
IEEE Network • September/October 2022152 0890-8044/22/$25.00 © 2022 IEEE

Abstract
With federated learning, a large number of

edge devices are engaged to train a global model
collaboratively using their local private data. To
train a high-quality global model, however, recent
studies recognized that the quality of model con-
tributions from local training on different edge
devices are substantially different. Existing mech-
anisms for quantifying such model quality are
intuitively based on the training loss or model
parameters, and fail to capture the effect of highly
variable data and heterogeneous resources avail-
able on participating edge devices. In this arti-
cle, we propose a new aggregation mechanism
that uses deep reinforcement learning to dynam-
ically evaluate the quality of model updates, with
accommodations for both data and device het-
erogeneity as the training process progresses. By
dynamically mapping the quality of local models
to their importance during model aggregation,
the global training process is able to converge
toward the direction of better effectiveness and
generalization. We show that our proposed mech-
anism outperforms its state-of-the-art counterparts,
achieving faster convergence and more stable
learning progress. Further, the LSTM-TD3 archi-
tecture and state representation design in our
mechanism allows it to adapt to various unseen
federated learning environments with an arbitrary
number of local updates.

Introduction
Since its debut, federated learning [1] has emerged
as a new paradigm for training machine learning
(ML) models in a collaborative and privacy-preserv-
ing manner. With federated learning, smart devices,
referred to as clients, train local models with their
own data. The central server, on the other hand,
maintains a consolidated global model by aggre-
gating the local model parameters without trans-
ferring sensitive raw data between clients and the
server. Despite recent applications in practice [2,
3], federated learning still faces several important
challenges with current-generation communication
environments. In particular, network conditions
and computation resources (such as GPU availabil-
ity) may vary substantially across the clients, and
training data is likely to be non-IID (independently
and identically distributed). In these scenarios, dif-
ferent devices will produce model updates with
varying levels of qualities, which affect the training
performance on the server.

On the other hand, it may be quite challenging
to quantitatively determine the quality of each

model update. In an extreme case, for example,
if a client has a large number of data samples and
a more powerful GPU to train on, chances are
that it may produce a high quality model with its
local data. In contrast, the contributions of model
updates may be quite low if a client’s data sam-
ples are distant from the ones drawn from the
overall distributions across all participating clients.

Existing mechanisms have been proposed in
the literature to alleviate the performance deg-
radation caused by system heterogeneity, and
to generate a global model with higher quality.
In general, they sought to design a proper func-
tion to estimate the quality of each local update
based on certain metrics during each round of
training, such as values derived from the training
loss or model parameters. These quality metrics
are expected to reflect either how well the cor-
responding client learns on its own data [4], or
how close the local model is to the global model
or other local model [5, 6, 7]. These metrics are
derived from very limited information from the cli-
ents, due to the needs to preserving data privacy
and minimizing communication costs. In fact, the
server is not able to access explicit feedback on
how well the training has been going after each
round. As a result, metrics used by existing mech-
anisms may not be sufficient for the global model
to converge toward high quality.

Equipped with sufficient resources including both
computing and storage capacities, modern edge
devices are more willing to participate in a federated
learning session, whereas the server has the capacity
to handle a limited number of edge devices as its
clients. In this context, model updates from the cli-
ents offer a wide variety of qualities, and such qual-
ities of model updates will have a significant impact
on the aggregated global model during the train-
ing process. To speed up convergence, it becomes
increasingly important to judiciously reallocate the
aggregation weights based on the qualities of model
updates. Federated averaging (FedAvg) [1], which
assigns weights to models from the clients based
only on the number of data samples, is clearly oblivi-
ous to the qualities of model updates.

In this article, our ultimate objective is to
propose a more general mechanism that evalu-
ates model qualities with accommodations for
time-varying network conditions and heteroge-
neous client capabilities throughout a long-running
training process. In other words, our overarching
goal is to answer an important question: Does
there exist an effective method to quantitatively
evaluate the qualities of model updates from the

Quality-Oriented Federated Learning on the Fly
Fei Wang, Baochun Li, and Bo Li

FEDERATED OPTIMIZATIONS AND NETWORKED
EDGE INTELLIGENCE

Digital Object Identifier:
10.1109/MNET.001.2200235 Fei Wang and Baochun Li are with the University of Toronto, Canada; Bo Li is with Hong Kong University of Science and Technology.

Authorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:12:39 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • September/October 2022 153

clients, leading to speedy convergence during the
training process?

