
Multi-Agent Deep Reinforcement Learning for
Cooperative Edge Caching via

Hybrid Communication
Fei Wang1, Salma Emara1, Isidor Kaplan1, Baochun Li1, and Timothy Zeyl2

1Department of Electrical Computer Engineering, University of Toronto
2Huawei Canada

Abstract—Though caching on edge servers is widely acknowl-
edged to be essential, it is not trivial to cache content on edge
servers adaptively without any prior knowledge of the distribu-
tion of content popularity across the users. Several edge caching
algorithms have been proposed in the literature based on multi-
agent reinforcement learning (MARL) for dynamic control, how-
ever, they ignored the non-stationarity and partial-observability
issues commonly existing in multi-agent systems. In an MARL-
based edge caching application where agents collaborate towards
a common goal, communication is essential as their decisions are
jointly applied to improve collective intelligence. However, most
existing methods proposed to exchange messages between agents
have not considered the induced communication overhead, which
is critical in practice with real-world multi-agent applications. In
this paper, we propose a new MARL framework for edge caching
where agents learn to construct, exchange and interpret collective
messages for individual benefits, while controlling the complex
collaborative task of cache replacement in a communication-
efficient manner. With a standard edge caching model, we show
that with limited communication and delays introduced, our
proposed framework is able to outperform existing rule-based
and learning-based caching policy alternatives.

Index Terms—Multi-agent reinforcement learning, learning to
communicate, edge caching

I. INTRODUCTION

Given the advent of 5G networks, edge caching has been
attracting a significant amount of interest in the literature.
Content caching [1], [2] has emerged as a technique that allows
edge servers that are closer to end users in wireless networks to
proactively cache popular data and deliver the requested data
to the users. Moreover, edge servers can turn to neighboring
edge servers to retrieve the requested data and return them
to the users, in which circumstance data traffic is effectively
reduced compared to downloading data directly from the data
center via backhaul networks.

Existing studies [3]–[5] have shown the great potential
for multi-agent reinforcement learning (MARL) to design
content caching strategies at the network edge. The proposed
approaches in these studies easily outperformed heuristic
caching schemes. MacoCache [5] was able to achieve bet-
ter performance than the state-of-the-art single-agent DRL-
based caching solution [6]. With the collaboration of multiple
agents towards a common goal, communication becomes more
essential as their decisions are jointly applied whereas each

agent only has partial or limited observability of the entire
environment. However, none of the existing MARL-based
edge caching methods considered inter-agent communication
during reinforcement learning control.

Numerous studies have demonstrated the effectiveness
of learning to communicate in multi-agent collaboration.
Naghizadeh et al. [7] evaluated the benefits and drawbacks
of communication towards both coordination and the learning
progress in multi-agent reinforcement learning. In general,
these existing multi-agent communication schemes fall into
two categories according to when the messages are exchanged:
intra-step communication (e.g., CommNet [8], ATOC [9],
VBC [10], I2C [11]) and inter-step communication (e.g.,
DIAL [12] and TarMAC [13]).

In intra-step communication, agents exchange messages
within every time step from observing the environment to
applying the next action. Therefore, steps might be extended
for agents to send and receive messages before they can derive
actions combining local observations and the information in
messages from others. This will introduce a considerable delay
to the decision making process of the primary reinforcement
learning task, as messages are transmitted through the com-
munication network. In inter-step communication, agents’ de-
cision making will not be delayed by the message exchanging
out of each step. However, these messages exchanged after
the previous step’s decision making can only incorporate the
information or experience from the previous steps but not any
other agents’ statuses and beliefs in the current step.

To design a practical multi-agent communication strategy,
it’s necessary to consider both the potential latency induced
by intra-step communication and the limited information con-
veyed by message exchanges in inter-step communication.
Though most existing MARL algorithms in the literature
considered the case of limited communication bandwidth, their
designs were only empirically evaluated in static games and
a small grid world with basic simulated physics [14]. Fur-
thermore, few of the existing communication strategies with
multi-agent reinforcement learning are sufficiently practical,
when it comes to applying them to real-world scenarios. This
is because they fail to consider the extra communication delay
with real-world communication networks that are often limited
in bandwidth availability, especially when there are a large

number of agents. For example, in the edge caching context,
the limited-bandwidth restriction can be interpreted as the lim-
ited transmission capacity of network links. It remains an open
challenge to implement multi-agent communication in real-
world decentralized decision making systems, with practical
restrictions on transmitting messages among the agents.

