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Abstract
With federated learning, a large number of 

edge devices are engaged to train a global model 
collaboratively using their local private data. To 
train a high-quality global model, however, recent 
studies recognized that the quality of model con-
tributions from local training on different edge 
devices are substantially different. Existing mech-
anisms for quantifying such model quality are 
intuitively based on the training loss or model 
parameters, and fail to capture the effect of highly 
variable data and heterogeneous resources avail-
able on participating edge devices. In this arti-
cle, we propose a new aggregation mechanism 
that uses deep reinforcement learning to dynam-
ically evaluate the quality of model updates, with 
accommodations for both data and device het-
erogeneity as the training process progresses. By 
dynamically mapping the quality of local models 
to their importance during model aggregation, 
the global training process is able to converge 
toward the direction of better effectiveness and 
generalization. We show that our proposed mech-
anism outperforms its state-of-the-art counterparts, 
achieving faster convergence and more stable 
learning progress. Further, the LSTM-TD3 archi-
tecture and state representation design in our 
mechanism allows it to adapt to various unseen 
federated learning environments with an arbitrary 
number of local updates.

Introduction
Since its debut, federated learning [1] has emerged 
as a new paradigm for training machine learning 
(ML) models in a collaborative and privacy-preserv-
ing manner. With federated learning, smart devices, 
referred to as clients, train local models with their 
own data. The central server, on the other hand, 
maintains a consolidated global model by aggre-
gating the local model parameters without trans-
ferring sensitive raw data between clients and the 
server. Despite recent applications in practice [2, 
3], federated learning still faces several important 
challenges with current-generation communication 
environments. In particular, network conditions 
and computation resources (such as GPU availabil-
ity) may vary substantially across the clients, and 
training data is likely to be non-IID (independently 
and identically distributed). In these scenarios, dif-
ferent devices will produce model updates with 
varying levels of qualities, which affect the training 
performance on the server.

On the other hand, it may be quite challenging 
to quantitatively determine the quality of each 

model update. In an extreme case, for example, 
if a client has a large number of data samples and 
a more powerful GPU to train on, chances are 
that it may produce a high quality model with its 
local data. In contrast, the contributions of model 
updates may be quite low if a client’s data sam-
ples are distant from the ones drawn from the 
overall distributions across all participating clients.

Existing mechanisms have been proposed in 
the literature to alleviate the performance deg-
radation caused by system heterogeneity, and 
to generate a global model with higher quality. 
In general, they sought to design a proper func-
tion to estimate the quality of each local update 
based on certain metrics during each round of 
training, such as values derived from the training 
loss or model parameters. These quality metrics 
are expected to reflect either how well the cor-
responding client learns on its own data [4], or 
how close the local model is to the global model 
or other local model [5, 6, 7]. These metrics are 
derived from very limited information from the cli-
ents, due to the needs to preserving data privacy 
and minimizing communication costs. In fact, the 
server is not able to access explicit feedback on 
how well the training has been going after each 
round. As a result, metrics used by existing mech-
anisms may not be sufficient for the global model 
to converge toward high quality.

Equipped with sufficient resources including both 
computing and storage capacities, modern edge 
devices are more willing to participate in a federated 
learning session, whereas the server has the capacity 
to handle a limited number of edge devices as its 
clients. In this context, model updates from the cli-
ents offer a wide variety of qualities, and such qual-
ities of model updates will have a significant impact 
on the aggregated global model during the train-
ing process. To speed up convergence, it becomes 
increasingly important to judiciously reallocate the 
aggregation weights based on the qualities of model 
updates. Federated averaging (FedAvg) [1], which 
assigns weights to models from the clients based 
only on the number of data samples, is clearly oblivi-
ous to the qualities of model updates.

In this article, our ultimate objective is to 
propose a more general mechanism that evalu-
ates model qualities with accommodations for 
time-varying network conditions and heteroge-
neous client capabilities throughout a long-running 
training process. In other words, our overarching 
goal is to answer an important question: Does 
there exist an effective method to quantitatively 
evaluate the qualities of model updates from the 
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clients, leading to speedy convergence during the 
training process?

