commu-
nication in the unlearning process, but it can make 
full use of the data owned by all the clients for 
retraining. In practice, however, it is not feasible to 
ask all the clients to help unlearn the target client 
or a portion of data belonging To the target client. 
In addition, the retraining process with calibration 
[3] or rapid retraining performed for unlearning 
purposes [4] may simply generate an offset new 
global model due to the stochastic characteristics 
of federated learning.

The Target Client (Fig. 2c). The unlearning 
only takes place at the target client, who has 
direct access to the data that needs to be deleted. 
After unlearning, the target client then sends 
the local update to the server for aggregation. 
This scheme is much more economical — with 
respect to both time and communication — than 
its alternatives. It is also more flexible for the tar-
get client to verify the unlearning performance 
locally. However, the model erasing effect of local 
unlearning certainly cannot compete with that 
of global retraining, where the model does not 
see the data supposed to be deleted at all. In 
some cases, certain clients may be less suitable 
for performing the unlearning process compared 
to others. For instance, if a client requires era-
sure after only a few rounds of training, it may be 
more practical to allow all clients to retrain from a 
previous checkpoint instead.

PrIvAcy threAts to federAted unleArnIng
Federated unlearning can add more risks to pri-
vacy attacks in federated learning, and more 
surprisingly, fail to protect the private data 
meant to be erased in the first place. We focus 
on studying the effectiveness of one major cat-
egory of inference attacks — the Membership 
Inference (MI) attack and its enhanced variants — 
in federated unlearning.

Unlearner Pros Cons

Server [5] Usually has more computation and storage power than clients
Needs to store the history of every participant’s parameter updates, and does not work 
well if only a portion of the data is requested to be removed from the target client

Remaining clients [3]
Has access to more data Induces extra computation or communication on non-target clients

All clients [4]

Target client [6]
Has access to the data to be deleted; can ensure the 
unlearning performance locally

Has limited approximation

TABLE 1. The pros and cons of different federated unlearners.

FIGURE 2. Different roles that carry out the unlearning process: a comparison. a) The server. b) All (or the 
remaining) clients. c) The target client.
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While other existing attacks such as model 
inversion attacks [9] and gradient leakage attacks 
[10] are also possible in the context of federated 
unlearning, we argue that it is more important to 
examine the intrinsic susceptibility of federated 
unlearning particular to the MI attacks, given the 
discrepancy between different versions of models 
before and after the unlearning process.

membershIP Inference AttAcks
Black-Box vs. White-Box MI Attacks. In black-box 
inference attacks, the adversary can only obtain 
the output of the model on an arbitrary input data 
but has no access to the model parameters. In 
white-box attacks, in contrast, the adversary also 
knows the model parameters and can obtain all 
the intermediate outputs of the model. White-box 
attacks are feasible in the context of federated 
unlearning, since the model architecture is gener-
ally known to both the server and the participating 
clients. Nasr et al. [8], for example, took advan-
tage of the stochastic gradient descent (SGD) 
algorithm used to train the models to launch 
effective white-box MI attacks.

Passive vs. Active MI Attacks. Most MI attacks 
are passive, which means the adversary only 
observes and infers the available model without 
making any modification to the learning process. 
In active MI attacks, the adversary participates in 
the training process and actively modifies the tar-
get model to better suit its attack. In the context of 
federated learning, the adversary can be the cen-
tral server or one of the clients participating in the 
federated learning. We will mainly focus on the 
honest-but-curious server adversary for our dis-
cussions in this paper, who stores and processes 
clients’ updates separately without modifying the 
model or interfering with the learning process. 
This can be considered a passive MI attack.

PrIvAcy leAkAge from model uPdAtIng
If there is an update in the training data, the 
resulted models before and after the update 
should reveal some information on the difference. 
Making use of both the original model and the 
updated model, compared to having only a single 
model, one can improve the effectiveness of MI 
on the updated training dataset. Many ML mod-
els inherently leak information during the model 
updating process and the diverse information of 
the updating dataset can be inferred [11], [12].

Threat Model. The threat model of the MI 
attack with model updates is illustrated in Fig. 3. 
It is considered that new data joins in the train-
ing dataset for machine learning model training 
over time [12]. For example, the training dataset 
is updated with new data D’, which is disjoint 
with the original data D. In this case, two models 
are generated from the training, M and M’. The 
adversary can take the models as black-boxes and 
observe the output of each model by querying 
data examples. With the output posteriors, the 
adversary infers if a data example belongs to the 
update set D ∪ D’.

