
Pareto: Fair Congestion Control With Online
Reinforcement Learning

Salma Emara , Graduate Student Member, IEEE, Fei Wang , Baochun Li , Fellow, IEEE, and Timothy Zeyl

Abstract—Modern-day computer networks are highly diverse
and dynamic, calling for fair and adaptive network congestion
control algorithms with the objective of achieving the best
possible throughput, latency, and inter-flow fairness. Yet,
prevailing congestion control algorithms, such as hand-tuned
heuristics or those fueled by deep reinforcement learning agents,
may struggle to perform well on multiple diverse networks.
Besides, many algorithms are unable to adapt to time-varying
real-world networking environments; and some algorithms
mistakenly overlooked the need of explicitly taking inter-flow
fairness into account, and just measured it as an afterthought. In
this paper, we propose a new staged training process to train
Pareto, a new congestion control algorithm that generalizes well
to a wide variety of environments. Different from existing
congestion control algorithms running reinforcement learning
agents, Pareto is trained for fairness using the first multi-agent
reinforcement learning framework that is communication-free.
Pareto continues training online adapting to newly observed
environments in the real-world. Our extensive array of
experiments shows that Pareto (i) performs well in a wide variety
of environments, (ii) offers the best fairness when it comes to
competing with other flows sharing the same network link, and
(iii) improves its performance with online learning to surpass the
state-of-the-art.

Index Terms—Congestion control, deep reinforcement learn-
ing, fairness, online learning.

I. INTRODUCTION

FOR over a quarter of a century, it is a fundamental chal-

lenge in networking research to design the best possible

congestion control algorithms that optimize throughput and

end-to-end latencies. Research interests in congestion control

had recently been increasing as cloud applications have shown

strong demands for higher throughput and lower latencies (e.g.

[1]–[4]).

The design of congestion control algorithms is particularly

challenging when multiple clients share a network in an unco-

ordinated and decentralized manner. Each client in the

network has a limited number of observations it can perform

to understand the state of the network. In most cases, clients

do not have any access to information about other clients shar-

ing the network, such as their demand, delivery rates, round-

trip times (RTTs), or loss rates. The fundamental challenge is

to achieve a fair and optimal share of resources despite having

such limited visibility.

There are a number of important problems with the prevail-

ing congestion control algorithms. First, especially reinforce-

ment learning agents, these algorithms often overlook the

need of explicitly taking fairness into account. As a result,

they do not encourage fair behavior when competing with

other flows sharing the same bottleneck network bandwidth,

which was exhibited in Aurora [5] and Eagle [3]. We argue

that fairness should be an important objective to consider

when designing a new congestion control algorithm.

Second, unlike conventional algorithms such as BBR and

CUBIC, some of these congestion control algorithms adapt

slowly online as they learn from live evidence (e.g. PCC [6]

and PCC-Vivace [2]). This solves the issue from the lack of

online adaptation; however, adaptation in these algorithms is

slow and can easily result in over or under utilization of the

network.

Third, current congestion control algorithms are either hand-

crafted or trained offline, and as a result, they use fixed map-

pings between network events and congestion control

responses. The fixed set of rules is either manually designed (

e.g., BBR [1] and CUBIC [7]) or previously learned actions on

observed states from simulated environments (e.g., Remy [8],

Indigo [9], Aurora [5], Eagle [3] and Orca [4]). Since these

fixed rules may not always apply or the network’s dynamics

may deviate from those simulated environments, these conges-

tion control algorithms may not perform well on a wide variety

of environments, and hence can lack generalization.

Deep Reinforcement learning (DRL) has been used to

develop several recent congestion control algorithms, such as

Aurora [5], Eagle [3], Orca [4], TCP-RL [10] and DeepCC [11].

However, they were all trained offline, and hence they were not

designed to adapt online and hence their mappings between

states and actions were fixed. In addition, they were also not

trained to be aware of competing flows on the network, and

hence their behavior in shared networks was not studied/ana-

lyzed. However, Orca [4] and DeepCC [11] depend mainly on

CUBIC to exhibit fair behavior.

In this paper, we propose Pareto, a new DRL-based conges-

tion control algorithm that overcomes the aforementioned

Manuscript received 30 December 2021; revised 12 May 2022; accepted 16
June 2022. Date of publication 22 June 2022; date of current version 9 September
2022. Recommended for acceptance by Prof. Bo Ji. (Corresponding author:
Salma Emara.)

Salma Emara, Fei Wang, and Baochun Li are with the Department of Elec-
trical and Computer Engineering, University of Toronto, Toronto, ON M5S
3G4, Canada (e-mail: salma@ece.utoronto.ca; silviafey.wang@utoronto.ca;
bli@ece.toronto.edu).

Timothy Zeyl is with Huawei Canadian Research Institute, Markham, ON
L3R 5A4, Canada (e-mail: timothy.zeyl@huawei.com).

This article has supplementary downloadable material available at https://
doi.org/10.1109/TNSE.2022.3185253, provided by the authors.

Digital Object Identifier 10.1109/TNSE.2022.3185253

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 5, SEPTEMBER-OCTOBER 2022 3731

2327-4697 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:17:56 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0913-5855
https://orcid.org/0000-0002-0913-5855
https://orcid.org/0000-0002-0913-5855
https://orcid.org/0000-0002-0913-5855
https://orcid.org/0000-0002-0913-5855
https://orcid.org/0000-0002-1084-0690
https://orcid.org/0000-0002-1084-0690
https://orcid.org/0000-0002-1084-0690
https://orcid.org/0000-0002-1084-0690
https://orcid.org/0000-0002-1084-0690
https://orcid.org/0000-0003-2404-0974
https://orcid.org/0000-0003-2404-0974
https://orcid.org/0000-0003-2404-0974
https://orcid.org/0000-0003-2404-0974
https://orcid.org/0000-0003-2404-0974
mailto:
mailto:
mailto:
mailto:
https://doi.org/10.1109/TNSE.2022.3185253
https://doi.org/10.1109/TNSE.2022.3185253

issues of generalization, online adaptation and fairness. Our

algorithm seeks to achieve (i) fairness by training to be fair to

competing flows in a shared network, (ii) adaptation by learn-

ing online while remembering previously learned experiences,

and (iii) generalization by learning on a wide variety of

environments.

First, aiming to have Pareto behave fairly towards compet-

ing flows sharing the same link, we introduce a fairness train-

ing algorithm in the training process of Pareto. Our fairness

training algorithm is a contribution to the field of reinforce-

ment learning as it allows multiple agents to be deployed in a

shared environment to achieve a common goal (fairness) with-

out inter-agent communication.

Second, to avoid having fixed mappings between network

events and congestion control responses, we introduce a new

online training algorithm that allows Pareto to adapt to newly

seen environments. While our algorithm improves the perfor-

mance of Pareto on newly observed environments quickly, it

also ensures that old experiences gained in offline learning are

not forgotten.

Lastly, to achieve generalization and optimal performance

on a wide variety of environments, Pareto is trained offline

over a newly designed staged training algorithm, which

involves three stages: (i) bootstrapping, (ii) advancing and

(iii) fairness training. Each of these stages exposes the model

to increasingly challenging sets of observations by encounter-

ing more challenging environments.

We have performed an extensive array of experiments using

Pantheon [9], and showed that Pareto’s offline trained model

performs well on a wide range of environments and is behav-

ing fairly to competing flows on the same link. Online learning

improves the behavior of Pareto in terms of all performance

metrics: fairness, network utilization, latency and loss rate.

Pareto has a better trade-off between throughput, latency and

loss rate compared to other algorithms fueled by reinforce-

ment learning by up to 68%, and can learn online to further

improve this trade-off by a maximum of 11% to surpass BBR

and CUBIC.

II. DEEP REINFORCEMENT LEARNING FOR CONGESTION

CONTROL: MOTIVATION AND CHALLENGES

Rate-based congestion control requires adaptation to the

sending rate, which is the rate at which the sender is sending

data to the receiver. The sending rate of the sender should

achieve maximum throughput while minimizing the round-

trip time (RTT), which is the time elapsed between sending a

packet and receiving its acknowledgement. It is also desirable

to minimize packet losses, which is the ratio of packets lost to

packets sent, and not causing starvation of concurrent flows to

achieve inter-flow fairness [12].

Why learning-based? The benefit of learning-based conges-

tion control algorithms is that they avoid making assumptions

on rules that govern the network responses to congestion. So, in

cases where the assumptions do not hold, heuristics may fail to

act adequately; learning-based algorithms will create their own

rules by learning from the network, which actions are optimal.

It can take engineers years to design a congestion control algo-

rithm [1], while machines can automatically learn and adapt in

minutes (or hours) to new environments.

Limitations of learning-based algorithms. Current learning-

based congestion control algorithms do not fully solve issues

in heuristics. They try to mitigate issues of heuristics by learn-

ing congestion control rules through interacting with simu-

lated environments, such as Remy [8], Indigo [9], Eagle [3]

and Orca [4]. Since learning occurs on a small subset of envi-

ronments, it is a challenge to generalize well to a wider variety

of environments. Moreover, since previous works train models

only offline, they do not adapt and hence may perform sub-

optimally in newly seen environments. Also, as mentioned in

Aurora [5], fairness can be difficult to attain. Other online

learning-based congestion control algorithms can demonstrate

slow convergence properties PCC-Vivace [2].