A highlight of our original contributions is the 
design and implementation of Fei,1 a new federat-
ed learning mechanism with a novel aggregation 
strategy that assigns weights to the local updates 
according to their qualities. To cope with the 
time-varying network conditions and heteroge-
neous device capabilities in practice, we leverage 
deep reinforcement learning (DRL) to dynamically 
evaluate the quality of model updates, with accom-
modations for data and device heterogeneity as 
the training process progresses. Specifically, we 
carefully design the state representation with criti-
cal metrics inspired by existing designs for the DRL 
agent to “sense” the clients’ learning performance 
instantly after each round of local training, and to 
produce an evaluation of update qualities based 
on model weights and little extra information about 
the clients. We cast model aggregation as a con-
trol problem, and apply our quality evaluation on 
the weighting in the global aggregation process. 
With the adoption of the Long-Short-Term-Memo-
ry-based Twin Delayed Deep Deterministic Policy 
Gradient (LSTM-TD3) algorithm, our DRL agent 
is capable of dealing with an arbitrary number of 
client updates, and accommodates dynamically 
changing heterogeneity across the clients.

We implemented our proposed DRL agent on 
Plato, a new scalable federated learning research 
framework,2 and evaluated its performance on sev-
eral federated learning tasks using FashionMNIST 
and CIFAR-10 datasets. Our experimental results 
have shown that Fei can effectively reduce the 
elapsed wall-clock time when training a global 
model of high quality and maintain a stable learn-
ing progress in different settings. Furthermore, our 
agent is both flexible when accommodating a var-
ied number of client updates and generalizable to 
different federated learning datasets or models.

Related Work
Considering the widely diverging qualities of 
model updates from participating clients, exist-
ing studies have proposed new adaptive client 
selection or alternative aggregation algorithms to 
improve the ultimate training precision and con-
vergence speed of federated learning. Some exist-
ing works, for example, investigated how local 
model contributions can be quantitatively evalu-
ated with network resource consumption (e.g., 
reducing communication rounds) [8] or client 
reputation [9]. Various metrics have been taken 
into consideration by the existing works to eval-
uate how likely a client is to be selected or how 
much weight should be assigned to the gradient 
updates of a selected client. The way of character-
izing the quality of model updates defined in the 
existing works into the following three categories:
•	 Within each local update. The AFL framework 

[4] selected an optimized subset of clients, 
each contributing a model update with high-
er quality, which is determined by the train-
ing loss of the corresponding local model.

•	 Across local updates. Based on the intuition 
that clients are not independent and not 
equivalent, FedGP [7] actively selected cli-
ents considering the correlation between the 
loss changes of all the local models using a 
Gaussian Process.

•	 Between local and global updates. To obtain 
the aggregation weights that represent the 
quality of each local model, FedAtt [5] and 
FedDA [10] used the attention mechanism 
and applied it to the layer-wise parameters 
to capture the distance between the local 
and global models. FedAdp [6] assign the 
aggregation weights based on the node con-
tribution which is measured by the angle 
between the global gradient and the corre-
sponding local gradient.
Although existing works on characterizing the 

quality of model updates in federated learning have 
shown to be effective, they have not been able 
to accommodate the time-varying nature of client 
heterogeneity as the training progresses (some-
times over several days). It has also been a lack of 
in-depth understanding of what quality metrics are 
the most effective in characterizing the qualities of 
model updates. In this article, with the objective 
of further improving the training performance in 
federated learning, we propose to take the effec-
tiveness of various quality metrics into account and 
consider the time-varying nature of such model 
qualities during the training process.