Adversary’s Knowledge. There are two key 
assumptions on an adversary’s knowledge 
[11], [13]: (1) the target model architecture, 
and (2) a local shadow dataset from the same 
distribution as the target dataset. An adversary 
needs them to train a shadow model to mimic 
the behavior of the target model, generating 
training data for the attack model. Neverthe-
less, these papers have also shown by empirical 
results that, even without access to data of the 
same distribution and same model architecture, 
the attack can still maintain its effectiveness to 
some extent.

Workflow. The general attack pipeline consists 
of three phases: the adversary (1) generates the 
posteriors of the two versions of target models 
M and M’ by querying a target data example x; 
(2) aggregates the two posteriors to construct the 
feature [13] (or encodes and decodes the poste-
rior difference to generate update set information 
[11]); and (3) inputs the constructed feature to 
the attack model to distinguish if the target data 
example is in the update set D ∪ D’.

Model Updating vs. Model Unlearning. Chen 
et al. [13] focused on investigating MI attacks in 
the context of machine unlearning [13], where 
the machine learning model erases some specific 
training examples that are removed from the train-
ing dataset. Having access to the original and the 
unlearned model in machine unlearning is closely 
related to having access to the original model and 
the updated model when updating the training 
dataset, if the unlearning process is performed 
by retraining from scratch [12]. Taking Fig. 3 as 
example, the updated training dataset in this case 
will become the unlearned training dataset D\D’ 
instead, where D’ includes all the data the model 
has to unlearn.

FIGURE 3. Threat model: MI with a single model update (or unlearning, as depicted in dashed containers).
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membershIP Inference AttAcks In federAted unleArnIng

We are curious about whether existing MI attacks 
with model updating are still effective in the con-
text of federated unlearning, where model training 
is distributed and the training data is kept locally.

As we have mentioned above, the threat 
model in [11] and [13] has several primal assump-
tions: the adversary has access to the target 
model before and after the updating/unlearn-
ing as blackbox, the local shadow dataset of the 
adversary and the target dataset are of the same 
data distribution, and the shadow model and 
the target model are of the same structure. Let’s 
think about whether these assumptions are prac-
tical in the context of federated unlearning if the 
honest-but-curious server is the adversary, which 
naturally knows the model architecture and can 
build the shadow model accordingly.

Knowledge About the Target Data Distribu-
tion. Chen et al. [13] assumed (1) a shadow dataset 
of the same distribution of the target dataset or 
(2) a shadow dataset of an arbitrary distribution 
without hurting performance, in the context of cen-
tralized machine learning; and Nasr et al. [8] even 
assumed (3) the dataset accessible to the attacker 
partially overlaps the target dataset, in the context 
of federated learning. Given that it’s very common 
for clients’ data distributions to be non-i.i.d. in fed-
erated learning, assumption (1) is not practical for 
any participants including the server or another 
client as an adversary, while assumptions (2) and 
(3) may hold for an honest-but-curious server 
adversary in federated learning as the server can 
somehow obtain some data samples if it knows 
the learning task. For example, if clients are collab-
oratively training a model for image classification, 
the server is able to train the attack model with a 
common image dataset from the Internet.

Access to the Original and Target Models. 
As the honest-but-curious server adversary knows 
the model architecture, if the target client is the 
unlearner (as shown in Fig. 2c), the server can eas-
ily construct the target client’s local model before 
and after unlearning, and apply an enhanced MI 
attack by exploiting the intermediate computa-
tions of the model. On the other hand, if the 
server or all the clients are the unlearners (as 
shown in Fig 2a and b), the global retraining pro-
cess will introduce lots of stochastic contributions 
from the other participating clients, in which case 
the discrepancy between different versions of 
models is no longer resulted by the deletion of the 
target client’s training data only. This leads to an 

interesting insight that there may exist a tradeoff 
between the unlearning spread and the privacy 
leakage through the process. To be more spe-
cific, more participants in the unlearning process 
lead to extra computation and communication 
costs, while it becomes harder for the attacker to 
attribute the discrepancy between the updated 
models to any individual contribution.