Therefore, this leaves a need for a learning-based algorithm

that adapts online to newly observed network events by not

forgetting old experiences learned, while generalizing well to

a wide variety of environments. All of this should not com-

prise the fairness property towards concurrent flows.

Why use DRL? Why deep? A motivation to use RL is that it

offers several advantages over supervised learning algorithms,

including the ability to continue learning online [13]. A more

nuanced advantage of agents trained using RL-based algo-

rithms is their ability to remember the history of observations

and detect trends in network conditions to act more

appropriately [14].

As opposed to supervised learning, RL considers accumu-

lated rewards instead of instantaneous rewards, which allows

agents trained using RL-based algorithms to be “farsighted”

[15]. This is essential for congestion control, since current

actions can have long-lasting effects.

On the other hand, deep neural networks have the potential

of learning from low-level features in raw input data high-

level features, hence it does not require preprocessing input

features.

While we argue that DRL fits the congestion control prob-

lem, there are prevailing issues in existing work using DRL

for congestion control, such as Eagle [3] and Aurora [5], that

we aim at solving. Eagle [3] and Aurora [5] do not train their

DRL agents for fairness, hence they do not exhibit fair behav-

ior with flows sharing the same network link. To mitigate this

issue, we introduce a new fairness training algorithm that

trains a fair DRL-based congestion control algorithm.

Moreover, existing works of Eagle [3] and Aurora [5] are

not designed to adapt online to new environments. Their off-

line learning algorithms cannot be easily extendable to con-

tinually learn, since they assume that the episodes are

sampled from a stationary distribution. While in online

learning the distribution of episodes can be non-stationary

and the stability of the model can be threatened and forget

old experiences learned.

Lastly, Eagle [3] and Aurora [5] lack generalization to a

wide variety of environments. If a DRL agent were only

trained on a small subset of environments, it will perform well

on a subset of network environments and fail to perform well

3732 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 5, SEPTEMBER-OCTOBER 2022

Authorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:17:56 UTC from IEEE Xplore. Restrictions apply.

in other environments. At the same time, as we will show later

theoretically and empirically, training a DRL agent on a wide

variety of environments at once can confuse the agent and

lead to a worse-performing agent in all environments it

observed. To address this dilemma, we propose a new staged

training process to help in the generalization of our DRL

agent, where in each stage we introduce more challenging

environments to the DRL agent.

In summary, if we were to use an existing DRL algorithm to

solve the congestion control problem, we would not achieve

fairness, generalization and online adaptation. In this paper,

we introduce a fairness training algorithm, a staged training

framework and an online training algorithm to achieve the

aforementioned goals using DRL.

III. FORMULATING CONGESTION CONTROL AS AN RL TASK

A flow is a stream of packets transmitted by a sender across

a network link to a receiver. A sender can initiate several flows

to one or many receivers. Pareto learns a policy by running a

DRL algorithm on the sender side to control the sending rate

of each flow independently.1 This is with the main objective

of achieving the best trade-off between a variety of metrics,

such as throughput,2 queueing delay3, loss rate and fairness

with competing flows sharing the same link. In addition, we

aim to improve the online adaptability of our algorithm using

online training.

Briefly, Pareto at the sender side is responsible for mak-

ing decisions on the sending rate. The receiver will respond

with acknowledgements. Based on acknowledgements

received from the receiver, Pareto will perform calculations

to measure throughput, queueing delay and loss rate. These

measurements will be used as input to train the policy rep-

resented by the agent. As the agent experiences different

environments, it gains knowledge on how to behave in each

environment.

Modelling our sequential decision-making process as a

Markov Decision Process, which is a sequential decision pro-

cess for fully observable stochastic environments where the

effects of actions depend only on the current state, is not fully

correct. This is because our congestion control network envi-

ronment does not satisfy the Markov property, since our agent

can perform better actions if it has more information about the

history of process [16]. This is also proven empirically in

Aurora [5].

For example, an agent can increase its sending rate keeping

it below the maximum bandwidth measured earlier, and still

observe delay. This can be self-induced delay, or induced by

other agents sharing the network link. This uncertainty is due

limited observability of the environment, or having hidden

states. Knowing the history about the last maximum sending

rate which did not induce delay will help the agent in the con-

trol process. Therefore, it is convenient to model our

environment as a Partially Observable Markov Decision Pro-

cess (POMDP) as introduced in [16]–[19].

More formally, a POMDP can be described as a tuple

hS;A; T;R;V; Oi, where S is the finite set of states, A is the

finite set of actions, T is the state-transition function, R is the

reward function, V is the finite set of observations the agent

can experience and O is the observation function, which gives

the distribution over all possible observations given a state

and action [20]. If the environment model is known with spec-

ified T;O;R, then the agent can compute the belief state b,
which is the probability distribution over state space S, using
methods like MLS or Q-MDP approximations and SPOVA

algorithm [21]. These methods also require that the state space

is known. However, in many real-world application, including

our congestion control network environment, the environment

model and the state space is unknown.

Another approach to approximately solve POMDPs is

building a model of the congestion control environment. This

model would be used to estimate the belief state using particle

filtering or other sampling methods as reviewed in [22].

Model-based approaches do not fit our problem for two

main reasons. First, training a policy on a pre-trained model

of the congestion control environment would negatively affect

the performance of the model. This is mainly due to the diffi-

culty of modelling a real-world problem of stochastic conges-

tion control. Therefore, the policy will perform well on the

learned/modelled environment but will behave sub-optimally

in the real-world environment. This loss in performance has

been studied by [23], [24].

Second, to continue with online adaptation, we will need to

adapt the pre-trained model of the environment, which would

require high computational resources of training two models

online: the model of the environment and the policy.

Without a model of the congestion control network environ-

ment, the only way to gain new experiences is to interact with

the environment and learn a policy, which motivates the usage

of reinforcement learning [20], [25]. One model-free approach

is resolving the hidden state by incorporating in the current

observation some representation of the history of observations

and/or actions, as in Aurora [5] and Orca [4]. This aims at

yielding a Markovian state signal.

Since we are unsure of the history of observations to incor-

porate in the current state, there are disadvantages of increas-

ing the history size if we were to use traditional reinforcement

learning. Traditional reinforcement learning uses a lookup

table to map memory of observations to actions, and increas-

ing history size would increase the training time. Instead,

using a deep neural network is vital to speed up convergence

if we were to increase the size of the current state space to

incorporate more past observations. Since it can be difficult to

represent long (possibly entire) histories, [26] suggests using

LSTM neural network to extract arbitrary long-term depen-

dencies in the observations over time.

Since our congestion control task is having hidden states

and is therefore POMDP, we resolve the hidden states by

using an LSTM to extract relevant information from past

observations to yield a Markovian state signal. To formally

1 Throughout this paper, one sender manages only one flow.
2 Throughout this paper, throughput and delivery rate are used

interchangeability.
3 Queueing delay is also referred to as delay or latency in this paper.

EMARA et al.: PARETO: FAIR CONGESTION CONTROLWITH ONLINE REINFORCEMENT LEARNING 3733

Authorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:17:56 UTC from IEEE Xplore. Restrictions apply.

formulate the congestion control problem as a DRL task, we

now elaborate on the design of the action space, step size,

observations, neural network model and reward function.

Action space.We choose to map the agent’s output to change

the sending rate of the sender according to St ¼ St�1 � ð1þ
atÞ, where St is the sending rate and at is the agent’s output.

The agent’s output is continuous and can range from�0:7 to 2.
The maximum possible gain

Stþ1
St

is 3, while the minimum is

0.3, which is slightly lower than the inverse of the maximum.

As mentioned in [1], for example, if a gain of 3 was used to dis-

cover the maximum bandwidth and a queue was built as a

result, it is required to use the inverse of the maximum gain in

the range of actions to get rid of the excess queue. The range of

our action space is inspired by BBR, so that we are able to effi-

ciently cover all the potential actions that BBR takes.

Step size. One challenge in our environment is the delayed

effect of actions. We need to wait for one RTT to start

acknowledging packets that were sent after taking the current

decision. We choose a step size of 2 � recently measured

RTT. Therefore, any measurements made during a step size is

a combination of observations due to actions in the current

and the previous steps. This is why our measured RTT, deliv-

ery rate and loss rate for a step are exponentially weighted

moving averages (EWMAs) to weigh recent observations

more than past observations. Hence, all our future references

to delay, RTT, delivery rate and loss rate are EWMAs of

measurements obtained within one step.

Since each flow started by the sender has an end time, we

model our decision-making process as a finite horizon prob-

lem. During offline training, there are 60 steps in one episode,

and in online learning, the episode size is determined by the

length of a flow.