Motivation and Challenges
Getting away from the commonly used assump-
tions for federated learning, we notice two unique 
characteristics of a more realistic federated learn-
ing environment. They motivate us to utilize deep 
reinforcement learning to evaluate model update 
quality. First, it is dynamic over time: clients may 
opt in and opt out with changing computation 
or communication capacity during a federated 
learning session. Reinforcement learning algo-
rithms can generate a policy that facilitates the 
server to make decisions to adapt to the dynamic 
changes throughout the entire FL training pro-
cess. Furthermore, there does not exist any explic-
it instant feedback at an arbitrary round to inform 
the server of how good a current local update 
is to the developing global model, which is also 
affected by other updates at the same time. Rein-
forcement learning algorithms can train on those 
limited observations through repeated federated 
learning sessions to learn how they can affect the 
evolution of the global model. Second, it is also 
diverse: rather than collaboratively training only 
one machine learning model, a large number of 
clients may be asked to participate in the federat-
ed training of a series of machine learning models 
on their local data during the allocated time. The 
machine learning models can have different NN 
architectures or can be trained on other datasets. 
An ideal DRL policy can generalize well to unseen 
environments after it has been deployed.

To date, many researchers have explored the 
improvement of federated learning using rein-
forcement learning in several situations. Favor 
[11] employed a well-designed DRL agent to 
learn which subset of clients to be selected for 
local training in each communication round. Zhan 

Considering the widely diverging qualities of model updates from participating clients, existing studies 
have proposed new adaptive client selection or alternative aggregation algorithms to improve the 

ultimate training precision and convergence speed of federated learning.

1 Fei is not an acronym, but 
if one is preferred, it may 
stand for feasible and effec-
tive idea.

2 Plato is open-source and 
available at https://github.
com/TL-System/plato, and 
Fei is available at /tree/main/
examples/fei
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et al. [12] designed an incentive mechanism by 
applying DRL to the aggregator’s pricing strategy. 
However, there are still several critical challeng-
es that have not yet been considered by exist-
ing works, which a DRL agent may very likely to 
encounter in federated learning environments.

Handling a Varied Number of Local Updates
In real-world networks, selected clients may quit 
the local training job or disconnect with the 
server at an arbitrary round during a federated 
learning session, which results in a varied num-
ber of updates received at the server at different 
rounds. An issue occurs that the fixed-sized inputs 
required by standard neural networks in a DRL 
agent may not accommodate the arbitrary num-
ber of client updates if the state and action space 
are correlated to each client. As a solution, we 
take advantage of the flexibility of the recurrent 
neural networks with the padding technique. In 
this way, our DRL agent can also be adapted to 
another federated learning scenario with a differ-
ent scale of clients without retraining.

Generalization vs. Extra Computation and 
Communication Overhead

To further make the DRL agent in FL feasible in 
practice, we need to consider how a model can be 
generalized beyond the environment it was trained 
in. It’s not worth it to train a DRL model first which 
introduces much extra computation and communi-
cation overhead if it can’t also be deployed in other 
federated learning scenarios (e.g., on another image 
classification dataset or with another CNN model). 
Intuitively, those different federated learning scenar-
ios are similar in some sense since what they all do 
is send and receive neural network models at each 

communication round between multiple clients and 
the server. To capture it, we need a DRL formula-
tion that is not coupled with any specific federated 
learning task, which means the state representation 
should fall into a similar distribution even though the 
federated learning environment changes. Besides, 
to mitigate the computation and communication 
overhead induced in the DRL pre-training process, 
the agent is expected to learn rapidly with a design 
of state and reward that requires limited information 
from the server and participating clients.

Design of the DRL Agent for  
Quality Evaluation and Global Aggregation

We are now ready to formulate the global model 
aggregation process in federated learning as a 
deep reinforcement learning (DRL) control 
problem, which is illustrated in Fig. 1. We then 
explicate how we enhance the flexibility and gen-
eralizability of our DRL agent by utilizing recur-
rent neural networks with the Twin Delayed Deep 
Deterministic Policy Gradients (TD3) algorithm 
[13] and multi-task training.

DRL Formulation
Consider a federated learning task where K client 
devices participate in the training. A DRL agent 
is embedded in the central server and serves as 
an evaluator for the quality of updates from the 
selected clients, based on which the server adap-
tively generates a new global model using aggre-
gation. The agent takes one action in every time 
step t, which corresponds to one communication 
round in the federated learning session. The fed-
erated learning session constitutes an evolving 
environment with which the agent can interact 
with in each time step t, obtaining observations 
and rewards from both the server and the select-
ed St clients, and making decisions on the global 
aggregation weights. The design of the DRL for-
mulation is presented in more detail as follows.