Motivated by the need to support MARL in real-world
decision-making processes with bandwidth constraints in the
underlying communication network, in this paper, we explore
the design of a hybrid communication pattern that (1) involves
both intra-step and inter-step communication, (2) introduces
limited delays during agents’ decision making, and (3) incor-
porates both history and current knowledge into the shared
messages. To achieve these objectives, we propose a new
multi-agent communication framework for cooperative multi-
agent reinforcement learning in edge caching tasks, referred to
as Communicator with Successive Deep Neural Networks, or
CSNet. Our new framework combines specially designed deep
neural networks that adaptively convert local knowledge to
restricted-sized messages, together with neural networks that
selectively integrate shared messages into a piece of global
knowledge that is beneficial for the agents’ coordination and
learning. Agents in our framework are able to learn what
information should be shared, how global knowledge should
be understood, how history global knowledge should be kept
in local memory through a multi-agent deep reinforcement
learning process, with the objective of reducing the cost of
communication while maintaining the same level of perfor-
mance. Overall, we aim at improving each agent’s knowledge
about the dynamic environment while introducing limited
delays in agents’ decision making.

Our experimental results demonstrate that our communica-
tion strategy for multi-agent reinforcement learning, CSNet,
assists the efficient coordination across edge servers in wireless
edge caching. CSNet outperforms alternative MARL algo-
rithms with no communication [15] or with full observation
sharing [7] when they are applied to generating caching
policies, in terms of cache hits, transmission latency, and
replacement costs. Meanwhile, CSNet can save communica-
tion bandwidth up to 97.5% compared to the full observation
sharing.

II. COOPERATIVE EDGE CACHING
WITH MULTI-AGENT REINFORCEMENT LEARNING

A. System Model

We consider the edge caching model illustrated in Fig. 1.
Each edge server is located at the center of each wireless
network region, and is connected to the datacenter. Naturally,
we assume that each edge server has a limited caching
capacity, and can only cache a portion of the data stored
in the datacenter. The users are randomly distributed across
the network regions. At a particular time step, each user can
request one piece of data based on his or her preference from
the local edge server. Users make data requests from a finite
data set.

Backhaul link
BS-BS link
Data center server
Base station

User/Device
Edge server

Fig. 1: Cooperative edge caching: system model.

The popularity distribution of data is assumed to be un-
known when making caching decisions. Hence, each edge
server serves the data requests from users within its coverage
area if the requested data can be found in its cache. Otherwise,
the edge server can request any locally uncached data from
neighboring edge servers. The worst case is that the requested
data can not be obtained at either the local cache or the
neighboring cache, and the edge server will fetch the data
from the datacenter. We assume that the edge server of each
user remains unchanged within each time step.

The entire data set F consists of F pieces of files. We
assume each piece of data as file f has a unique ID, and is
of the same size sf . There are E edge servers in the system,
among which every edge server i has a cache to store the
limited number of files. The cache can be regarded as memory
blocks, each block c is the same size as the file, and the total
cache size is denoted as Ci. And Ni denotes the neighboring
edge servers of i (located within a certain distance), which
can exchange cached data with i. The total number of users
distributed across the network regions is U .

Based on the system model presented above, we describe
the important metrics that we take into consideration when
designing the RL formulation and experimental evaluation.
The total hit ratio at an edge server i is calculated as the
total number of cache hits, including local and neighbor cache
hits, to the total number of cache requests in the given period.
Alternatively, the total hit ratio can be represented as the sum
of the local hit ratio LocalHRi and the neighbor hit ratio
NeighborHRi. Note that the neighbor cache hits increment if
the requested data is not available at the local cache but can
be found at any one of the neighbor cache. The replacement
ratio RRi is calculated as the ratio of the total number of file
replacements occurred in the cache over the total number of
files that could be held in the cache in a given period.