A highlight of our original contributions is the
design and implementation of Fei,1 a new federat-
ed learning mechanism with a novel aggregation
strategy that assigns weights to the local updates
according to their qualities. To cope with the
time-varying network conditions and heteroge-
neous device capabilities in practice, we leverage
deep reinforcement learning (DRL) to dynamically
evaluate the quality of model updates, with accom-
modations for data and device heterogeneity as
the training process progresses. Specifically, we
carefully design the state representation with criti-
cal metrics inspired by existing designs for the DRL
agent to “sense” the clients’ learning performance
instantly after each round of local training, and to
produce an evaluation of update qualities based
on model weights and little extra information about
the clients. We cast model aggregation as a con-
trol problem, and apply our quality evaluation on
the weighting in the global aggregation process.
With the adoption of the Long-Short-Term-Memo-
ry-based Twin Delayed Deep Deterministic Policy
Gradient (LSTM-TD3) algorithm, our DRL agent
is capable of dealing with an arbitrary number of
client updates, and accommodates dynamically
changing heterogeneity across the clients.

We implemented our proposed DRL agent on
Plato, a new scalable federated learning research
framework,2 and evaluated its performance on sev-
eral federated learning tasks using FashionMNIST
and CIFAR-10 datasets. Our experimental results
have shown that Fei can effectively reduce the
elapsed wall-clock time when training a global
model of high quality and maintain a stable learn-
ing progress in different settings. Furthermore, our
agent is both flexible when accommodating a var-
ied number of client updates and generalizable to
different federated learning datasets or models.

Related Work
Considering the widely diverging qualities of
model updates from participating clients, exist-
ing studies have proposed new adaptive client
selection or alternative aggregation algorithms to
improve the ultimate training precision and con-
vergence speed of federated learning. Some exist-
ing works, for example, investigated how local
model contributions can be quantitatively evalu-
ated with network resource consumption (e.g.,
reducing communication rounds) [8] or client
reputation [9]. Various metrics have been taken
into consideration by the existing works to eval-
uate how likely a client is to be selected or how
much weight should be assigned to the gradient
updates of a selected client. The way of character-
izing the quality of model updates defined in the
existing works into the following three categories:
•	 Within each local update. The AFL framework

[4] selected an optimized subset of clients,
each contributing a model update with high-
er quality, which is determined by the train-
ing loss of the corresponding local model.

•	 Across local updates. Based on the intuition
that clients are not independent and not
equivalent, FedGP [7] actively selected cli-
ents considering the correlation between the
loss changes of all the local models using a
Gaussian Process.

•	 Between local and global updates. To obtain
the aggregation weights that represent the
quality of each local model, FedAtt [5] and
FedDA [10] used the attention mechanism
and applied it to the layer-wise parameters
to capture the distance between the local
and global models. FedAdp [6] assign the
aggregation weights based on the node con-
tribution which is measured by the angle
between the global gradient and the corre-
sponding local gradient.
Although existing works on characterizing the

quality of model updates in federated learning have
shown to be effective, they have not been able
to accommodate the time-varying nature of client
heterogeneity as the training progresses (some-
times over several days). It has also been a lack of
in-depth understanding of what quality metrics are
the most effective in characterizing the qualities of
model updates. In this article, with the objective
of further improving the training performance in
federated learning, we propose to take the effec-
tiveness of various quality metrics into account and
consider the time-varying nature of such model
qualities during the training process.

Motivation and Challenges
Getting away from the commonly used assump-
tions for federated learning, we notice two unique
characteristics of a more realistic federated learn-
ing environment. They motivate us to utilize deep
reinforcement learning to evaluate model update
quality. First, it is dynamic over time: clients may
opt in and opt out with changing computation
or communication capacity during a federated
learning session. Reinforcement learning algo-
rithms can generate a policy that facilitates the
server to make decisions to adapt to the dynamic
changes throughout the entire FL training pro-
cess. Furthermore, there does not exist any explic-
it instant feedback at an arbitrary round to inform
the server of how good a current local update
is to the developing global model, which is also
affected by other updates at the same time. Rein-
forcement learning algorithms can train on those
limited observations through repeated federated
learning sessions to learn how they can affect the
evolution of the global model. Second, it is also
diverse: rather than collaboratively training only
one machine learning model, a large number of
clients may be asked to participate in the federat-
ed training of a series of machine learning models
on their local data during the allocated time. The
machine learning models can have different NN
architectures or can be trained on other datasets.
An ideal DRL policy can generalize well to unseen
environments after it has been deployed.

To date, many researchers have explored the
improvement of federated learning using rein-
forcement learning in several situations. Favor
[11] employed a well-designed DRL agent to
learn which subset of clients to be selected for
local training in each communication round. Zhan

Considering the widely diverging qualities of model updates from participating clients, existing studies
have proposed new adaptive client selection or alternative aggregation algorithms to improve the

ultimate training precision and convergence speed of federated learning.