State: The agent observes the interaction 
between the selected St clients and the server, 
and measures the quality of each local model 
update. The state will affect how the agent estab-
lishes a sense of how important each local model 
update is to the global model. In this control prob-
lem, we have concerns not only about the size of 
the state space that affects the convergence of 
DRL training, but also about the individual privacy 
of clients. Accordingly, the state space should be 
limited in terms of the size and the private infor-
mation contained in it.

Considering both perspectives of individual 
model updates and the global aggregated model, 
we propose a new design of the state in time step 
t, denoted as a vector st = [st

1, st
2, …, st

k, …, st
|St|]. 

Each element st
k represents a vector of metrics for 

the corresponding client k, which consists of the 
following features:
•	 Dt

k: the number of data samples used for cli-
ent k’s local training in round t;

•	 tt
k: the time, in seconds, taken by local train-

ing at client k in round t;
•	 loss(wt

k; Dt
k, E): the training loss of client k’s 

local model on Dt
k data samples averaged, 

over E epochs between the last step t – 1 
and the current step t;

•	 corr(Fk(wt), F(wt)): the correlation 

FIGURE 1. Applying deep reinforcement learning to update quality evaluation in 
global aggregation of federated learning.
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between the local gradient Fk(wt) of client 
k and the global gradient F(wt) in round t.
The first feature we choose is Dt

k, which is a 
primary factor for local training as we mentioned 
earlier. The local training time tt

k informs the agent 
of the client speed in the asynchronous training 
setting, which can be affected by different compu-
tation capabilities. The average local training loss 
loss(wt

k; Dt
k, E) is an explicit signal of the model 

accuracy on its own data. Even with the use of 
the first three metrics to reflect individual prop-
erties of local updates, the contribution of each 
update to the aggregated global model cannot 
be decided without taking into account the rela-
tion between the local and global model. Given 
that local models can diverge from the global one 
especially when the data distribution is non-IID, 
we further incorporate the correlation 

corr(∇Fk(𝐰𝐰t), ∇F(𝐰𝐰t)) =
〈∇𝐹𝐹𝑘𝑘(𝑤𝑤𝑡𝑡), ∇𝐹𝐹(𝑤𝑤𝑡𝑡)〉

‖∇𝐹𝐹𝑘𝑘(𝑤𝑤𝑡𝑡)‖‖∇𝐹𝐹(𝑤𝑤𝑡𝑡)‖
to reveal how close each local model is to the 
current global one. The local stochastic gradient 
is calculated by Fk(wt) = –Dwt

k/h, where h is the 
assigned learning rate and then the global gradi-
ent is given by 

∇𝐹𝐹(𝐰𝐰t) =∑ ( 𝐷𝐷𝑘𝑘𝑡𝑡

∑ 𝐷𝐷𝑘𝑘′𝑡𝑡
|S𝑡𝑡|
𝑘𝑘=1

)
|S𝑡𝑡|

𝑘𝑘=1
∇𝐹𝐹𝑘𝑘(𝐰𝐰𝑡𝑡)

(also used in FedAdp [6]).
With such a design, each selected client k in 

round t only needs to send the server a minimum 
amount of extra information mt

k, that is, Dt
k, tt

k, 
and loss(wt

k; Dt
k, E). The correlation metrics, 

corr(Fk(wt), F(wt)), are only scalar numbers 
computed from the model updates and learning 
rates. As such, our design of the state space will 
only need to incur a very limited amount of extra 
computation and communication costs, and will 
not incur any additional risks of privacy leakage 
beyond what has already been shared by conven-
tional FL sessions.

As a final step of constructing the agent’s state, 
feature normalization is further used on the four 
features across the clients, such that all the values 
per feature fall into the same distribution. In this 
way, the agent is more capable of interpreting 
the observations with the presence of different FL 
environments, and more generalizable as a result.