According to the Shannon-Hartley theorem, we can calcu-
late the maximum transmission rate rl on a link l between a
user and its associated edge server as rl = Bl ·log2(1+SNRl),
where B is the allocated channel bandwidth of the link.
The SNRl represents the signal-to-noise ratio on the link l,
determined by the server’s transmission power, the path loss,

and the path distance between the data sender and receiver.
Hence, the transmission latency caused by the event that
user u requests file f from edge server i can be denoted
as Lf

lu−i
= sf/rlu−i

. Similarly, the transmission latency on
the other links, i.e., the link between an edge server and its
neighbor, can be obtained. We denote the total transmission
latency at edge server i caused by its response to the data
requests during the given period as Li.

B. Reinforcement Learning Formulation

We treat edge servers as agents who cooperate with each
other and update the local caches upon their strategies, and
who aim to minimize the overall transmission latency for
users’ requested data to achieve global optimality. At each
discrete time step t, each agent i takes an action ati based on
its local observation oti and its policy πi(ai|oi) and receives an
observation ot+1

i correlated with the new state and a joint re-
ward rt. During interactions with the environment, agents aim
to develop an optimal joint policy π⋆ mapping observations to
actions that maximizes the discounted cumulative reward (i.e.,
the expected return) E[

∑h−1
t=0 γtrt], where h = ∞ when the

number of steps is infinite, and the discount factor γ ∈ [0, 1]
describes how important future rewards are for the agents.
Accordingly, we form a multi-agent reinforcement learning
system based on the partially observable Markov decision
processes (POMDPs) formulations [16].

State space. The state space of an agent i consists of
the content caching state Ci and the content requesting
state Qi denoted as Si : {Ci = (ci,1, ci,2, ..., ci,F),Qi =
(qi,1, qi,2, ..., qi,F)}.

In the content caching state, we have ci,f = 1 if file f is
cached at the edge server i and ci,f = 0 otherwise. Similarly,
each element qi,f in the content requesting state indicates
whether or not the edge server i has received the request of file
f by some end user. At each time step t, the agent i obtains
its state sti ∈ Si.

Action space. Each agent has to make an action ati to
replace the files in the local cache during the step t. Our initial
design of the action space was At

i = {(ati,1, ati,2, ..., ati,F)},
where 0 ≤ ai,f ≤ 1 represents the probability of caching the
file f in the next step. According to the caching capacity Ci

of the edge server i, the corresponding number of files with
the highest probabilities will be selected to replace the cache.

However, this design could bring a superfluous action space
as there is a large amount of files in the content library.
To avoid complicating the control of this cooperative edge
caching scenario, we alternatively designed the action space
as At

i = {(ati,1, ati,2, ..., ati,Ci
)}, where 0 ≤ ati,c ≤ F (rounded)

represents the ID of the file to be cached in the cache block
c. Therefore, the action space is only restricted by the local
cache capacity instead.

Reward function. We penalize agents for large transmis-
sion latency Lt

i, and large replacement ratio RRt
i while re-

warding them for high local hit ratio LocalHRt
i and neighbor

hit ratio NeighborHRt
i. Thus, the reward is simply a linear

function of these metrics given different weights.

Training. We follow the paradigm of centralized training
with decentralized execution [15] for multi-agent control,
where during training, the agents have the opportunity to
access extra information apart from local observations that
are not available during execution. Each agent maintains an
individual actor network to access local observations and
take actions, while there is a central critic network taking
responsibility for the training and is empowered to observe
the full experience. This framework can effectively mitigate
the common non-stationary issues in multi-agent settings.