1 Fei is not an acronym, but
if one is preferred, it may
stand for feasible and effec-
tive idea.

2 Plato is open-source and
available at https://github.
com/TL-System/plato, and
Fei is available at /tree/main/
examples/fei

Authorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:12:39 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • September/October 2022154

et al. [12] designed an incentive mechanism by
applying DRL to the aggregator’s pricing strategy.
However, there are still several critical challeng-
es that have not yet been considered by exist-
ing works, which a DRL agent may very likely to
encounter in federated learning environments.

Handling a Varied Number of Local Updates
In real-world networks, selected clients may quit
the local training job or disconnect with the
server at an arbitrary round during a federated
learning session, which results in a varied num-
ber of updates received at the server at different
rounds. An issue occurs that the fixed-sized inputs
required by standard neural networks in a DRL
agent may not accommodate the arbitrary num-
ber of client updates if the state and action space
are correlated to each client. As a solution, we
take advantage of the flexibility of the recurrent
neural networks with the padding technique. In
this way, our DRL agent can also be adapted to
another federated learning scenario with a differ-
ent scale of clients without retraining.

Generalization vs. Extra Computation and
Communication Overhead

To further make the DRL agent in FL feasible in
practice, we need to consider how a model can be
generalized beyond the environment it was trained
in. It’s not worth it to train a DRL model first which
introduces much extra computation and communi-
cation overhead if it can’t also be deployed in other
federated learning scenarios (e.g., on another image
classification dataset or with another CNN model).
Intuitively, those different federated learning scenar-
ios are similar in some sense since what they all do
is send and receive neural network models at each

communication round between multiple clients and
the server. To capture it, we need a DRL formula-
tion that is not coupled with any specific federated
learning task, which means the state representation
should fall into a similar distribution even though the
federated learning environment changes. Besides,
to mitigate the computation and communication
overhead induced in the DRL pre-training process,
the agent is expected to learn rapidly with a design
of state and reward that requires limited information
from the server and participating clients.

Design of the DRL Agent for
Quality Evaluation and Global Aggregation

We are now ready to formulate the global model
aggregation process in federated learning as a
deep reinforcement learning (DRL) control
problem, which is illustrated in Fig. 1. We then
explicate how we enhance the flexibility and gen-
eralizability of our DRL agent by utilizing recur-
rent neural networks with the Twin Delayed Deep
Deterministic Policy Gradients (TD3) algorithm
[13] and multi-task training.

DRL Formulation
Consider a federated learning task where K client
devices participate in the training. A DRL agent
is embedded in the central server and serves as
an evaluator for the quality of updates from the
selected clients, based on which the server adap-
tively generates a new global model using aggre-
gation. The agent takes one action in every time
step t, which corresponds to one communication
round in the federated learning session. The fed-
erated learning session constitutes an evolving
environment with which the agent can interact
with in each time step t, obtaining observations
and rewards from both the server and the select-
ed St clients, and making decisions on the global
aggregation weights. The design of the DRL for-
mulation is presented in more detail as follows.

State: The agent observes the interaction
between the selected St clients and the server,
and measures the quality of each local model
update. The state will affect how the agent estab-
lishes a sense of how important each local model
update is to the global model. In this control prob-
lem, we have concerns not only about the size of
the state space that affects the convergence of
DRL training, but also about the individual privacy
of clients. Accordingly, the state space should be
limited in terms of the size and the private infor-
mation contained in it.

Considering both perspectives of individual
model updates and the global aggregated model,
we propose a new design of the state in time step
t, denoted as a vector st = [st

1, st
2, …, st

k, …, st
|St|].

Each element st
k represents a vector of metrics for

the corresponding client k, which consists of the
following features:
•	 Dt

k: the number of data samples used for cli-
ent k’s local training in round t;

•	 tt
k: the time, in seconds, taken by local train-

ing at client k in round t;
•	 loss(wt

k; Dt
k, E): the training loss of client k’s

local model on Dt
k data samples averaged,

over E epochs between the last step t – 1
and the current step t;

•	 corr(Fk(wt), F(wt)): the correlation

FIGURE 1. Applying deep reinforcement learning to update quality evaluation in
global aggregation of federated learning.