Action: As we cast the global aggregation with 
quantification of the update quality as our DRL con-
trol problem, the action of step t can be represented 
as at = (vt

1, vt
2, …, vt

k, …, vt
|St|), where vt

k represents the 
quality value of the corresponding model update 
from k client. The action space is restricted to |St|, 
the number of clients selected per round, instead of 
K, the number of clients in total.

We apply the quality evaluation to the global 
aggregation weighting. We normalize the agent’s 
action at to make sure their values sum to 1, and 
then use the normalized action as the weights of 
local updates from the corresponding clients when 
aggregating them into the new global model.

Episode and Reward: In reinforcement learn-
ing, episodic tasks have a terminal state. After 
reaching such a terminal state, the learning will 
restart in the next episode from an initial state. For 
the optimization of global aggregation here, one 
may intuitively regard achieving a target global 

accuracy as a terminal state of an episode, since 
that coincides to producing a global model of 
high quality. However, a well designed episode, 
accompanied by the design of the reward, is 
essential for the agent to generalize over differ-
ent environments, especially considering that the 
achievable global accuracy is heavily dependent 
on the specific FL session. Specifically, FL sessions 
with different machine learning tasks will inher-
ently have different learning complexity, where 
the progress of global model accuracy can vary 
significantly. Suppose a DRL agent is learning on 
a different FL task (e.g., different network architec-
tures, different datasets, or different levels of non-
IID data distribution) every a few episodes, then 
easier machine learning tasks will result in higher 
accuracies in fewer time steps. In this sense, epi-
sodes running these easier tasks will be biased 
during training.

To make an episode end at an appropri-
ate state, we are concerned about the history 
of achieved accuracies near the current step t, 
denoted as acc_histt, which is a list of the global 
model accuracy values obtained using the serv-
er-side test dataset in the most recent three time 
steps. When the standard deviation of the history 
of accuracies std(acc_histt) goes below a certain 
threshold s, which suggests that a steady global 
model stage has been reached, the current DRL 
training episode will terminate, and a new epi-
sode (i.e., a new session of FL training) will start. 
Such a design makes it unnecessary to repeat the 
entire FL training in every episode.

A reward function should be designed to 
encourage the desired behavior. The DRL agent 
is expected to learn to decide the contributions 
of each local update to the aggregated model 
and help generate a global model of high quality 
— one that can achieve high accuracy. However, 
since the server-side test accuracy is highly cor-
related to the quality of the global model trained 
so far, it is not capable of discriminating how 
effective the taken action is at the previous step. 
In addition, the global model is expected to prog-
ress after aggregating the local training updates, 
even without any involvement from a DRL agent. 
The test accuracy of the global model at the cur-
rent step will be an implicit metric for evaluating 
how the DRL agent has learned about the quality 
evaluation of updates.

Instead, we impose a penalty to the agent at 
every single time step before the end of an epi-
sode, and only offer a reward related to the latest 
history of test accuracies at the end of the episode. 
The reward function can be expressed as follows:
	
	
	

𝑟𝑟! =

⎩
⎨

⎧ ln
EWMA(acc"#$%!)

1 − EWMA(acc"#$%!)
· 𝛽𝛽			if	𝑡𝑡	is	the	last				

																																																												time	step,
−1																																																	otherwise,								

	

where the value EWMA(acc_histt)  (0, 1) rep-
resents the exponentially weighted moving aver-
age (EWMA) of the global model accuracies 
stored in the history, whose smoothing parameter 

In reinforcement learning, episodic tasks have a terminal state. After reaching such a terminal state, the 
learning will restart in the next episode from an initial state.
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is set to 0.9. In this way, not only the accuracy at 
the end but all accuracies in the history are con-
sidered, while larger weights are assigned to accu-
racies at more recent time steps. We adopt the 
logistic transformation so that small differences 
in acc near 1 (e.g., between 0.98 and 0.99) will 
have a larger differences on the resulted reward. 
In this way, a higher cumulative reward will be 
returned to the agent when a global model of 
higher quality is obtained within fewer commu-
nication rounds. The coefficient b  decides the 
importance of the ultimate model quality over the 
training episode length. For instance, with a larger 
b, the agent will care more about improving the 
accuracy than the total consumed time.