In particular, we use the Deep Deterministic Policy Gradient
(DDPG) [17] algorithm for learning, which is an improve-
ment over the actor-critic algorithm [18]. The action-value
function (or Q function) for the policy π is defined as
Qπ(s, a) = E[R|st = s, at = a]. DDPG learns a Q function
and a policy in an off-policy way to iterate over actions.
Using the Q function defined previously, the objective in the
DDPG algorithm is to maximize the expected return written
as J(θ) = E[Q(s, a)|st = s, at = π(s)]. Hence, the gradient
can be expressed as

∇θJ(θ) = Es∼ρπ,a∼πθ
[∇θπθ(s) · ∇aQ

π(s, a)], (1)

where ρπ is the state distribution.
In DDPG, the actor πθ is a policy network that directly

maps a state to an exact action in continuous space instead of
a probability distribution over actions, and the critic Qπ is a
Q-value network that parameterizes the Q-value by the state
and the action. As used in the DQN algorithm [19] and many
other reinforcement learning algorithms, DDPG also makes
use of a replay buffer of experience and target networks to
stabilize the learning behavior.

III. HYBRID COMMUNICATION FOR MARL
Communication among agents can make the problem mod-

eled as a decentralized partially observable Markov deci-
sion process (Dec-POMDP) easier to solve, as better policy
πi(ai|oi,mi) rather than πi(ai|oi) is learned by each agent,
where mi denotes the communication message received by
agent i. With the objective of maximizing the expected return,
agents also learn a protocol for communicating messages πm

apart from the optimal policy π.
An extreme case is that all agents share with each other

their local observations so that the problem is simplified as a
POMDP with centralization [16]. Hence, each agent receives
a message mi = o−i that consists of the joint observations of
other agents except itself. However, communication over real-
world networks will induce extra cost or delay in the system,
which makes it unrealistic to share every local information
during the training. As a result, communication message mi

needs to be carefully designed to optimize the learned policy
introducing limited cost or delay. What, when and with whom
to communicate will jointly influence the complexity of mi.

A. CSNet: Communicator with Successive Deep Neural Net-
works

Our proposed MARL communication framework is illus-
trated in Fig. 2. By extending the multi-agent deep determin-

Agent i

Update all

Critic
Network Agent N

Fig. 2: Multi-agent reinforcement learning with communica-
tion.

istic policy gradient (MADDPG) model [15], which will be
referred to as the no communication scheme, we are able to
support efficient message sharing by involving both intra-step
and inter-step communication.

Deriving knowledge from the actor. It is essential to
decide what information to exchange between multiple agents.
Sharing observations and/or behavior policies of all agents
with every other agent [5], [7] requires a significant amount of
data transmission overhead in real-world applications. Since a
large amount of information needs to be aggregated at each
agent, the ensuing communication costs could be prohibitive.
In addition, informing all the agents of what other agents
observe and how they behave could overwhelm each of the
agents [20]. This kind of information sharing is not only
devoid of value, but also detrimental to the learning process
of the entire system, especially for agents who have different
capacities of observability or heterogeneous policies.

To transfer knowledge that is not only cheaper to transmit
but also easier to digest for agents, we seek a higher-level
representation of both local perceptions and action intentions
rather than raw observations or behavior policies. In our
design, as shown in Fig. 2, information sharing among agents
takes place as we generate actions from observations according
to current policies. We split the actor network into two parts, in
which the first part — the Actor Head πh

i — outputs the hidden
state ht

i that can be seen as a feature of the local observation
oti at each time step. The Actor Head comprises two fully
connected (FC) layers with ReLU as the activation function.
We use the hidden state ht

i as a piece of information that the
agent owns locally.

Message compression. As the initial message ht
i is the

immediate output of the first part of the actor neural network,
it could still be inefficient to send them out directly through
the communication channels. Therefore, to reduce the volume
of traffic used by the agents’ messages, we compress it by
feeding it into a Message Encoder, fenc

i . The message encoder

is a fully connected layer with parameters θei , which reduces
the dimensionality of the immediate output to a high-level
message. Hence, the message to be sent by each agent i at
step t can be written as

m ht
i = fenc

i (ht
i). (2)

The length of message m ht
i is adjustable by the output size

of the encoder. Despite the fact that agents are communicat-
ing during execution, the incurred message transmission cost
and latency are reduced to the minimum using the message
encoder.