Observations. After the agent selects a sending rate St at

time step t, basic measurements such as EMWAs of RTT, loss

rate and delivery rate are obtained from received packet-

acknowledgements. Using these basic measurements, the

agent is fed the following input:

1) A binary indicator specifying whether we have experi-

enced delay before in the flow;

2) the ratio change in delivery rate, DRt, which is calcu-

lated as
Rt�Rt�1

minðRt�1;RtÞ , where Rt and Rt�1 are the delivery
rates measured in the current and previous steps,

respectively;

3) the speed with which delay changes or the current rate

of change in delay, which is calculated as ðdDcurr
dT Þt ¼

dt�dt�1
dt�1 =Dt, where dt and dt�1 are the delays observed in

the current and previous steps, respectively, and Dt is
the step size in milliseconds. The delay, dt, is calculated
as the difference between the current RTT and the mini-

mum RTT observed during the lifetime of an episode;

4) the speed with which loss rate changes or the current

rate of change in the loss rate, which is calculated as

ðdLcurr
dT Þt ¼ lt�lt�1

lt�1 =Dt, where lt and lt�1 is the loss rate

of the current and previous steps, respectively;

5) the ratio of excess packets Xt in the link, which is cal-

culated as

Xt ¼
St�Rt
Rt

dt � dmin

0 dt < dmin

(

where St is the sending rate and dmin is the minimum

allowable delay.

In all our calculations, the maximum allowable delay is

4 ms, over which we consider the sending rate exceeding the

available bandwidth and yielding a true queueing delay. Prac-

tically, measuring the maximum throughput is impossible

without causing some queueing delay and observing the deliv-

ery rate at that point. To avoid affecting the model’s interpre-

tation of the network environment and provide extra room for

the agent to observe the maximum bandwidth and measure it

correctly, we allow the agent to observe a small delay, dmin.

The design of the state space aims at (i) generalizing the

model to a wide variety of environments and (ii) coping with

the limited availability of observations. Each element in the

state space represents a feature of the current network state

that helps in generalizing the trained model and/or combines

measurements to combat the problem of having limited

observability. First, the binary indicating if the flow experi-

enced delay before resembles if the sending rate reached bot-

tleneck bandwidth before. If no delay was experienced in the

lifetime of the flow, then the model should explore the bottle-

neck bandwidth more aggressively to measure the bandwidth

of the link.

Second, DRt combines measurements of the delivery rate to

form a better visualization of the network and the availability

of bandwidth. If the value of DRt is positive, the last action

acquired more bandwidth; if it was negative, less bandwidth

was acquired than what is available; and if the value is around

0, then either the sending rate has not changed or the sender

was and remains sending at a rate higher than the available

bandwidth in the previous and current step.

Third, DRt, ðdDcurr
dT Þt and ðdLcurr

dT Þt ignores the absolute values
of delivery rate, delay and loss rate, respectively, which may

not generalize well to all environments. Instead, they focus

more on the effects of the last action only. For example, the

delay can be high, while a negative ðdDcurr
dT Þt shows that the

last action helped in decreasing delay. Since a longer step can

change the delay drastically given the same action in a link

with queueing delay, we consider the “rate” of change in delay

to be fair across steps with different sizes. A model cannot

observe if the network induces random losses unrelated to

congestion, but reporting ðdLcurr
dT Þt can ignore those by focusing

on the rate of change in loss rates.

Lastly, Xt helps the agent understand how far the model is

from the beginning of draining its queue to reduce delay. Xt

combines measurements of the sending rate and delivery rate to

report delay in a way that generalize well to all environments.

In other words, since it is desirable for our model to behave

well in a wide range of environments, the state space repre-

sents the network state in the same way if a similar problem

occurred but in two different networks. We ensure this using

metrics that are based on ratios, or rates of change such as

DRt, ðdLcurr
dT Þt, ðdDcurr

dT Þt, or Xt, but not absolute network-spe-

cific measurements.

3734 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 5, SEPTEMBER-OCTOBER 2022

Authorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:17:56 UTC from IEEE Xplore. Restrictions apply.

To weigh and emphasize features of the state space equally,

we want to keep the range of all features same. We scale

down DRt and ðdDcurr
dT Þt by 20 and 5 to weigh every element

equally when it is fed to the neural network.

Neural network model. The challenge of having a real-

world POMDP calls for a model that additionally has a deeper

understanding of the environment over several time steps. A

suitable neural network for this environment is a Recurrent

Neural Network (RNN), which can retain information from

sequential observations and thus take actions based on history

[16]–[19]. Hence, long-short term memory (LSTM) is chosen

as our neural network model. LSTM networks share their

weights across different time steps, rather than only across

current input features [27].

Each experience tuple in the experience replay buffer con-

tains the steps with previous experience tuples to be fed to the

neural network. Each time a sample is fed to the LSTM model,

the past states in the sample are input first, and the last output

of the last state is our action for the actor network or estima-

tion of action-value for the critic network.

Reward function. Inspired by the four phases of a BBR

flow [1], we design our reward function for three main phases:

startup, queue draining and bandwidth probing phases. The

startup phase starts when the flow commences and ends when

it experiences its first queuing delay. During this phase, we

expect the first measurement made to the available bandwidth.

When a flow is experiencing a delay greater than its maximum

allowable delay dmin, the flow is in the queue draining phase.

Here, the flow should aim at having no excess packets Xt in

the link, and to draining the queue. After the queue is drained,

the flow enters the bandwidth probing phase. During this

phase, the sender needs to probe for additional available

bandwidth.

In Algorithm 1, we explain the reward function used in

each phase. To avoid divergence and ensure stability in train-

ing, we bound the reward between ½�50; 50�. During the

startup phase, we only care about increases in delivery rate

reflected in DRt. If the delivery rate is decreasing, the reward

is the minimum reward, which is �50, otherwise the reward

is equal to 10� DRt. As observed, DRt is between ½�2; 2�,
so we multiply it by 10 to have rewards spread within bounds

of the reward.

If it is the first time to experience delay, then this is the first

time to see maximum throughput. In this first step of delay

observance, we target increases in delivery rate and slightly

penalize increases in delay. ðdDcurr
dT Þt has an observed maxi-

mum of 60 in the first occurrence of delay, and DRt has a

maximum of 20. By multiplying ðdDcurr
dT Þt with a small factor

of �0:2, and DRt with 10, we reward increases in delivery

rate more than penalizing increases in delay. As a result, the

reward is set to �0:2� ðdDcurr
dT Þt þ 10� DRt.

If delay persists in subsequent steps, we strictly penalize

delay presence by multiplying Xt with 10, where Xt lies

between ½0; 1�, and penalize increases in loss rate reflected in

ðdLcurr
dT Þt, which range between ½0; 1� by multiplying it with a

factor of �5. Increases in loss rate are a reflection of long

delays; therefore, Xt and ðdLcurr
dT Þt are not weighted equally.

We additionally penalize any increase in ðdDcurr
dT Þt between

steps, because the agent decided to increase delay further

though it already had increases in delay in the previous step

reflected in ðdDcurr
dT Þt�1. The penalty is 0:25� ððdDcurr

dT Þt �ðdDcurr
dT Þt�1Þ subtracted from the reward.

We do not expect changes in the delay if the buffers in the

route are full; instead, we expect jumps in the loss rate. Hence,

if we have delays, and we do not see changes in delay ðdDcurr
dT Þt,

we escalate the penalties further by adding �15� ðdLcurr
dT Þt.

Finally, during the bandwidth probing phase, if it is the first

step out of queue draining, we want to penalize aggressive

decreases to delivery rate and reward decreases in delay. We

achieve the aforementioned by setting the reward to

�ðdDcurr
dT Þt þ 10� DRt, where ðdDcurr

dT Þt has a minimum of �4
and DRt has a maximum of 0.5.

Otherwise, if it is not the first step out of queue draining, we

only focus on increases to the delivery rate in 50� DRt. As most

of the bandwidth acquisition happened during startup phase,DRt

is having a smaller range ½�0:4; 0:4� in bandwidth probing phase.
Hence, we choose 50 as a multiplying factor instead of 10 to

equally favor increases in the delivery rate in both phases.

IV. THE TRAINING PROCESS OF PARETO

Pareto uses a model-free approach employing Twin

Delayed Deep Deterministic Policy Gradients (TD3) [28],

which is an actor-critic reinforcement learning algorithm, to

parametrize its policy. TD3 performs exceptionally well in

continuous control action-space problems [28], and conse-

quently is an excellent match for congestion control.

Staged training process helps in reducing interference. It is

important to differentiate between two terms: interference and

Algorithm 1: Reward Function Calculation in one Episode

1: while episode is not over do

2: if startup phase: dt < dmin and not experienced delay before

then

3: if DRt < 0 then

4: rt ¼ �50
5: else

6: rt ¼ 10� DRt

7: if queue draining phase: dt � dmin then

8: if Did not experience delay before then

9: rt ¼ �0:2� ðdDcurr
dT Þt þ 10� DRt

10: else

11: rt ¼ �5� ðdLcurr
dT Þt � 10�Xt

12: if ðdDcurr
dT Þt not 0 then

13: rt rt � 0:25� ððdDcurr
dT Þt � ðdDcurr

dT Þt�1Þ
14: else

15: rt rt � 15� ðdLcurr
dT Þt

16: if bandwidth probing phase: dt < dmin and experienced delay

before then

17: if 1st step out of delay then

18: rt ¼ �ðdDcurr
dT Þt þ 10� DRt

19: else

20: rt ¼ 50� DRt

21: rt ¼ clipð�50; 50Þ

EMARA et al.: PARETO: FAIR CONGESTION CONTROLWITH ONLINE REINFORCEMENT LEARNING 3735

Authorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:17:56 UTC from IEEE Xplore. Restrictions apply.

catastrophic forgetting in DRL. Interference is when there are

two or more tasks that are incompatible. This leads to cata-

strophic forgetting where the model’s performance degrades

in one task because another task is overwriting the model’s

behavior.