Training with TD3
We choose a state-of-the-art reinforcement learn-
ing algorithm, Twin Delayed Deep Deterministic 
Policy Gradients (TD3) [13], to train our agent. 
As an extension of the Deep deterministic Poli-
cy Gradient (DDPG) algorithm which is widely 
used to solve continuous control problems, TD3 
addresses the overestimation of Q values and is 
therefore more stable and robust to hyperparam-
eters. These characteristics are essential for our 
agent to have productive learning experiences 
in a federated learning environment, where time 
steps can be long due to potentially heavy local 
training workload.

The structure of neural networks in TD3 is also 
depicted in Fig. 1. There is a pair of critic net-
works Qq1, Qq2 for Q-value approximation, and 
the smaller Q-value between them will be taken 
for the policy optimization for less bias. TD3 
updates the actor and target critic networks every 
two time steps in a delayed manner, allowing the 
policy to develop more stably [13]. To reduce the 
variance in target values, TD3 also adds clipped 
noise to the selected action to smooth the target 
policy. There is also a replay memory B where 
the agent stores the transitions at each time step 
after taking an action and samples N transitions in 
one mini-batch for updating the neural networks 
during the training.

Handling Varied Number of Local Updates with LSTM
As we have assumed real-world settings of fed-
erated learning, the number of local updates 
received by the server may not be consistent with 
the number of selected clients at the beginning of 
the communication round. However, if we were 
to choose neural networks with a fixed number 
of neurons as the neural network model in our 
DRL agent, it may not be able to handle this situa-
tion where the N training samples in a mini-batch 
have different sizes [14]. Inspired by the ability of 
recurrent neural networks (RNNs) to solve nat-
ural language processing tasks and the flexibili-
ty to work on sequences of arbitrary lengths, we 
propose to utilize RNNs as our agent’s “brain” to 
cope with a varied number of client updates. The 
varied-length sequences at one mini-batch can 

be fed into RNNs after they are padded to the 
largest sequence in the batch. We choose one of 
the state-of-the-art RNN architectures, Long Short-
Term Memory Networks (LSTM), as the heads 
of actor and critic neural networks. Between the 
LSTM and the final output, there are two full con-
nected layers. The observed state st at each time 
step t can be regarded as a sequence in natural 
language processing.

Equipped with LSTM in its neural network 
architecture, the agent is more flexible when 
accommodating an arbitrary number of client 
updates, not only in different time steps within 
one federated learning session, but also in differ-
ent federated learning sessions. In other words, 
the agent’s action will not be affected by the 
potential lack of reliability of the selected clients, 
and there is no need to re-train the learned DRL 
model for settings of different numbers of select-
ed clients, making the model more generalizable. 
In addition, with the use of long-term memory in 
the LSTM model, the agent is able to interact with 
FL environments with a history of observations, 
beyond the current state at any time step.

Overall, Fig. 1 illustrates the workflow of model 
quality estimation for aggregation. With different 
number of local updates Dwt

k along with informa-
tion wt

k received by the server in each round t in 
the asynchronous setting, the DRL agent can gen-
erate corresponding evaluation of update quality 
at := vt and aggregate those updates accordingly 
by wt+1 = wt + SkSt vt

kDwt
k.

Performance Evaluation
Based on Plato, our open-source federated learn-
ing framework, We have implemented Fei, includ-
ing both the training of the DRL agent, and the 
deployment of the agent in actual FL sessions. 
We show the results of our performance evalu-
ations over two benchmark datasets and model 
combinations: the FashionMNIST dataset with 
the LeNet-5 model, and the CIFAR-10 dataset 
with the ResNet-18 and VGG-16 models. We 
observe the global model accuracy on the test 
dataset as the number of communication rounds 
progresses, and the elapsed wall-clock time for 
the global model to converge.

To evaluate the performance of our approach 
in comparison with state-of-the-art heuristics that 
consider the quality of model updates, we com-
pare Fei with the following aggregation mecha-
nisms in federated learning.

FedAvg [1]: As the first aggregation mechanism, 
FedAvg simply aggregates local model updates 
according to the proportion of local data size (i.e., 
number of data samples) to total data size.