Federated learning process

Client 1

Client 2

Client K

Clients

Reinforcement learning process

Action State Reward

Client selection

Local update

Global
aggregation

Server

Agent

Environment

Critic network

Learning
update

Replay memory

Actor network

Authorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:12:39 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • September/October 2022 155

between the local gradient Fk(wt) of client
k and the global gradient F(wt) in round t.
The first feature we choose is Dt

k, which is a
primary factor for local training as we mentioned
earlier. The local training time tt

k informs the agent
of the client speed in the asynchronous training
setting, which can be affected by different compu-
tation capabilities. The average local training loss
loss(wt

k; Dt
k, E) is an explicit signal of the model

accuracy on its own data. Even with the use of
the first three metrics to reflect individual prop-
erties of local updates, the contribution of each
update to the aggregated global model cannot
be decided without taking into account the rela-
tion between the local and global model. Given
that local models can diverge from the global one
especially when the data distribution is non-IID,
we further incorporate the correlation

corr(∇Fk(𝐰𝐰t), ∇F(𝐰𝐰t)) =
〈∇𝐹𝐹𝑘𝑘(𝑤𝑤𝑡𝑡), ∇𝐹𝐹(𝑤𝑤𝑡𝑡)〉

‖∇𝐹𝐹𝑘𝑘(𝑤𝑤𝑡𝑡)‖‖∇𝐹𝐹(𝑤𝑤𝑡𝑡)‖
to reveal how close each local model is to the
current global one. The local stochastic gradient
is calculated by Fk(wt) = –Dwt

k/h, where h is the
assigned learning rate and then the global gradi-
ent is given by

∇𝐹𝐹(𝐰𝐰t) =∑ (𝐷𝐷𝑘𝑘𝑡𝑡

∑ 𝐷𝐷𝑘𝑘′𝑡𝑡
|S𝑡𝑡|
𝑘𝑘=1

)
|S𝑡𝑡|

𝑘𝑘=1
∇𝐹𝐹𝑘𝑘(𝐰𝐰𝑡𝑡)

(also used in FedAdp [6]).
With such a design, each selected client k in

round t only needs to send the server a minimum
amount of extra information mt

k, that is, Dt
k, tt

k,
and loss(wt

k; Dt
k, E). The correlation metrics,

corr(Fk(wt), F(wt)), are only scalar numbers
computed from the model updates and learning
rates. As such, our design of the state space will
only need to incur a very limited amount of extra
computation and communication costs, and will
not incur any additional risks of privacy leakage
beyond what has already been shared by conven-
tional FL sessions.

As a final step of constructing the agent’s state,
feature normalization is further used on the four
features across the clients, such that all the values
per feature fall into the same distribution. In this
way, the agent is more capable of interpreting
the observations with the presence of different FL
environments, and more generalizable as a result.

Action: As we cast the global aggregation with
quantification of the update quality as our DRL con-
trol problem, the action of step t can be represented
as at = (vt

1, vt
2, …, vt

k, …, vt
|St|), where vt

k represents the
quality value of the corresponding model update
from k client. The action space is restricted to |St|,
the number of clients selected per round, instead of
K, the number of clients in total.

We apply the quality evaluation to the global
aggregation weighting. We normalize the agent’s
action at to make sure their values sum to 1, and
then use the normalized action as the weights of
local updates from the corresponding clients when
aggregating them into the new global model.

Episode and Reward: In reinforcement learn-
ing, episodic tasks have a terminal state. After
reaching such a terminal state, the learning will
restart in the next episode from an initial state. For
the optimization of global aggregation here, one
may intuitively regard achieving a target global

accuracy as a terminal state of an episode, since
that coincides to producing a global model of
high quality. However, a well designed episode,
accompanied by the design of the reward, is
essential for the agent to generalize over differ-
ent environments, especially considering that the
achievable global accuracy is heavily dependent
on the specific FL session. Specifically, FL sessions
with different machine learning tasks will inher-
ently have different learning complexity, where
the progress of global model accuracy can vary
significantly. Suppose a DRL agent is learning on
a different FL task (e.g., different network architec-
tures, different datasets, or different levels of non-
IID data distribution) every a few episodes, then
easier machine learning tasks will result in higher
accuracies in fewer time steps. In this sense, epi-
sodes running these easier tasks will be biased
during training.

To make an episode end at an appropri-
ate state, we are concerned about the history
of achieved accuracies near the current step t,
denoted as acc_histt, which is a list of the global
model accuracy values obtained using the serv-
er-side test dataset in the most recent three time
steps. When the standard deviation of the history
of accuracies std(acc_histt) goes below a certain
threshold s, which suggests that a steady global
model stage has been reached, the current DRL
training episode will terminate, and a new epi-
sode (i.e., a new session of FL training) will start.
Such a design makes it unnecessary to repeat the
entire FL training in every episode.