Interference ismeasured as the inner product of two gradients,

representing their alignment. For example, the interference

between two-gradient based processes with objective J com-

puted on u and v and are sharing parameters uu is in (1). u and v
are two different samples, tasks or entire distributions [29].

ru;v ¼
@JðuÞ
@uu
� @JðvÞ

@uu
(1)

When a model is learning two destructively interfering

tasks, gradient updates from samples of two different tasks are

in different directions with their dot product or ru;v < 0. This
definitely leads to a decrease in the convergence speed or pos-

sibly divergence. The opposite occurs if the two tasks are con-

structive in nature, i.e. ru;v > 0.
Congestion control environments can be destructive since

they are diverse. Training our agent on two destructively inter-

fering environments at the same time will result in having

ru;v < 0 and hence may lead to lack of convergence. Instead,

to ensure convergence, we initially train our agent on a subset

of environments that are constructive to ensure that the inter-

ference between any two tasks is positive ru;v > 0. Theoreti-
cally, when the model converges, the gradients approach zero.

Lemma: After the convergence of the model on the subset

of constructive tasks u, when we train on task v along with u,
where u and v are destructively interfering on any uu, interfer-

ence ru;v � 0.
Proof: Assuming k @JðvÞ

@uu
k < 1, since k @JðuÞ

@uu
k � 0 as

model converged in task u, @JðuÞ
@u
� @JðvÞ

@u
� 0. Therefore, learn-

ing task v will be orthogonal on the knowledge gained from

task u. &

Therefore, avoiding negative interference by separating

destructively interfering tasks into stages of constructive tasks

will help speed up convergence and avoid divergence. Hence,

we introduce our staged training algorithm for congestion con-

trol, which avoids training on destructively interfering envi-

ronments at the same stage.

During offline learning, we train Pareto offline over three

main stages: (i) bootstrapping, (ii) advancing, (iii) fairness.

Each of these steps introduces more challenging environ-

ments, which would be interfering if the model observes them

all at once. Our staged offline learning process aim to (i)

reduce interference in each stage, (ii) generalize well to a

wide variety of environments, and (iii) create a model that

behaves fairly to other flows sharing the same network. After

offline learning, Pareto continues to learn online to (i) con-

tinue adapting to newly seen environments and (ii) improve

performance on previously observed environments.

Bootstrapping stage. At the beginning of the first training

stage, our model parameters are initialized randomly, hence

actions are random when training commences. To build up

experience, we train the model on elementary environments,

where the bandwidth and RTT is fixed, and no other flow is

sharing the link. Here, the model’s task is to find the single

highest sending rate that does not build up delay or cause

packet losses.

Advancing stage. As the model converges during the boot-

strapping stage, we start broadening and intensifying the set of

training environments to include both dynamic and fixed

bandwidths with fixed RTTs and unshared links. Instead of

searching for the single highest sending rate, the model’s task

is to continuously adapt to changing bandwidth and search for

the highest sending rate that does not increase delay or result

in packet losses.

Fairness stage. In the final stage of offline learning, we

introduce shared bandwidth environments. During this fair-

ness training stage, the model observes one other flow sharing

the link. The link has fixed bandwidth and RTT. The task of

the model is to have flows share fairly the link, even if flows

exit or join the link at different times.

Shared experience replay buffer.During the fairness training

stage, each sender sharing a network link will use their local

model to take decisions on the sending rate. Each sender will

start an episode of sending to the receiver for 30 seconds and

the senders start the flow instances 2 seconds apart.

In the original TD3 algorithm, an experience replay buffer

stores experience tuples ðst; at; rt; stþ1Þ of each step, where st
and at are the observed state and action taken, respectively, at

the beginning of a step. While rt and stþ1 are the reward and

observed state, respectively, at the end of a step. These experi-

ence tuples are used to update actor and critic model parame-

ters. To achieve fairness during fairness training, all senders

(which is one in our case) will send the experience tuples of

the last episode to the head sender, which stores them in the

shared experience replay buffer. The head sender will then

update and share the new model parameters with all the

senders.

The target of the model during the fairness training stage is

to decide the optimum sending rate in the best interest of all

flows without communicating with one another. Intuitively,

each sender would aim at maximizing their throughput with-

out causing delay or packet losses. Since our reward function

penalizes increases in delays, whenever a flow in a shared net-

work decides to increase its sending rate to take more than its

fair share of the link, it would be penalized. By the same

token, this would induce delay in the other flows sharing the

same link, penalizing them too. This may cause all flows to

decrease their sending rate as a reaction.

The shared experience replay buffer allowed all senders to

share their observations. Therefore, the agent learns that if

increasing the sending rate was accompanied by increases in

delay, then there is a higher likelihood this delay is self-

induced. By the same token, the agent learns that if it did not

increase the sending rate and did observe delay, the delay is

likely caused by another aggressive flow.

In addition, when the link reaches a steady state, no flow has

an incentive to change its sending rate. Once a steady state is

reached where each flow has a fair share of the link and there

is no delay, if one flow tries to change their sending rate, this

3736 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 5, SEPTEMBER-OCTOBER 2022

Authorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:17:56 UTC from IEEE Xplore. Restrictions apply.

will cause a delay or decrease in the delivery rate in the link

and one or more flows will get a negative reward or penalty.

In short, sharing experience tuples helped the model attain

fairness. Algorithm 2 summarizes the steps of our offline

learning process in Pareto.

To empirically study the effect of staged training, we train

one model over steady and dynamic bandwidth environments

in one single stage “Pareto-No-Staged” and compare it with a

model trained over bootstrapping and advancing stage

“Pareto-Staged.” All hyperparameters, such as buffer size, and

design decisions were kept the same for a fair comparison.

Table I compares stage-trained and non-stage-trained mod-

els using the performance metrics of average throughput, 95th

percentile delay,4 and average loss rate in three different sce-

narios: fixed bandwidth of 50 Mbps and changing bandwidth

every 5 seconds from 10 to 20 Mbps and 10 to 30 Mbps. All

environments have a fixed propagation RTT of 90 ms.

Although the average throughput of the stage-trained

“Pareto-Staged” is either same or lower than “Pareto-No-

Staged,” the loss rate and 95th percentile one-way delay are

always lower or almost the same. The “Pareto-No-Staged” is

particularly aggressive in increasing its sending rate to find a

higher throughput, which explains the high loss rate. As

opposed to staged-training, in one stage, “Pareto-No-Staged”

was confused between aggressively increasing the sending

rate (as bandwidth changes often) and slowly increasing send-

ing rate (as bandwidth does not change).

Segmented replay buffer: Retaining old experiences. Tasks

learned in the previous stages may be forgotten, because old

experiences in the experience replay buffer will be replaced

by new experiences from new stages. To fight against cata-

strophic forgetting and improve stability, we retain old experi-

ences from past stages in the experience replay buffer.

To retain old experiences from previous stages, after each

stage, we increase the size of the experience replay buffer by a

fixed size. Experiences from the new stage are only added to

the new extension, and new experiences will only replace old

experiences from the same stage. After convergence, the expe-

rience replay buffer will be segmented with experience tuples

from all stages retained. To illustrate, in Fig. 1, we show an

experience replay buffer during the online learning stage, with

old experiences retained from all past stages.

To study the effect of retaining old experiences from previ-

ous stages, we carry out the advancing stage with and without

retaining old experiences, naming the models “Pareto-

Advance-No-Prio” and “Pareto-Staged,” respectively. Table I

shows the behavior of the models.

When we replace old samples from the bootstrapping stage of

training with samples from the advancing stage, we observe a

Algorithm 2: Offline Staged Training of Pareto.

INPUT: Replay Buffer: B, set of environments: VVbootstrap, VVadvance,

VVfairness, probability distribution of sampling in B: P
⊳ Bootstrapping stage

1: Sample randomly an environment from VVbootstrap

2: TD3B,N , P U½0; 1
N

3: Repeat from Step 1 till stage is over

⊳ Advancing stage

4: Increase size of B and freeze old samples

5: P U½0; 1
N�

6: Sample randomly an environment from VVadvance

7: TD3 (B, N , P)

8: Repeat from Step 6 till stage is over

⊳ Fairness stage

9: Increase size of B, freeze old samples and share B among all

sender

10: Fairness (B,N , P)

11: Function Fairness (B,N , P)

12: Sample randomly an environment from VVfairness

13: Each sender of the two plays an episode sharing one network

link

14: One sender share its new experience tuples with the other head

sender to update the shared buffer B
15: Run TD3B, N , P from Algorithm 3 in head sender

16: Share the updated model parameters (f1;2;f
0
1;2; u; u

0) with other
senders

17: Repeat from Step 12 until stage is over

TABLE I
COMPARING THE PERFORMANCE OF NON-STAGE-TRAINED VS. STAGE-

TRAINEDMODELS, AND THE PERFORMANCE OF THE STAGE-TRAINEDMODEL

ON RETAINED OLD EXPERIENCES VS. STAGE-TRAINEDMODEL ON NEW EXPE-
RIENCES ONLY. THE TESTING ENVIRONMENTS ARE (I) A FIXED 50MBPS BAND-

WIDTH LINK, DYNAMIC BANDWIDTH LINK CHANGING FROM (II) 10 TO 20MBPS

AND (III) 10 TO 30MBPS EVERY 5 SECONDSWITH FIXED RTT OF 90 MS

Fig. 1. An illustration of the segmented prioritized experience replay buffer
during the online learning stage.