AFL [4]: This mechanism estimates the quality 
of a client model using its local training loss and 
local data size.

FedAtt [5]: This mechanism measures the qual-
ity of a client model using its distance to the glob-
al model in terms of layer-wise parameters based 
on an attention mechanism, which is also adopted 
by FedDA [10].

FedAdp [6]: This mechanism adaptively mea-
sures the quality of a client model using the angle 
between its gradient and the global gradient.

FedProx [15]: This mechanism is designed to 
address device heterogeneity across different cli-
ents using model regularization in local training.

A reward function should be designed to encourage the desired behavior. The DRL agent is expected 
to learn to decide the contributions of each local update to the aggregated model and help generate a 

global model of high quality — one that can achieve high accuracy.
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Training the DRL Agent

In our federated learning sessions used for training 
the DRL agent, we selected the FashionMNIST 
dataset and the LeNet-5 model. The client pool 
has a total of 100 clients, and the server randomly 
selects 6 to 10 from this pool in each round. The 
number of data samples across clients is uniformly 
distributed between 80 and 200. With these set-
tings, we introduce more heterogeneity across the 
participating clients.

With respect to the neural network model 
used in our DRL agent, we used LSTM and two 
consecutive fully connected layers in both actor 
and critic networks, while each fully connected 
layer has 256 hidden states. The replay memory 
in the DRL agent can store 1000 transitions, and 
each mini-batch has 64 samples. The coefficient 
in the reward function is set to b = 20, and the 
threshold that controls the steady global model 
stage is set to s = 0.005. The DRL agent is trained 
on a NVIDIA RTX A4500 GPU with 20GB CUDA 
memory. The time it takes for the training to 
complete is around 15 hours. In our subsequent 
experiments, we use this pre-trained DRL model, 
referred to as Fei, for evaluation and comparison.

Efficiency over Heterogeneous Settings
In the same FL environment where the DRL agent is 
pre-trained in — the FashionMNIST dataset with the 
LeNet-5 model — we first investigate the efficiency 
of our pre-trained DRL model, Fei, under different lev-
els of non-IID data. There are 100 clients in total, and 
the number of selected clients is set to 10. In each 
round, the number of training epochs allocated to 
each selected client is set to 10, and the local training 
batch size is set to 32. To simulate device heteroge-
neity, we use the Pareto distribution to simulate the 
amount of time each client takes to finish each round 
of local training. To synthesize data heterogeneity, we 
use the Dirichlet distribution in our experiments. The 
concentration parameter a ≥ 0 is used to control the 
level of data heterogeneity across clients. The data on 
each client is IID when a ®  and is severely non-IID 
when a is close to zero. We use a discrete range of a 
and compare the total wall-clock time for the global 
model to reach a target test accuracy 82 percent as 
well as the accuracy at the first round, respectively, 
as shown in Table 1. In the scenario where a = 0.5*, 
the number of data samples across clients is uniformly 
distributed between 80 and 200, which is identical to 
our FL environment used for training the DRL agent.

Our experimental results show that all alterna-
tive mechanisms can improve the accuracy at the 
beginning over the baseline mechanism, FedAvg, in 
some scenarios. In terms of the simulated wall-clock 
time, FedAtt and FedAdp cannot always outperform 
FedAvg. Overall, AFL, FedProx, and Fei stand out in 
all scenarios in terms of both performance metrics.

Generalizability and Flexibility
We apply the same DRL model — which we have 
trained on FashionMNIST — onto a different FL 
session using the CIFAR-10 dataset with two dif-
ferent CNN models, ResNet-18 and VGG16, to 
evaluate how Fei is able to generalize to different 
tasks compared to what it was trained on. For each 
selected client, the allocated number of training 
epochs is 5, and the training batch size is set to 
64 for ResNet-18 and 128 for VGG16. Figure 2 

TABLE 1. The elapsed wall-clock time for the global 
model to achieve the target test accuracy as 
well as the test accuracy at the first round, with 
different levels of non-IID data over the Fash-
ionMNIST dataset with the LeNet-5 model.