A reward function should be designed to
encourage the desired behavior. The DRL agent
is expected to learn to decide the contributions
of each local update to the aggregated model
and help generate a global model of high quality
— one that can achieve high accuracy. However,
since the server-side test accuracy is highly cor-
related to the quality of the global model trained
so far, it is not capable of discriminating how
effective the taken action is at the previous step.
In addition, the global model is expected to prog-
ress after aggregating the local training updates,
even without any involvement from a DRL agent.
The test accuracy of the global model at the cur-
rent step will be an implicit metric for evaluating
how the DRL agent has learned about the quality
evaluation of updates.

Instead, we impose a penalty to the agent at
every single time step before the end of an epi-
sode, and only offer a reward related to the latest
history of test accuracies at the end of the episode.
The reward function can be expressed as follows:
	
	
	

𝑟𝑟! =

⎩
⎨

⎧ ln
EWMA(acc"#$%!)

1 − EWMA(acc"#$%!)
· 𝛽𝛽			if	𝑡𝑡	is	the	last				

																																																												time	step,
−1																																																	otherwise,								

	

where the value EWMA(acc_histt)  (0, 1) rep-
resents the exponentially weighted moving aver-
age (EWMA) of the global model accuracies
stored in the history, whose smoothing parameter

In reinforcement learning, episodic tasks have a terminal state. After reaching such a terminal state, the
learning will restart in the next episode from an initial state.

Authorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:12:39 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • September/October 2022156

is set to 0.9. In this way, not only the accuracy at
the end but all accuracies in the history are con-
sidered, while larger weights are assigned to accu-
racies at more recent time steps. We adopt the
logistic transformation so that small differences
in acc near 1 (e.g., between 0.98 and 0.99) will
have a larger differences on the resulted reward.
In this way, a higher cumulative reward will be
returned to the agent when a global model of
higher quality is obtained within fewer commu-
nication rounds. The coefficient b decides the
importance of the ultimate model quality over the
training episode length. For instance, with a larger
b, the agent will care more about improving the
accuracy than the total consumed time.

Training with TD3
We choose a state-of-the-art reinforcement learn-
ing algorithm, Twin Delayed Deep Deterministic
Policy Gradients (TD3) [13], to train our agent.
As an extension of the Deep deterministic Poli-
cy Gradient (DDPG) algorithm which is widely
used to solve continuous control problems, TD3
addresses the overestimation of Q values and is
therefore more stable and robust to hyperparam-
eters. These characteristics are essential for our
agent to have productive learning experiences
in a federated learning environment, where time
steps can be long due to potentially heavy local
training workload.

The structure of neural networks in TD3 is also
depicted in Fig. 1. There is a pair of critic net-
works Qq1, Qq2 for Q-value approximation, and
the smaller Q-value between them will be taken
for the policy optimization for less bias. TD3
updates the actor and target critic networks every
two time steps in a delayed manner, allowing the
policy to develop more stably [13]. To reduce the
variance in target values, TD3 also adds clipped
noise to the selected action to smooth the target
policy. There is also a replay memory B where
the agent stores the transitions at each time step
after taking an action and samples N transitions in
one mini-batch for updating the neural networks
during the training.

Handling Varied Number of Local Updates with LSTM
As we have assumed real-world settings of fed-
erated learning, the number of local updates
received by the server may not be consistent with
the number of selected clients at the beginning of
the communication round. However, if we were
to choose neural networks with a fixed number
of neurons as the neural network model in our
DRL agent, it may not be able to handle this situa-
tion where the N training samples in a mini-batch
have different sizes [14]. Inspired by the ability of
recurrent neural networks (RNNs) to solve nat-
ural language processing tasks and the flexibili-
ty to work on sequences of arbitrary lengths, we
propose to utilize RNNs as our agent’s “brain” to
cope with a varied number of client updates. The
varied-length sequences at one mini-batch can

be fed into RNNs after they are padded to the
largest sequence in the batch. We choose one of
the state-of-the-art RNN architectures, Long Short-
Term Memory Networks (LSTM), as the heads
of actor and critic neural networks. Between the
LSTM and the final output, there are two full con-
nected layers. The observed state st at each time
step t can be regarded as a sequence in natural
language processing.

Equipped with LSTM in its neural network
architecture, the agent is more flexible when
accommodating an arbitrary number of client
updates, not only in different time steps within
one federated learning session, but also in differ-
ent federated learning sessions. In other words,
the agent’s action will not be affected by the
potential lack of reliability of the selected clients,
and there is no need to re-train the learned DRL
model for settings of different numbers of select-
ed clients, making the model more generalizable.
In addition, with the use of long-term memory in
the LSTM model, the agent is able to interact with
FL environments with a history of observations,
beyond the current state at any time step.

Overall, Fig. 1 illustrates the workflow of model
quality estimation for aggregation. With different
number of local updates Dwt

k along with informa-
tion wt

k received by the server in each round t in
the asynchronous setting, the DRL agent can gen-
erate corresponding evaluation of update quality
at := vt and aggregate those updates accordingly
by wt+1 = wt + SkSt vt

kDwt
k.