4 Whenever we refer to 95th percentile delay or 95th percentile one-way
delay, we mean half of the RTT.

EMARA et al.: PARETO: FAIR CONGESTION CONTROLWITH ONLINE REINFORCEMENT LEARNING 3737

Authorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:17:56 UTC from IEEE Xplore. Restrictions apply.

forgetful behavior. The model trained with retaining old experi-

ences “Pareto-Advance-No-Prio” had three times lower loss

rates in the fixed bandwidth scenario at the cost of 5% lower

throughput, which shows that without retaining old experiences,

themodel forgot how to take decisions in steady bandwidth envi-

ronments. While in the dynamic bandwidth environment, not

retaining old experiences also lead to high loss rates at the cost of

a marginal gain in throughput. Therefore, retaining old experien-

ces did not hurt the learning process in the new stage, instead it

improved the performance of Pareto in old and new tasks.

Prioritized replay buffer for quicker convergence and better

performance. When retaining old experiences, sampling from

the experience replay buffer will favor old and new experiences

equally, although old samples were used in updating the model

several times earlier. Hence, to take the best of both worlds, i.e.

to not forget old experiences and quickly learn new ones, a prior-

itized replay buffer allows us to train more on new experiences.

However, since prioritized replay buffers were not initially

designed for actor-critic policy gradient algorithms, we adapt

the concept of prioritized replay buffer introduced in [30] for

critic-only models to our TD3 actor-critic model.

New experiences generally contribute substantially to the

actor and critic losses compared to old experiences. Hence, we

can easily identify them in the replay buffer as follows. The actor

learns a policy puuða j sÞ that maximizes the expected return

(or value function) JðuÞ ¼ E½Qpuðs;puðsÞÞ�, and the critic esti-
mates the action-value function Qpðs; aÞ ¼ EpfGt j st ¼ s;
at ¼ ag, where Gt ¼

PT
i¼0 g

irtþi and g is the discount factor.

The actor is updated using the deterministic policy gradient algo-

rithm [31] using ruJðuÞ ¼ E½ruQ
pu ðs; aÞja¼puðsÞrupuðsÞ�,

and the critic is updated by minimizing LðfÞ ¼ E½ðQfðs; aÞ �
ðTpu0Qf0 Þðs; aÞÞ2�, where T is the Bellman operator ðTpQÞ
ðs; aÞ ¼ rðs; aÞ þ gE½Qðs;0 pðs0ÞÞ�. We will use the actor loss

ruJðuÞ and critic loss d ¼ rLðfÞ of each sample to identify

which samples needmore frequent sampling.

As in [30], we set the probability of choosing sample i

as P ðiÞ ¼ pa
iP
k
pa
k

, where all pi, 8i : 1 � i � N , are set to

1 initially,N is the size of the buffer, and a is a constant. a is set

to 0.6 as in [30]. In other words, the initial probability distribu-

tion is uniform. To adapt the prioritized replay buffer to actor-

critic models, we update pi every iteration according to (2).

pi tanhðdi=cþruJiðuÞÞ þ 1þ z (2)

where c is a constant set to 10 to scale and equally weigh actor

and critic loss values, d ¼ rLiðfÞ is the TD-error of sample i
in the mini-batch (which is the critic loss),ruJiðuÞ is the actor
loss of sample i and z is a small number, 1e�5, to prevent P ðiÞ
from dropping to zero, if losses are 0. We included tanh to

clip pi and prevent it from diverging to high values to ensure

stability.

Since the estimation of the expected Q-function and value

function J relies on uniform sampling, losses of each sample

has to be attenuated by a value proportional to its

“importance” or probability P ðiÞ. This is referred to as

weighted importance sampling. The importance of a sample i

is weighted by wi ¼ ðN�P ðiÞÞ
b

maxkwk
, where b is a hyperparameter. It

is set to 0.4 and grows by 0.001 every iteration till it reaches

1, according to [30]. If the exponent b is 1, the bias introduced

by non-uniform probabilities P ðiÞ is fully compensated by

weighted importance sampling. In [30], the authors argue that

using b ¼ 1 would aggressively correct the bias. As a result,

they gradually correct the bias by increasing b. For stability,
weights are normalized by 1

maxiwi
, so the update is scaled

down.

In simple terms, instead of updating weights of the critic

and actor by f f� hrfLðfÞ and u u þ hruJðuÞ,
weights are updated according to f f� hw � rfLðfÞ and
u u þ hw � ruJðuÞ, where w is the vector of importance

sampling weights w ¼ ½w1; w2; ::; wb� and b is the batch size of
the mini-batch. Steps for modified TD3 algorithm for priori-

tized replay buffer are summarized in Algorithm 3.

To illustrate how significant can the performance of Pareto

change with the usage of a prioritized replay buffer compared

Algorithm 3: TD3 Algorithm for Prioritize Replay Buffer.

INPUT: Replay Buffer: B, buffer size:N , learning rate: h, policy and

critic parameters: u, f1 and f2, target policy and critic parame-

ters: u0, f01 and f
0
2, probability distribution of sampling in B: P

1: function TD3 (B, N , P)

2: Play an episode

3: if reward rt < 0 then
4: next action a0 is taken by expert
5: Save experience tuple samples in buffer B
6: According to P , sample mini-batch b from B
7: for jin range(number of iterations) do

8: Compute the target function: ⊳ � 	 Nð0; sÞ

y ¼ rþmini¼1;2Qfi ðs;0 pu0 ðs0Þ þ �Þ (3)

9: Compute the gradients of two critics and actor

rfiLðfiÞ ¼
1

jbj
X
ðs;a;rÞ2b

rfiðQfiðs; aÞ � yÞ2 (4)

ruJðuÞ ¼ 1

jbj
X
s2b
ruQf1ðs; aÞja¼puðsÞrupuðsÞ (5)

10: Calculate importance sampling weights w:

wi ¼ ðN � P ðiÞÞ
b

maxkwk
(6)

11: Update critics’ and actor gradients:

f1;2 f1;2 � hwrf1;2Lðf1;2Þ; u u þ hwruJðuÞ (7)

12: Update parameters of target networks:

u0 tu þ ð1� tÞu;0 f01;2 tf1;2 þ ð1� tÞf01;2 (8)

13: Update probability distribution P:

P ðiÞ ¼ paiP
k p

a
k

; where pi tanhðdi=cþruJiðuÞÞ þ 1þ z (9)

14: return f1;2;f
0
1;2; u; u;

0B;N; P

3738 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 5, SEPTEMBER-OCTOBER 2022

Authorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:17:56 UTC from IEEE Xplore. Restrictions apply.

to a regular experience replay buffer, in Fig. 2, we show the

difference in performance of Pareto after the advancing stage

when a priority replay buffer was (“Pareto-Advance”) and

was not (“Pareto-Advance-No-Prio”) used. In Fig. 2(a), both

models performed well and similarly on the fixed bandwidth

set to 50 Mbps as it has been observed by both during the

bootstrapping stage. While in Fig. 2(b), “Pareto-Advance”

exhibits a more responsive behavior to changes in the avail-

able bandwidth compared to“Pareto-Advance-No-Prio”.

In Table I, we also compare the performance of “Pareto-

Advance-No-Prio” and “Pareto-Advance.” There is a signifi-

cant decrease in the loss rate and delay after using prioritized

replay buffer, which shows that using prioritized replay buffer

helps in converging at a more optimal behavior. In addition,

“Pareto-Advance” converged in 40% less iterations than

“Pareto-Advance-No-Prio”. This is due to the emphasis the

algorithm gave to the new samples from the advancing stage.

Expert Demonstrations. Many reinforcement learning algo-

rithms use expert demonstrations in different ways as in [32].

For high dimensional spaces, expert demonstrations improve

the sample efficiency of reinforcement learning because the

agent will explore only when there is a chance of a valuable

learning experience. Therefore, not having expert demonstra-

tions will increase the training time.

As introduced by Eagle [3], we use BBR expert demonstra-

tions to speed up convergence of our congestion control model

to learn easy tasks quickly. As opposed to Eagle [3], during off-

line and online training, we use expert demonstrations only

when the previous action yielded a reward value below a thresh-

old. Since we only use the expert when our previous action was

not rewarding, we expect our expert demonstration to yield a

reward higher than our model in this particular step in the train-

ing process. Having a weaker expert than BBR may provide a

valuable chance to learn better actions, but not most of the time

as BBR does. Therefore, convergence may slow down.