Message integration. The agents share their encoded local
messages {m ht

1, ...,m ht
N} at each time step t through a

shared communication channel. The shared information will
be integrated into a global message m at, and then broadcast
to each agent i. The second part of the actor network at each
agent, the Actor Tail πa

i , takes the local hidden states ht
i and

the global message m at as input, and generates the next
action ati. The Actor Tail is a fully connected layer. The output
of the common communicator is given by

f com(M ht) =: f com(m ht
1,m ht

2, ...,m ht
N) = m at.

(3)
It is vital to effectively integrate the collected information

sent by each agent into a useful global message that is valuable
for the coordination and learning of the entire group. Intu-
itively, we first examined several message integration methods
such as taking the average value of all the local message
vectors, or simply concatenating the message vectors sequen-
tially. However, these two naı̈ve designs are not able to satisfy
our need for adaptively differentiating the values of different
messages, and aggregating them with different weights. Pieces
of information of high importance may get mitigated, or even
worse, there may be redundant or unnecessary information
in the messages. For this reason, we further employ a new
neural network as an alternative to implement the message
integration component, referred to as the Deep Communicator.
Instead of using a fixed mapping, the Deep Communicator
adopts a recurrent neural network with parameters θc to take
in the messages from each agent sequentially, and adaptively
generate a broadcast message of a reduced size. It retains its
own memory across the training steps and keeps learning what
is important to be shared with the agents.

Message memory. The message m a described above are
generated, sent, and received during each single step, from
observing the environment to applying the next action, and
thus only incorporate information available within each step.
Apart from this message fed into the Actor Tail that indicates
the action intention of the group of agents, our design also
involves a self-updating message m oi aimed at informing
the agents of history knowledge besides the local observation.
That is, each agent retains a memory fmem

i of previous global
messages from the group of agents, which enables the agent to
sense the world more than its next observation. The memory
component fmem

i is a fully connected layer with parameters

LFU
LRU

No communication
CSNet

La
te

nc
y

0.08

0.09

0.10

0.11

0.12

Cache capacity (%)
4 6 8 10 12 14

(a) Latency

LFU
LRU

No communication
CSNet

C
ac

he
 h

it
ra

tio
 (%

)

0

10

20

30

40

50

Cache capacity (%)
4 6 8 10 12 14

(b) Total (local + neighbor) hit ratio

No communication
CSNet

R
ep

la
ce

m
en

t r
at

io
 (%

)

10

15

20

25

Cache capacity (%)
4 6 8 10 12 14

(c) Replacement ratio

Fig. 3: The latency, cache hit ratio, replacement ratio of different policies under varying cache capacities.

No communication
Full sharing
CSNet

12800

2048

1024

512

320

160
bits in message

C
ac

he
 h

it
ra

tio
 (%

)

12

14

16

Latency
0.112 0.113 0.114

Fig. 4: The average hit ratio and latency of different message
size under 4% cache capacity.

θmi . The message m oti generated at the end of the step t will
be fed into the Actor Head along with the new observation oti
at the next step t+1. The message flow through the memory
component can be expressed as

m oti = fmem
i (m at,m ot−1

i). (4)

In our CSNet design, the aggregated actor network, message
encoder, message memory and Deep Communicator work
together to encode and integrate the local messages m h,
decode the global messages m a, and produce the actions.
Specifically, the gradients flow back through Actor Tail πa,
the Deep Communicator f com, the message memory fmem

i ,
the message encoder fenc

i , and Actor Head πh for each agent.
As the common message integration component, the Deep
Communicator is trained jointly by incorporating the partial
gradients contributed by each agent. Therefore, the gradient
in Eq. (1) can be extended as Eq. (5), and the gradient
for updating parameters in the Deep Communicator can be
expressed as Eq. (6), where the state distribution ρπ is derived
from the replay buffer.

∇θiJ(θi) = Eo∼ρπ,a∼πθi
[∇θiπθi(oi,M) ·∇aiQ

π(o,a)] (5)

∇θcJ(θc) = Eo∼ρπ,a∼πθi
[∇θcM(enc m1, ..., enc mN ; θc)

· ∇Mπθi(oi,M) · ∇ai
Qπ(o,a)] (6)

IV. EXPERIMENTAL EVALUATIONS

In this section, we present experimental results and analyze
the performance of our approach compared to several baselines
in the edge caching environment, where we investigate the
bandwidth efficiency of our approach in a real-world applica-
tion. The baseline approaches are described below.