Performance Evaluation
Based on Plato, our open-source federated learn-
ing framework, We have implemented Fei, includ-
ing both the training of the DRL agent, and the
deployment of the agent in actual FL sessions.
We show the results of our performance evalu-
ations over two benchmark datasets and model
combinations: the FashionMNIST dataset with
the LeNet-5 model, and the CIFAR-10 dataset
with the ResNet-18 and VGG-16 models. We
observe the global model accuracy on the test
dataset as the number of communication rounds
progresses, and the elapsed wall-clock time for
the global model to converge.

To evaluate the performance of our approach
in comparison with state-of-the-art heuristics that
consider the quality of model updates, we com-
pare Fei with the following aggregation mecha-
nisms in federated learning.

FedAvg [1]: As the first aggregation mechanism,
FedAvg simply aggregates local model updates
according to the proportion of local data size (i.e.,
number of data samples) to total data size.

AFL [4]: This mechanism estimates the quality
of a client model using its local training loss and
local data size.

FedAtt [5]: This mechanism measures the qual-
ity of a client model using its distance to the glob-
al model in terms of layer-wise parameters based
on an attention mechanism, which is also adopted
by FedDA [10].

FedAdp [6]: This mechanism adaptively mea-
sures the quality of a client model using the angle
between its gradient and the global gradient.

FedProx [15]: This mechanism is designed to
address device heterogeneity across different cli-
ents using model regularization in local training.

A reward function should be designed to encourage the desired behavior. The DRL agent is expected
to learn to decide the contributions of each local update to the aggregated model and help generate a

global model of high quality — one that can achieve high accuracy.

Authorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:12:39 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • September/October 2022 157

Training the DRL Agent

In our federated learning sessions used for training
the DRL agent, we selected the FashionMNIST
dataset and the LeNet-5 model. The client pool
has a total of 100 clients, and the server randomly
selects 6 to 10 from this pool in each round. The
number of data samples across clients is uniformly
distributed between 80 and 200. With these set-
tings, we introduce more heterogeneity across the
participating clients.

With respect to the neural network model
used in our DRL agent, we used LSTM and two
consecutive fully connected layers in both actor
and critic networks, while each fully connected
layer has 256 hidden states. The replay memory
in the DRL agent can store 1000 transitions, and
each mini-batch has 64 samples. The coefficient
in the reward function is set to b = 20, and the
threshold that controls the steady global model
stage is set to s = 0.005. The DRL agent is trained
on a NVIDIA RTX A4500 GPU with 20GB CUDA
memory. The time it takes for the training to
complete is around 15 hours. In our subsequent
experiments, we use this pre-trained DRL model,
referred to as Fei, for evaluation and comparison.

Efficiency over Heterogeneous Settings
In the same FL environment where the DRL agent is
pre-trained in — the FashionMNIST dataset with the
LeNet-5 model — we first investigate the efficiency
of our pre-trained DRL model, Fei, under different lev-
els of non-IID data. There are 100 clients in total, and
the number of selected clients is set to 10. In each
round, the number of training epochs allocated to
each selected client is set to 10, and the local training
batch size is set to 32. To simulate device heteroge-
neity, we use the Pareto distribution to simulate the
amount of time each client takes to finish each round
of local training. To synthesize data heterogeneity, we
use the Dirichlet distribution in our experiments. The
concentration parameter a ≥ 0 is used to control the
level of data heterogeneity across clients. The data on
each client is IID when a ®  and is severely non-IID
when a is close to zero. We use a discrete range of a
and compare the total wall-clock time for the global
model to reach a target test accuracy 82 percent as
well as the accuracy at the first round, respectively,
as shown in Table 1. In the scenario where a = 0.5*,
the number of data samples across clients is uniformly
distributed between 80 and 200, which is identical to
our FL environment used for training the DRL agent.

Our experimental results show that all alterna-
tive mechanisms can improve the accuracy at the
beginning over the baseline mechanism, FedAvg, in
some scenarios. In terms of the simulated wall-clock
time, FedAtt and FedAdp cannot always outperform
FedAvg. Overall, AFL, FedProx, and Fei stand out in
all scenarios in terms of both performance metrics.

Generalizability and Flexibility
We apply the same DRL model — which we have
trained on FashionMNIST — onto a different FL
session using the CIFAR-10 dataset with two dif-
ferent CNN models, ResNet-18 and VGG16, to
evaluate how Fei is able to generalize to different
tasks compared to what it was trained on. For each
selected client, the allocated number of training
epochs is 5, and the training batch size is set to
64 for ResNet-18 and 128 for VGG16. Figure 2

TABLE 1. The elapsed wall-clock time for the global
model to achieve the target test accuracy as
well as the test accuracy at the first round, with
different levels of non-IID data over the Fash-
ionMNIST dataset with the LeNet-5 model.