Another outcome is that the model may get stuck on a local

optimum if all the expert actions were yielding rewards below

the current untrained model. In short, as long as the expert has

better actions than the model at a specific time, the valuable

experiences shared with the agent will help speed up training

time.

Interested readers are referred to appendix B in supplemen-

tary material to see the ratio of expert actions decreases as the

model’s performance improves. Also, readers interested to

know the significance of using expert demonstrations are

referred to appendix C.

Online training stage. During online learning, the models

trained offline are deployed on different senders sharing the

network. In our experiments, we assume that in real-world net-

works the models will observe all kinds of environments,

including environments that have not yet been observed dur-

ing the offline training process. Hence, we train our senders

on the previously observed environments, in addition to new

environments such as LTE networks and networks shared

with a random number of senders.

As opposed to the fairness training stage, where different

senders can append their experiences in the same shared priori-

tized replay buffer, to avoid overloading the network with

experience tuples from the sender, during the online learning

stage, each sender has their experiences appended to their local

prioritized replay buffer. Since different senders train on their

local experiences, their model parameters may diverge from

one another; however, we believe retaining old experiences in

the replay buffer prevents divergence from being disastrous.

Our objective is to learn new experiences while not for-

getting old ones, hence we expect to observe improvements in

performance — or at least no degradation in the behavior over

old and new sets of environments. To achieve this objective,

during the online learning stage, we continue to use our priori-

tized replay buffer produced from the fairness stage.

It is worth noting that most of the prioritized replay buffer

of all senders across the network is the same, since the starting

point of the prioritized replay buffer was after fairness training

stage for all the senders. Retaining old experiences in the

replay buffer is essential during online learning. First, this

reduces the risk that model parameters on different senders

may diverge.

Second, in real-world networks, environments are unpredict-

able and noisy. For example, the model can observe the same

environment for prolonged periods. This raises the risk of the

model overfitting and catastrophically forgetting. By retaining

old experiences, we guarantee that the model will not forget

old experiences and will avoid overfitting to one environment.

Expert actions can be used only if the reward in the previous

step is minimal, hence guaranteeing a safe-fail behavior.

Algorithm 4 summarizes the details about the online training

process. Also, Fig. 3 summarizes the stages of the training pro-

cess and names the models produced after each stage: Pareto-

Bootstrap, Pareto-Advance, Pareto-Fair, and Pareto-Online.

Fig. 2. Comparing the performance of Pareto when using a prioritized replay
buffer, “Pareto-Advance,” and when using the replay buffer without priori-
tized replay buffer, “Pareto-Advance-No-Prio.” Shaded area under the graph
is the available bandwidth.

Algorithm 4: Online Training of Each Model of Pareto on a

Real-World Network.

INPUT: Replay Buffer after offline training: B, set of all environ-

ments: VV
 U, probability distribution of samples in B after off-

line learning: P , model parameters after offline training:

f1;2;f
0
1;2; u; u

0

1: Increase size of B and freeze old samples

2: Run TD3 (B,N , P) in Algorithm 3

3: Repeat Step 2 whenever a flow starts

EMARA et al.: PARETO: FAIR CONGESTION CONTROLWITH ONLINE REINFORCEMENT LEARNING 3739

Authorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:17:56 UTC from IEEE Xplore. Restrictions apply.

V. EXPERIMENTAL RESULTS

A. Implementing the Training Framework

As highlighted in [33], recent RL-based congestion control

approaches use interfaces that would block the sender while

an agent updates gradients or considers taking a new decision/

action. This does not translate to real-world networking envi-

ronments, as these interruptions to sending packets would

under-utilize the bandwidth, causing unexpected and inaccu-

rate measurements and observations.

In response, we implemented an RL interface from scratch

following the OpenAI Gym interface, where the sender will

continue sending packets until the agent takes a new decision

to change the sending rate of the sender. Therefore, throughout

the episode, the sender will not be blocked from sending pack-

ets. This is feasible running two different blocks/processes on

the sender: the controller and agent.

In Fig. 4, the controller block has three running threads that

are: (1) sending packets to the receiver at the prescribed send-

ing rate; (2) receiving acknowledgements from the receiver

and making measurements based on acknowledgements

received; and (3) sending those measurements to the agent

and receiving decisions on the sending rate from the agent at

every step. Even if the agent takes time in deciding on a new

sending rate, the controller block will continue sending pack-

ets, and will not be blocked.

The controller block is implemented using the C++ pro-

gramming language since it’s running speed is an order of

magnitude faster than Python. The receiver side is receiving

packets from the controller block over UDP. Based on meas-

urements received from the controller block, the agent block

in Fig. 4 is responsible for (1) training Pareto using Algo-

rithm 2, 3 and 4 to make decisions on the sending rate; and (2)

sending these decisions to the controller block for every step.

Since deep learning frameworks, such as PyTorch, are based

on Python, we implement the agent block in Python. For a

reliable communication, we have a TCP connection to

exchange measurements and actions between the agent and

the controller block.

Pareto observes different network environments by emu-

lating real-world networks using Mahimahi shells [34]. We

emulate fixed RTT, fixed and dynamic bandwidth, and a fixed

buffer size of 440 KB. RTT varies between 10 and 90 ms and

bandwidth varies between 5 and 100 Mbps. Every episode in

our algorithm runs a different Mahimahi shell that emulates a

different network environment.

For the bootstrapping stage, every timewe start an episode, we

randomly pick an environment out of five with fixed bandwidth,

either 5, 10, 12, 20, 50, 100 Mbps, and RTT is fixed at 90 ms.

In the advancing stage, we pick one out of ten different

environments: five of them have fixed bandwidths, as in the boot-

strapping stage, and five have dynamic bandwidth that changes

suddenly every 5 seconds, and RTT is fixed again to 90 ms. The

shaded area in Fig. 2(b) shows an example of dynamic band-

widths, where the available bandwidth changes every 5 seconds.

During fairness training, we pick one out of five fixed bandwidth

environments, as the ones used in bootstrapping stage.

To evaluate the performance of Pareto, we used the Pan-

theon experimental testbed [9], which is designed to assess

new congestion control algorithms by comparing with existing

work. Pantheon has been widely used since its launch [2], [3],

[8]. Pantheon uses an emulated network environment using

Mahimahi shells, and results from Pantheon are reproducible

and accurately reflect real-world results.

B. Evaluation Metrics

Originally, [35] showed that the operation point where

power, defined as Power ¼ Throughput
Delay

, is maximized is the

optimal point for the network and the individual flow. In addi-

tion, research papers use throughput and delay jointly as in [9]

and in Fig. 5, which plots throughput and delay as we elabo-

rate later, to analyze the performance of an algorithm.

However, according to [12], a congestion control algorithm

should be evaluated in terms of the trade-offs between a vari-

ety of metrics, such as throughput, delay, loss rate, response

time and fairness between competing flows. [12] also states

that it is useful to consider throughput, delay and loss rate

jointly owing to the fact that they are related. For example, if

an algorithm decides to increase its sending beyond network

bandwidth, it will observe a high throughput but also a higher

delay and packet loss. While if the algorithm decides to avoid

delay and packet loss by having a low sending rate and hence

throughput, this will under utilize the network link. In essence,

judging an algorithm based on several metrics, but not jointly,

may not be appropriate.

Accordingly, we introduce a new metric named Ankh’s5

number Akh, that summarizes the trade-offs between

Fig. 3. Four staged training process with names of the models produced after
each stage: Pareto-Bootstrap, Pareto-Advance, Pareto-Fair, Pareto-Online.

Fig. 4. RL training interface following the OpenAI Gym environment.

5 Ankh is an ancient Egyptian hieroglyphic symbol for life, written as y.

3740 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 5, SEPTEMBER-OCTOBER 2022

Authorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:17:56 UTC from IEEE Xplore. Restrictions apply.

throughput, queueing delay and most importantly loss rate.

Ankh’s number provides a comprehensive reliable summary

to help us rank different congestion control algorithms accord-

ing to their throughput, delay and loss rate trade-off.

Ankh’s number can be calculated as in (10),

Akh ¼
ð1� UÞ þ j ðdmax�d95%

dmax
Þ j þ lavg

3
(10)

where U is the network utilization ratio
Ravg�C

C , Ravg is the

average throughput of the flow, C is the average bandwidth of

the link, dmax is the maximum 95th percentile one-way delay

of all the six congestion control algorithms we are comparing

Pareto with, d95% is the 95th percentile one-way delay of the

flow and lavg is the average loss rate of the flow in %.

Ankh’s number is a unit-less reverse-order metric – the

smaller, the better. All the terms in Ankh’s number are ratios

ranging from 0 to 1, with 0 being the best and 1 being the

worst. Therefore, we rank congestion control algorithms from

lowest to highest Ankh’s number.

Additionally, we use Jain’s fairness index [36] to evaluate

the fairness between competing flows sharing one link. It is one

of the most widely used metrics for assessing the fairness in

allocating available resources. Jain’s index ranges from 0 to 1,

and it is maximized when all flows receive the same resource

allocation. It is calculated as J ðR1; R2; . . .; RnÞ ¼ ð
Pn

i¼1 RiÞ2
n�
Pn

i¼1 R
2
i

,

where Ri is the average throughput of the ith flow and n is the

number of flows sharing the link.