Effectiveness of MI When Federated Unlearn-
ing Happens. On top of the discussions on privacy 
leakage in model updating and its potential adap-
tation to the context of federated unlearning, 
there is a concern on the effectiveness of the MI 
attack when federated unlearning takes place. For 
machine learning, machine unlearning, or machine 
learning with model updates mentioned previously, 
MI attacks are usually conducted when the models 
have converged and can produce different patterns 
of posteriors for seen or unseen data samples. 
However, it’s more common in federated learning 
that the unlearning happens at any time, or even 
way before the global model converges, under 
which circumstances the MI attacks might be inef-
fective on these models that are yet to converge.

defenses
We are now ready to summarize existing defense 
mechanisms against traditional MI attacks or 
enhanced MI attacks with updated models in 
machine learning, and to investigate whether 
these defenses are still valid or effective for 
enhanced MI attacks in federated unlearning.

Defense mechanisms for membership infer-
ence attacks can be generally categorized in two 
ways as shown in Table 2: reducing the adver-
sary’s knowledge, or reducing the impact of a 
single sample on the output of the models. Sev-
eral defenses have been examined by [7] and [13] 
against their proposed inference attack.

Confidence score masking is used to hide the 
true values of the posteriors returned by the tar-
get models [7]. There are three masking methods: 
providing only the top-k confidence scores instead 
of the complete prediction vector to the attacker, 
providing only the prediction label, and adding 
noise to the prediction vector. These confidence 
score masking methods do not need to modify 
the target models, and thus will not affect the 
models’ accuracy. Publishing only the top-k con-
fidence values of the posteriors returned by both 
original and unlearned models fails to mitigate the 
attack proposed in [13]. Publishing only the label 
can effectively mitigate the attack as deleting one 
data sample in the training dataset is unlikely to 

Category Defense Against attack [13] In FL

Reducing the adversary’s knowledge

Publishing only the top k confidence values Ineffective

No longer validPublishing only the label Effective

Adding crafted noise to posteriors Not examined

Reducing the impact of a single sample
on the output of the models

Temperature scaling Effective but requires softmax as the last layer Valid

Differential privacy
Effective but degrades model’s accuracy

Valid but affects accuracy dramatically

Regularization Valid

TABLE 2. Different defense mechanisms against membership inference attacks and their effectiveness when 
facing the specific enhanced MI attack [13] or federated learning.
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make a change to the output label of a specific 
target sample. However, these defense methods 
are no longer valid in the context of federated 
unlearning, since the adversary has access to the 
white-box global model and thereby the entire 
confidence values of the posteriors.

Temperature scaling, which divides the logit 
vector by a learned scaling parameter, is also an 
effective defense. One limitation is that it is only 
applicable to neural networks whose last layer is 
softmax. Differential privacy (DP), which is com-
monly used against inference attacks in machine 
learning, can still effectively prevent the enhanced 
attack in [13]. However, DP is likely to dramat-
ically affect the model’s accuracy after training 
converges, especially in federated learning.

In addition to confidence score masking and 
differential privacy, a survey about membership 
inference attacks on machine learning [14] has 
summarized several other defenses. One category 
of methods worth mentioning is regularization. MI 
attacks are effective especially when the model 
is fully converged and overfitting. Therefore, 
methods that can reduce the overfitting level of 
the target models will hinder the success of the 
attack. Regularization, such as L2-norm regulariza-
tion [7] proposed to improve the generalizability 
of a learned model, can work well in this situation. 
Compared with confidence score masking meth-
ods, regularization methods modify not only the 
posterior distribution of the target models but also 
the model parameters, which, however, may inev-
itably influence the model’s accuracy as a result.

Overall, whichever defense against MI attacks 
is used, there exists a membership privacy-util-
ity tradeoff where the MI attack effectiveness is 
reduced while the target models’ accuracy is also 
impacted.

PrIvAcy-PreservIng federAted unleArnIng 
frAmework

With all the findings and analysis presented so far, 
we attempt to argue what a privacy-preserving 

federated unlearning framework should be like in 
this section. Though we do not have a concrete 
idea or algorithm yet, we show some insights that 
may benefit future work.