Algorithms non-IID Wall-clock time 1st-round Accuracy

FedAvg

a = 

8803 54.8

AFL 1402 66.6

FedAtt 10467 57.6

FedAdp 7443 53.9

FedProx 2640 73.8

FEI 653 78.4

FedAvg

a = 0.5

4360 37.8

AFL 4187 62.4

FedAtt 3700 38.1

FedAdp 5740 32.6

FedProx 1660 57.4

FEI 2291 64.6

FedAvg

a = 0.5*

11853 22.9

AFL 6886 42.0

FedAtt 11198 33.4

FedAdp 13576 23.8

FedProx 6084 57.0

FEI 2974 53.9

FIGURE 2. Test accuracy over communication rounds
of different FL algorithms on CIFAR-10 data-
set: a) with ResNet-18; b) with VGG-16.

FedAvg AFL FedAtt FedAdp FedProx FEI

A
cc

ur
ac

y
(%

)

0

10

20

30

40

50

60

70

80

Communication round (#)
0 10 20 30 40 50 60 70 80 90 100

10

20

30

0 5 10

FedAvg AFL FedAtt FedAdp FedProx FEI

A
cc

ur
ac

y
(%

)

10

20

30

40

50

60

70

Communication round (#)
0 20 40 60 80 100 120 140 160 180

10

20

30

10 20

(a)

(b)

Authorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:12:39 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • September/October 2022158

shows the test accuracy of the global model vs. the
number of communication rounds in the FL session.

We can observe that Fei outperforms all
other federated learning mechanisms in terms
of the convergence speed, even though the
DRL model was not trained in the same envi-
ronments. This shows strong evidence that, with
appropriate pre-training, Fei can be utilized in
different federated learning tasks to shorten the
time of training a global model with high qual-
ity. We argue that the observed generalizabil-
ity of our DRL agent can be attributed to our
design on how observable states can be rep-
resented, so that the quality of client updates
can be properly evaluated. In contrast, FedAtt
suffered from a worrisome lack of stability in
its convergence behavior, which may be due
to the complexity of its neural network archi-
tecture, which may introduce more bias or
variance in the aggregation weights due to the
layer-wise attentive mechanism. This shows that
a suitable design of the neural network archi-
tecture is of utmost importance when neural
network models are trained and tasked to make
on-the-fly decisions in an FL session.

Last but not the least, we investigate the flex-
ibility of Fei in a scenario where it faces a larger
scale of clients. Rather than selecting 10 clients
from 100 as in DRL agent training, we select
50 each round from 200 clients. Other settings
are the same as our previous experiments. As
shown in Fig. 3a, Fei and FedProx can still con-
verge very quickly on FashionMNIST within

10 rounds, while Fei achieves a slightly higher
ultimate accuracy. The convergence trend in
Fig. 3b indicate that on CIFAR-10, the global
model with Fei will potentially have an ultimate
accuracy lower than FedAvg’s and FedAdp’s.
But the bright side is that the accuracy of Fei at
the beginning of the session is still higher than
its alternatives, and it keeps growing steadily,
unlike AFL and FedAtt. In contrast, for example,
the accuracy with AFL fluctuates significantly in
most experimental scenarios.

Conclusion
In this article, we investigate the quantification
of local update quality for federated learning in
heterogeneous settings closer to real-world com-
munication networks. We propose Fei, a federat-
ed learning framework with a novel aggregation
strategy to actively evaluate the local contribu-
tions, aiming to enhance the ultimate global
model quality and to minimize the number of
communication rounds or even the wall-clock
time needed for convergence. In particular, Fei
leverages a DRL-based agent that applies the
TD3 algorithm with LSTM neural networks to
determine the quality of each local update. By
comparing our method with FedAvg as well as
other state-of-the-art FL algorithms with differ-
ent quality evaluation strategies on multiple FL
training tasks, we show that Fei has efficiently
reduced the amount of wall-clock time need-
ed to reach the same target accuracy on Fash-
ionMNIST and FashionMNIST datasets with
different levels of non-IID data, and has exhibited
the great potential of adapting to FL tasks differ-
ent from what the DRL agent has been trained
on. In addition, the LSTM-TD3 architecture in
Fei allows it to adaptively aggregate an arbitrary
number of client updates according to their
qualities. A limitation of this study is that a DRL
model pre-trained on one FL environment may
not optimally generalize many other FL environ-
ments. A natural progression of this work is to
apply continual learning to the proposed design
to learn a model for a broader range of FL tasks
without forgetting previous knowledge.