No Communication (MADDPG): This is introduced
in [15], MADDPG has a central critic network for all agents,
but does not have a process of generating and integrating
messages. Since our approach is developed from the basic
framework of MADDPG, comparing with it is similar to an
ablation study of no communication.

Full Sharing: This model directly uses the full observations
of each agent as the message shared with every other agent,
derived from recent works [7]. This will help us understand
the bandwidth efficiency of our method in a comparison study.

Rule-based algorithms: We will also compare with the
least recently used (LRU) and least frequently used (LFU)
caching policies in the edge caching environment.

CSNet achieves better performance. To test the caching
performance of the trained model, we compare CSNet with
two rule-based caching strategies, LRU and LFU, apart from
the learning-based ones. There are U = 500 users, F = 200
files, E = 5 agents, and the number of neighboring edge
servers is N = [2, 3, 1, 2, 2] due to different distances between
them.

We evaluate on a range of cache capacities, with the capacity
of each edge’s cache ranging from 4% to 15% of F . Fig. 3
show the performance results that are averaged across all
agents over 10 runs, each lasts 1000 time steps.

In Fig. 3b, the higher and lower lines of the filled area
depict the total hit ratio and the neighbor hit ratio respectively.
We observe that as the cache capacity grows, the hit ratio
including the neighbor hit ratio increases. This phenomenon
can be explained by the fact that edges with a larger cache size

can cache more content within one time step to satisfy more
users’ content requests. The CSNet achieves a higher total
cache hit ratio than both the rule-based algorithms and the
scheme without any communication. Though both learning-
based algorithms achieve high neighbor cache hit ratios, the
one with the presence of efficient communication, i.e., CSNet,
makes the most of neighbor cache cooperation.

In terms of other metrics, CSNet still beats the other
caching solutions. Fig. 3a shows that CSNet minimizes the
transmission latency for all different cache capacities. From
Fig. 3c, we observe that CSNet has learned to execute cache
replacement catering to users’ preferences on content with less
cost, compared to approaches with no communication.

Note that the models are only trained in a single scenario
with 4% cache capacity. From the results above, we observe
that CSNet can help agents adapt to larger cache capacities that
are different from what it has experienced during training.

Tradeoff between learning performance and message
size. We explored the relationship between the caching per-
formance and the different levels of message size by changing
the message compression level. This was realized by tuning
the output layer size of message encoder component. Fig. 4
demonstrates that with message compression, CSNet can
achieve a higher hit ratio and lower latency, which supports our
claim that message encoding and decoding steps can not only
help reduce the communication cost but also help knowledge
understanding between agents. In particular, the model with
a message size of 320 bits obtains the highest cache hit ratio
compared to other communication schemes and models with
other message sizes, which is 1.33× as much as that of no
communication. Meanwhile, the communication overhead of
this model is only 2.5% of that resulted by full observations
sharing.

Overall, the communication cost is reduced while high
performance is maintained. However, a smaller message size
(of 160 bits) isn’t guaranteed to achieve a higher hit ratio.
The optimal message size can differ when the number of
agents or the complexity of the network change. To balance
the communication overload and learning performance, we are
careful about the choice of the message size induced by the
message compression component.

V. CONCLUDING REMARKS

In this paper, we proposed CSNet, a new multi-agent deep
reinforcement learning framework incorporating efficient in-
formation sharing for wireless edge caching. In CSNet, we
combine intra-step and inter-step communication by using
successive neural networks to adaptively convert local in-
telligence to restricted-sized messages, selectively aggregate
shared messages into a piece of global knowledge, and also
retain history messages. In this way, our approach reduced
communication overhead while keeping the essential informa-
tion in messages to maintain good performance. Our learned
bandwidth-efficient communication strategies can facilitate
agents’ caching behavior over both rule-based and learning-
based caching algorithms.