C. Pareto Vs. The State-of-The-Art Congestion Control

Algorithms

We compare Pareto with the state-of-the-art congestion

control algorithms: Aurora [5], BBR [1], Indigo [9], Eagle [3],

CUBIC [7], and PCC-Vivace [2].

1) Experiments Performed: We test the models of Pareto

produced out of different stages in Pantheon, and compare

them with different congestion control algorithms in 9 differ-

ent environments. Testing environments include network links

of (a) fixed bandwidth of 50 Mbps, dynamic bandwidth chang-

ing from (b) 10 to 20 Mbps, (c) 10 to 30 Mbps and vice versa

every 5 seconds, fixed bandwidth of 50 Mbps with (d) two, (e)

three, (f) four and (g) five flows sharing the link, and finally

LTE environment while (h) standing and (i) driving. The prop-

agation RTT in all the testing environments is set to 90 ms,

except for LTE, it is 20 ms. Each congestion control algo-

rithm/model is tested for 3 times on an environment for 30

seconds each time.

First, Fig. 5 plots the average throughput and 95th percen-

tile one-way delay of each run in 6 out of 9 experiments.

Fig. 5 compares different models of Pareto produced from dif-

ferent stages with different congestion control algorithms. All

graphs in Fig. 5 show the 95th percentile one-way delay axis

reversed, and hence better congestion control algorithms

appear to the top and right part of the graph.

Second, for each congestion control algorithm, we calculate

the average (i) throughput, (ii) loss rate and (iii) 95th percen-

tile one-way delay of three experiment runs to calculate the

Ankh’s number for each congestion control algorithm to plot

Fig. 6. The Ankh’s number of different models produced at

different stages in Pareto’s training and other congestion con-

trol algorithms are ranked in Fig. 6, where the lower the

Ankh’s number, the better trade-off the algorithm has is in

terms of jointly optimizing throughput, delay and loss rate.

Fig. 6 shows the experiments on the same 6 environments as

Fig. 5.

Third, in Fig. 7(d), we plot the Jain’s fairness index for dif-

ferent congestion control schemes, when 2, 3, 4 or 5 flows

share a link. The congestion control algorithms are ranked

based on the average Jain’s fairness index over 4 shared

Fig. 5. Comparing the behavior of Pareto after (i) bootstrapping, (ii) advancing, (iii) fairness and (iv) online training over 6 different environments with other con-
gestion control algorithms. Each flowwas run for 30 seconds. Each experiment was repeated for 3 times. The scatter plot shows the three runs for each scheme.

EMARA et al.: PARETO: FAIR CONGESTION CONTROLWITH ONLINE REINFORCEMENT LEARNING 3741

Authorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:17:56 UTC from IEEE Xplore. Restrictions apply.

network experiments, where the top most scheme has the

highest average Jain’s fairness index.

Finally, to get a better perspective of the fairness depicted

by congestion control algorithms, in Fig. 8 and Fig. 10, we

plot the throughput of different congestion control algorithms

vs. time when four and five flows share a 50 Mbps bandwidth

link, respectively. The flows start 2 seconds apart from each

other. In Fig. 10, we additionally test the responsiveness of the

algorithms by departing flows after 30 seconds from the exper-

iment. The flows depart 10 seconds after the previous flow

departed as depicted in Fig. 10.

2) Ankh’s Number and Jain’s Fairness: Aurora and Eagle.

In Fig. 6, Pareto-Fair and Pareto-Online have 20% to 52%

lower Ankh’s numbers, respectively, than Aurora in all envi-

ronments. We observe Aurora in the top middle-left of all fig-

ures in Fig. 5. This shows that Aurora has a high throughput;

however, due to high loss rate, we observe Aurora ranking

low in figures in Fig. 6. This shows how important it is to take

loss rates into account when evaluating an algorithm.

Compared to Eagle, Pareto-Fair and Pareto-Online have lower

Ankh’s number in most environments. For example, in the LTE

environment, Pareto-Fair and Pareto-Online have 16% and 26%

lower Ankh’s number, respectively, compared to Eagle. In fixed

(shared or unshared) bandwidth environments, Pareto-Fair and

Pareto-Online have 7% to 25% lower Ankh’s number, respec-

tively, compared to Eagle. In contrast, in dynamic environments,

where the bandwidth changes from 10 to 20 Mbps and

10 to 30 Mbps, Eagle performs better than Pareto-Fair with 26%

and 10% lower Ankh’s number, respectively.

Fig. 7(d) shows that Pareto-Fair and Pareto-Online are all bet-

terwith respect to fairness than Eagle andAurora, showing higher

Jain’s fairness indices. Pareto-Fair surpasses Aurora by 19%, and

Eagle by 119%. In summary, we can safely conclude that in our

experiments Pareto out-performed state-of-the-art DRL-based

algorithms in terms of fairness, and achieving a better trade-off

between throughput, latency and loss rate by at most 52%.

BBR.On the contrary, it is difficult to claim an absolute perfor-

mance superiority over other congestion control schemes. For

example, BBR is the best performer in LTE environments as

shown in Fig. 6(f), and Pareto-Online is the fourth best. In the

fixed bandwidth setting where four or five flows share the link,

BBR has a higher Ankh’s number by at least 27% compared to

Pareto-Online as shown in Fig. 6(d) and (e). In other environ-

ments, BBR and Pareto-Online have comparable behavior. Con-

sequently, it is difficult to claim if Pareto is superior to BBR.

Attempting to reach a consensus on fair comparisons, we

rank the overall performance of different congestion control

schemes by averaging their Ankh’s numbers for 9 different

environments in Fig. 9(a). The lower the average Ankh’s num-

ber, the better the overall performance is. Additionally, we

average Jain’s fairness index from the experiments with 2, 3,

4 and 5 flows in Fig. 9(b). The algorithm with the highest

index is the fairest algorithm overall in our experiments. We

show the standard error on the bars of both figures.

Fig. 9(a) shows that BBR and Pareto-Online have similar

average Ankh’s number within 1%. In terms of fairness, Fig. 9

(b) shows Pareto-Online having 33% higher Jain’s fairness

index than BBR. In Fig. 8(c), we observe that BBR stabilizes

to an unfair resource allocation to flows with the first flow

acquiring most of the capacity. A similar pattern is also

observed in Fig. 10(c), where the first flow has the most band-

width. In addition, BBR’s fairness drops as the number of

flows grow as observed in Fig. 7(d). Overall, BBR performs

better than Pareto-Online on dynamic environments such as

LTE, but Pareto-Online always outperforms BBR in fixed

bandwidth environments and in terms of fairness.

Fig. 6. Comparing the behavior of Pareto with different congestion control algorithm in terms of the Ankh’s number over 6 different network environments.

Fig. 7. The behavior of Pareto before and after training on fairness and Jain’s
fairness index compared to other congestion control algorithms.

3742 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 5, SEPTEMBER-OCTOBER 2022

Authorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:17:56 UTC from IEEE Xplore. Restrictions apply.

PCC-Vivace. In Fig. 9(a), we observe that the average Ankh’s

number of Pareto-Online is 0.311, which is close to 0.323 of

PCC-Vivace. PCC-Vivace behaves very well in fixed environ-

ments with 50% lower Ankh’s numbers than Pareto-Online as

shown in Fig. 6(a). Conversely, it behaves poorly in dynamic

environments with 22%, 8%, 27% and 33% higher Ankh’s num-

bers as shown in Figs. 6(b), 6(c), 6(e) and 6(f), respectively. It

seems when the environment is dynamic or has a higher number

of flows such as 5, the known drawback, i.e. slow convergence

property, of PCC-Vivace emerges. In conclusion, PCC-Vivace

does not generalize well to a wide array of environments.

In terms of fairness, Pareto-Online is having comparable

fairness to PCC-Vivace with 7% higher Jain’s fairness index

as observed in Fig. 9(b). This is due to the slow convergence

property of PCC-Vivace depicted in Fig. 8(d), and the steady-

state behavior is not absolutely fair. A slow response is also

portrayed in Fig. 10(d) when flows depart. Additionally, the

fairness performance of PCC-Vivace decays when the number

of flows increases as shown in Fig. 7(c).

CUBIC. The average Ankh’s number of CUBIC compared

with Pareto-Online and Pareto-Fair is similar within 7%. In

fixed bandwidth environments as in Fig. 6(a), the Ankh’s num-

ber is similar within 9%. However, for dynamic bandwidth

environment where bandwidth changes from 10 to 30 Mbps,

CUBIC performs better by 22% compared to Pareto-Online as

in Fig. 6(c). While, in LTE environments and shared links,

CUBIC has 15% to 30% higher Ankh’s number compared to

Pareto-Online and Pareto-Fair.

In terms of fairness, the Jain’s fairness index of Pareto-

Fair and Pareto-Online is 7% and 14% higher than CUBIC,

respectively. Also, Fig. 8(b) shows that CUBIC is slow in

converging to a fair behavior. When flows depart in Fig. 10

(b), the responsiveness of CUBIC to attain a fair resource

allocation is slow. Pareto clearly outperforms CUBIC in

terms of fairness and overall generalized behavior in a wide

set of environments.