Acknowledgments
The research was supported in part by RGC RIF
grant R6021-20, and RGC GRF grants under the
contracts 16209120 and 16200221.

References
[1] B. McMahan et al., “Communication-Efficient Learning of

Deep Networks From Decentralized Data,” Proc. Int’l. Conf.
Artificial Intelligence and Statistics, 2017, pp. 1273–82.

[2] A. Hard et al., “Federated Learning for Mobile Keyboard Pre-
diction,” arXiv preprint arXiv:1811.03604, 2018.

[3] S. R. Pfohl, A. M. Dai, and K. Heller, “Federated and Dif-
ferentially Private Learning for Electronic Health Records,”
arXiv preprint arXiv:1911.05861, 2019.

[4] J. Goetz et al., “Active Federated Learning,” arXiv preprint
arXiv:1909.12641, 2019.

[5] S. Ji et al., “Learning Private Neural Language Modeling With
Attentive Aggregation,” Proc. Int’l. Joint Conf. Neural Net-
works (IJCNN), 2019, pp. 1–8.

[6] H. Wu and P. Wang, “Fast-Convergent Federated Learning
With Adaptive Weighting,” IEEE Trans. Cognitive Commun.
and Networking, 2021, pp. 1–1.

[7] M. Tang et al., “FedGP: Correlation-Based Active Client
Selection for Heterogeneous Federated Learning,” arXiv
preprint arXiv:2103.13822, 2021.

[8] S. R. Pandey, L. D. Nguyen, and P. Popovski, “A Contribu-
tion-Based Device Selection Scheme in Federated Learning,”

FIGURE 3. Test accuracy over communication rounds
of different FL algorithms in a larger cohort of
clients: a) on FashionMNIST with LeNet-5;
b) on CIFAR-10 with ResNet-18.

FedAvg AFL FedAtt FedAdp FedProx FEI

A
cc

ur
ac

y
(%

)

30

40

50

60

70

80

90

Communication round (#)
0 5 10 15 20 25 30

A
cc

ur
ac

y
(%

)

10

20

30

40

50

60

70

Communication round (#)
0 5 10 15 20 25 30

(a)

(b)

Authorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:12:39 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • September/October 2022 159

IEEE Commun. Letters, 2022.
[9] M. H. ur Rehman et al., “Towards Blockchain-Based Reputa-

tion-Aware Federated Learning,” IEEE Conf. Computer Com-
mun. Workshops (INFOCOM WKSHPS), 2020, pp. 183–88.

[10] C. Zhang et al., “Dual Attention-Based Federated Learning
for Wireless Traffic Prediction,” Proc. IEEE INFOCOM, 2021.

[11] H. Wang et al., “Optimizing Federated Learning on Non-IID
Data With Reinforcement Learning,” Proc. IEEE INFOCOM,
2020, pp. 1698–1707.

[12] Y. Zhan and J. Zhang, “An Incentive Mechanism Design
for Efficient Edge Learning by Deep Reinforcement Learning
Approach,” Proc. IEEE INFOCOM, 2020, pp. 2489–98.

[13] S. Fujimoto, H. Hoof, and D. Meger, “Addressing Function
Approximation Error in Actor-Critic Methods,” Proc. Int’l.
Conf. Machine Learning. PMLR, 2018, pp. 1587–96.

[14] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning,
MIT Press, 2016, http://www.deeplearningbook.org.

[15] T. Li et al., “Federated Optimization in Heterogeneous Net-
works,” Proc. Machine Learning and Systems, vol. 2, 2020,
pp. 429–50.

Biographies
Fei Wang is currently pursing her Ph.D. at the Department of
Electrical and Computer Engineering, University of Toronto,
Canada. She received her B.Eng. degree in Computer Science
and Technology at Hongyi Honor College, Wuhan University.
Her research interests lie at the intersections of reinforcement
learning and computer communications.

Baochun Li received his B.Eng. degree from Tsinghua University
and his M.S. and Ph.D. degrees from the University of Illinois
at Urbana-Champaign. He is a professor in the Department of
Electrical and Computer Engineering, University of Toronto. His
research interests include large-scale distributed systems, cloud
computing, and wireless networks.

Bo Li received his B.Eng. and M.Eng. degrees in Computer Sci-
ence from Tsinghua University, and a Ph.D. degree in Electrical
and Computer Engineering from the University of Massachu-
setts at Amherst. He is a chair professor in the Department of
Computer Science and Engineering, Hong Kong University of
Science and Technology.

Authorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:12:39 UTC from IEEE Xplore. Restrictions apply.