REFERENCES

[1] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. C. M. Leung, “Cache
in the air: Exploiting content caching and delivery techniques for 5G
systems,” IEEE Communications Magazine, vol. 52, no. 2, pp. 131–139,
2014.

[2] E. Zeydan, E. Bastug, M. Bennis, M. A. Kader, I. A. Karatepe, A. S. Er,
and M. Debbah, “Big data caching for networking: Moving from cloud
to edge,” IEEE Communications Magazine, vol. 54, no. 9, pp. 36–42,
2016.

[3] W. Jiang, G. Feng, S. Qin, and T. S. P. Yum, “Efficient D2D content
caching using multi-agent reinforcement learning,” in Proc. IEEE IN-
FOCOM Workshop, 2018, pp. 511–516.

[4] C. Zhong, M. C. Gursoy, and S. Velipasalar, “Deep multi-agent re-
inforcement learning based cooperative edge caching in wireless net-
works,” in Proc. IEEE International Conference on Communications
(ICC), 2019, pp. 1–6.

[5] F. Wang, F. Wang, J. Liu, R. Shea, and L. Sun, “Intelligent video caching
at network edge: A multi-agent deep reinforcement learning approach,”
in Proc. IEEE INFOCOM, 2020, pp. 2499–2508.

[6] H. Zhu, Y. Cao, X. Wei, W. Wang, T. Jiang, and S. Jin, “Caching
transient data for internet of things: A deep reinforcement learning
approach,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2074–
2083, 2019.

[7] P. Naghizadeh, M. Gorlatova, A. S. Lan, and M. Chiang, “Hurts to
be too early: Benefits and drawbacks of communication in multi-agent
learning,” in Proc. IEEE INFOCOM, 2019, pp. 622–630.

[8] S. Sukhbaatar, A. Szlam, and R. Fergus, “Learning multiagent commu-
nication with backpropagation,” in Proc. 30th International Conference
on Neural Information Processing Systems (NeurIPS), 2016, pp. 2252–
2260.

[9] J. Jiang and Z. Lu, “Learning attentional communication for multi-
agent cooperation,” in Proc. 32nd International Conference on Neural
Information Processing Systems (NeurIPS), 2018, pp. 7265–7275.

[10] S. Q. Zhang, Q. Zhang, and J. Lin, “Efficient communication in multi-
agent reinforcement learning via variance based control,” in Advances
in Neural Information Processing Systems (NeurIPS), 2019, pp. 3235–
3244.

[11] Z. Ding, T. Huang, and Z. Lu, “Learning individually inferred commu-
nication for multi-agent cooperation,” Advances in Neural Information
Processing Systems (NeurIPS), vol. 33, pp. 22 069–22 079, 2020.

[12] J. N. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson, “Learning
to communicate with deep multi-agent reinforcement learning,” in
Proc. 30th International Conference on Neural Information Processing
Systems (NeurIPS), 2016, pp. 2145–2153.

[13] A. Das, T. Gervet, J. Romoff, D. Batra, D. Parikh, M. Rabbat, and
J. Pineau, “Tarmac: Targeted multi-agent communication,” in Interna-
tional Conference on Machine Learning. PMLR, 2019, pp. 1538–1546.

[14] I. Mordatch and P. Abbeel, “Emergence of grounded compositional
language in multi-agent populations,” in Proc. AAAI Conference on
Artificial Intelligence, 2018.

[15] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,” in
Proc. 31st International Conference on Neural Information Processing
Systems (NeurIPS), 2017, pp. 6382–6393.

[16] C. Amato, G. Chowdhary, A. Geramifard, N. K. Üre, and M. J.
Kochenderfer, “Decentralized control of partially observable markov
decision processes,” in Proc. 52nd IEEE Conference on Decision and
Control, 2013, pp. 2398–2405.

[17] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” in International Conference on Learning Representations
(ICLR) Poster, 2016.

[18] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
The MIT Press, 2018.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[20] H. Mao, Z. Zhang, Z. Xiao, Z. Gong, and Y. Ni, “Learning agent commu-
nication under limited bandwidth by message pruning,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, 2020,
pp. 5142–5149.