The Target Client Should be the Unlearner. 
As we have discussed, the unlearner can be the 
server, the remaining clients or all clients, or the 
target client, as we categorized from existing fed-
erated unlearning algorithms. While they have 
different strengths and drawbacks due to differ-
ent capabilities, access to data, etc., we have a 
preference for the target client as the unlearner 
if we are concerned about privacy leakage. As 
more parties participate in the data unlearning 
at one client, there will be more information 
sharing intuitively. For example, if the server 
participates, it needs to store the history of 
parameter updates, which is harmful to clients’ 
privacy since the curious server can exploit those 
updates history to even reconstruct data. When 
performed only at the target client, the unlearn-
ing process can be more flexible as the target 
client can do it anytime at its own will and send 
the unlearned model to the server afterwards. It 
does not require other clients to collaborate with 
extra computation or communication costs. In 
addition, the target client can verify the unlearn-
ing performance locally to make sure the data is 
forgotten before sending the unlearned model 
for further aggregation.

Defenses Against MI Attacks Should be Inte-
grated into Federated Unlearning Algorithms. 
The enhanced membership inference attacks 
[13] exploit the posteriors of models before and 
after dataset updating to improve inference accu-
racy. We’ve argued that in federated unlearning, 
there inherently exist such two versions of mod-
els, before and after unlearning, available to 
the aggregating server. When the target client 
is the unlearning performer, as shown in Fig. 4, 
the two versions of models are the last global 
model before local unlearning and the new local 
model after unlearning to be sent to the server. 
The adversary at the server could conduct the 
enhanced MI attack using these two models 
and infer if some specific data points belong to 
the dataset that was unlearned, which means 
the data unlearning cannot really erase the data 
effectively.

Therefore, we need to integrate effective 
defenses into federated unlearning algorithms to 
avoid information leakage by enhanced mem-
bership inference attacks. Confidence score 
masking methods may no longer be valid in this 
situation since the adversary knows the architec-
ture and the parameters of the two versions of 
models. Differential privacy with sufficient levels 
of privacy guarantees in federated learning may 
incur a significant amount of degradation to the 
global model’s accuracy. The remaining defenses 
discussed in Section IV, such as temperature scal-
ing and regularization, can be considered to be 
added to the federated unlearning algorithm as 
well, but the tradeoff between model robustness 
and convergence performance still needs to be 
balanced. Furthermore, it is important to con-
sider additional defense techniques against other 
potential attacks such as model inversion or gradi-
ent leakage attacks that can be integrated into the 
federated unlearning process.

FIGURE 4. The two versions of models available to the adversary at the honest-
but-curious server with the target client as unlearning performer: the global 
model before local unlearning and the local model after local unlearning 
(the same global model adding the local model updates).
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concludIng remArks
In this article, we provide a comprehensive 
investigation into recent advances in federated 
unlearning, including its potential privacy risks 
involving membership inference attacks, as well 
as potential defenses against them. We introduce 
and categorize state-of-the-art mechanisms in 
federated unlearning and compare their strengths 
and drawbacks in terms of different unlearn-
ing targets and unlearning performers. We are 
the first to notice the information leakage risk 
induced by the discrepancy between the mod-
els before and after unlearning in the context of 
federated unlearning, and present our findings 
on the inherent vulnerability of the federated 
unlearning paradigm to membership inference 
attacks. We discuss the potential of widely-used 
defenses against membership inference attacks 
and provide suggestions for improving the pri-
vacy-preserving nature of federated unlearning 
mechanisms.

As future work, we believe that the potential 
of information leakage in federated unlearning 
will be a critical challenge, as it defeats the pur-
pose of performing the unlearning process in the 
first place. There is also a need for improving resil-
ience against enhanced membership inference 
attacks and other privacy attacks. In addition, 
Gupta et al. [15] proposed a new differentially pri-
vate machine unlearning mechanism for streaming 
data removal requests, but applications of differ-
ential privacy have still not been considered in 
the context of federated unlearning. It would be 
theoretically interesting to study how resilent this 
category of unlearning mechanisms will be against 
privacy attacks.
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In the context of federated learning, the adversary can be the central server or one of the clients 
participating in the federated learning.

These diverging assumptions intrinsically determine the limitations of their algorithms.

This defeats the purpose of federated unlearning, where such private data are supposed to be deleted 
and protected from further exposure.