Algorithms non-IID Wall-clock time 1st-round Accuracy

FedAvg

a = 

8803 54.8

AFL 1402 66.6

FedAtt 10467 57.6

FedAdp 7443 53.9

FedProx 2640 73.8

FEI 653 78.4

FedAvg

a = 0.5

4360 37.8

AFL 4187 62.4

FedAtt 3700 38.1

FedAdp 5740 32.6

FedProx 1660 57.4

FEI 2291 64.6

FedAvg

a = 0.5*

11853 22.9

AFL 6886 42.0

FedAtt 11198 33.4

FedAdp 13576 23.8

FedProx 6084 57.0

FEI 2974 53.9

FIGURE 2. Test accuracy over communication rounds 
of different FL algorithms on CIFAR-10 data-
set: a) with ResNet-18; b) with VGG-16.
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shows the test accuracy of the global model vs. the 
number of communication rounds in the FL session.

We can observe that Fei outperforms all 
other federated learning mechanisms in terms 
of the convergence speed, even though the 
DRL model was not trained in the same envi-
ronments. This shows strong evidence that, with 
appropriate pre-training, Fei can be utilized in 
different federated learning tasks to shorten the 
time of training a global model with high qual-
ity. We argue that the observed generalizabil-
ity of our DRL agent can be attributed to our 
design on how observable states can be rep-
resented, so that the quality of client updates 
can be properly evaluated. In contrast, FedAtt 
suffered from a worrisome lack of stability in 
its convergence behavior, which may be due 
to the complexity of its neural network archi-
tecture, which may introduce more bias or 
variance in the aggregation weights due to the 
layer-wise attentive mechanism. This shows that 
a suitable design of the neural network archi-
tecture is of utmost importance when neural 
network models are trained and tasked to make 
on-the-fly decisions in an FL session.

Last but not the least, we investigate the flex-
ibility of Fei in a scenario where it faces a larger 
scale of clients. Rather than selecting 10 clients 
from 100 as in DRL agent training, we select 
50 each round from 200 clients. Other settings 
are the same as our previous experiments. As 
shown in Fig. 3a, Fei and FedProx can still con-
verge very quickly on FashionMNIST within 

10 rounds, while Fei achieves a slightly higher 
ultimate accuracy. The convergence trend in 
Fig. 3b indicate that on CIFAR-10, the global 
model with Fei will potentially have an ultimate 
accuracy lower than FedAvg’s and FedAdp’s. 
But the bright side is that the accuracy of Fei at 
the beginning of the session is still higher than 
its alternatives, and it keeps growing steadily, 
unlike AFL and FedAtt. In contrast, for example, 
the accuracy with AFL fluctuates significantly in 
most experimental scenarios.

Conclusion
In this article, we investigate the quantification 
of local update quality for federated learning in 
heterogeneous settings closer to real-world com-
munication networks. We propose Fei, a federat-
ed learning framework with a novel aggregation 
strategy to actively evaluate the local contribu-
tions, aiming to enhance the ultimate global 
model quality and to minimize the number of 
communication rounds or even the wall-clock 
time needed for convergence. In particular, Fei 
leverages a DRL-based agent that applies the 
TD3 algorithm with LSTM neural networks to 
determine the quality of each local update. By 
comparing our method with FedAvg as well as 
other state-of-the-art FL algorithms with differ-
ent quality evaluation strategies on multiple FL 
training tasks, we show that Fei has efficiently 
reduced the amount of wall-clock time need-
ed to reach the same target accuracy on Fash-
ionMNIST and FashionMNIST datasets with 
different levels of non-IID data, and has exhibited 
the great potential of adapting to FL tasks differ-
ent from what the DRL agent has been trained 
on. In addition, the LSTM-TD3 architecture in 
Fei allows it to adaptively aggregate an arbitrary 
number of client updates according to their 
qualities. A limitation of this study is that a DRL 
model pre-trained on one FL environment may 
not optimally generalize many other FL environ-
ments. A natural progression of this work is to 
apply continual learning to the proposed design 
to learn a model for a broader range of FL tasks 
without forgetting previous knowledge.
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