Indigo. Indigo has a 36% lower average Ankh’s number in

Fig. 9(a), and it has a comparable 2% lower Jain’s fairness

index in Fig. 9(b) compared to Pareto-Online. However, in

Fig. 7(d), we observe that as the number of flows grows, Jain’s

fairness index drops, which shows that Indigo does not scale

well with several flows sharing a link. This is clearly observed

in Fig. 8(a) where Indigo does not reach a fair steady-state

behavior.

Regarding responsiveness to departing flows, Indigo depicts

almost no response by marginally increasing the sending rate

of existing flows when other flows depart in Fig. 10(a), as

opposed to Pareto-Online. It is likely that Indigo is not respon-

sive as it was not trained on this scenario during offline

learning.

In addition, Indigo is an offline learned model and will not

be able to adapt to newly seen environments that are substan-

tially different from the environments it was trained on. As we

Fig. 8. Fairness of different schemes when five flows starting 2 seconds apart share a 50 Mbps fixed bandwidth link.

Fig. 9. Average Ankh’s number and Jain’s fairness index for each congestion
control algorithm.

EMARA et al.: PARETO: FAIR CONGESTION CONTROLWITH ONLINE REINFORCEMENT LEARNING 3743

Authorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:17:56 UTC from IEEE Xplore. Restrictions apply.

show in our next section, Pareto can adapt online and hence

outperforms Indigo with respect to both online adaptability

and fairness. In summary, in terms of Ankh’s number, Indigo,

Pareto and BBR are the best congestion control algorithms;

and in terms of Jain’s fairness, Pareto, Indigo and PCC-Vivace

are the best.

3) Pareto’s Online Adaptability: Pareto continues to learn

online after the last stage of offline learning. When Pareto-

Fair is trained online for 30 and 100 minutes, it produces Par-

eto-Online and Pareto-Online-More, respectively. Online

training is over a random combination of shared, fixed and

dynamic bandwidth environments, including LTE.

We observe improvement in performance in newly seen

environments and a slightly better or similar behavior in previ-

ously observed environments. The former is due to online

learning, and the latter is attributed to the large segmented

experience replay buffer with a wide variety of old retained

experiences and new ones, which increased stability and pre-

vented catastrophic forgetting.

Fixed unshared bandwidth links. In terms of fixed band-

width environments, Pareto-Online and Pareto-Online-More

in Fig. 5(a) have lower 95th percentile one-way delay and a

similar throughput compared to Pareto-Fair. Also, in Table II,

which summarizes the metrics used to calculate the Ankh’s

number and compares the performance of different Pareto’s

models with its teacher — BBR, we observe a decrease in loss

rate and delay for the 50 Mbps bandwidth environment, and

hence there is a 6% and 9% decrease in Ankh’s number for

Pareto-Online and Pareto-Online-More, respectively.

Dynamic unshared bandwidth links. In dynamic bandwidth

environments, where the bandwidth changes from 10 to

20 Mbps and 10 to 30 Mbps every 5 seconds, the behavior of

Pareto-Online and Pareto-Online-More is similar to the behavior

of Pareto-Fair with small changes to loss rate, average

throughput and 95th percentile one-way delay. There is less than

1% change in Ankh’s number from Pareto-Fair to Pareto-

Online-More in Table II. Hence, Pareto didn’t benefit or get

harmed from online adaptation on previously observed dynamic

environments.

Fixed shared bandwidth links.When two flows share a fixed

bandwidth link, the behavior of Pareto improves where Pareto-

Online has 50% lower loss rate than Pareto-Fair in Table II.

This significant decrease in loss rate is reflected in a decrease

in Ankh’s number.

On the other hand, when three flows share the network link,

which the model did not observe during offline learning, Par-

eto seems to improve its delay and loss rate over time as it

learns online. Table II shows an overall 43% and 12%

decrease in loss rate and delay, respectively, from Pareto-Fair

to Pareto-Online-More, which lead to a decrease in Ankh’s

number by 10%.

In addition, in terms of fairness, Pareto benefitted from

online learning as well. Fig. 7(d) shows an increase in Jain’s

fairness index from Pareto-Fair to Pareto-Online to Pareto-

Online-More when 2-5 flows share the network.

LTE. Finally, in the LTE environment, another significant

improvement is observed in the performance of Pareto from

Pareto-Fair to Pareto-Online and Pareto-Online-More. Pareto

has a 40% decrease in Ankh’s number from Pareto-Fair to Par-

eto-Online-More as shown in Table II. This is mainly a result

of 80% and 70% decrease in the 95th percentile delay and loss

rate, respectively, from Pareto-Fair to Pareto-Online-More.

Since LTE environment was not observed in offline learning,

during online learning Pareto got the chance to train and gain

more experience in the LTE environment.

Overall, the behavior of Pareto improves or remains the

same in environments observed earlier during the offline

learning stage; however, in newly seen environments, where it

Fig. 10. Fairness of different schemes when four flows starting 2 seconds apart share a 50 Mbps fixed bandwidth link. The flows start departing after 30 seconds
at intervals of 10 seconds.

3744 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 5, SEPTEMBER-OCTOBER 2022

Authorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:17:56 UTC from IEEE Xplore. Restrictions apply.

was behaving well after the offline learning stage, it continued

to improve in terms of several metrics such as throughput, loss

rate, latency and fairness. In Fig. 9(a), the overall improve-

ment in Ankh’s number is 11%, and in Fig. 9(b), the overall

improvement in Jain’s fairness index is 13%.

Despite not observing divergence in online learning in our

experiments, we are still using expert actions whenever a

reward goes below a threshold. If it happens more, automati-

cally we will have the expert as a backup, which guarantees a

fail-safe learning experience.

Did online learning help Pareto surpass other congestion

control algorithms? Compared to the state-of-the-art algo-

rithms, Pareto-Online-More surpassed BBR and PCC-Vivace

in terms of the average Ankh’s number by 5% and 10%,

respectively. Overall, Pareto-Online-More did not surpass

Indigo’s Ankh’s number; however, in terms of performance

on individual environments, we observe Pareto-Online-More

surpassing Indigo in LTE environment. While initially Pareto-

Fair was having 35% higher Ankh’s number than Indigo, Par-

eto improved its performance by 40% to surpass Indigo by

19% in LTE. Neither Indigo nor Pareto were trained offline

over LTE, but Pareto was capable of surpassing Indigo with

online training. Pareto also surpasses the Jain’s fairness index

of PCC-Vivace and Indigo by 11% and 6%, respectively.

Therefore, online adaptability gave Pareto an edge over

Indigo, which is offline trained, in LTE and shared environments.

A fair conclusion is that Indigo and Pareto-Online-More — with

its ability to adapt online — are the top two congestion control

algorithms in terms of Ankh’s number and Jain’s fairness index.

We believe Pareto is scoring the best when taking into consider-

ation (i) fairness, (ii) trade-off between throughput, delay and

loss rate, (iii) online adaptability, and (iv) generalized perfor-

mance over a wide array of environments.

D. Analysis of Pareto’s Progression

Pareto has a generalized behavior over a wide set of environ-

ments, and as it learns from new environments without forgetting

old experiences. This is owed to the staged training process,

which trains on a wide set of environments and retains old expe-

riences. We show in this section how Pareto gains fairness

behavior, generalization and suffers no catastrophic forgetting.

Pareto-Bootstrap. In the fixed bandwidth environment of

50 Mbps, Pareto-Bootstrap performed better than its teacher –

BBR. Pareto-Bootstrap is having almost 54% less loss rate

compared to BBR in Table II. Since Pareto-Bootstrap is not

trained over dynamic bandwidth environments, as observed in

Figs. 6(b) and (c), Pareto-Bootstrap performs worse than BBR

and other Pareto models trained on these dynamic environ-

ments as it has a higher Ankh’s number.

Pareto-Advance. Pareto-Advance gained experience to bet-

ter utilize dynamic bandwidth environments. Fig. 11 shows

TABLE II
COMPARING THE PERFORMANCE OF PARETO AT DIFFERENT TRAINING STAGES
IN OFFLINE AND ONLINE LEARNING WITH ITS TEACHER – BBR OVER A WIDE

SET OF ENVIRONMENTS. PERFORMANCE METRICS USED FOR COMPARISON

ARE AVERAGE THROUGHPUT, 95TH PERCENTILE DELAY, AVERAGE LOSS
RATE AND ANKH’S NUMBER

Fig. 11. Comparing the dynamics of the decisions taken by Pareto after the
bootstrapping stage vs. after the advancing stage.

EMARA et al.: PARETO: FAIR CONGESTION CONTROLWITH ONLINE REINFORCEMENT LEARNING 3745

Authorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:17:56 UTC from IEEE Xplore. Restrictions apply.

the dynamics of decisions taken by Pareto-Bootstrap and Par-

eto-Advance in the 10 to 30 Mbps bandwidth environment.

We observe in Fig. 11 that Pareto-Advance has a faster con-

vergence rate to changing bandwidths compared to Pareto-

Bootstrap. This improves the utilization of the network link

without resulting in delays and losses.

In Table II, we observe Pareto-Advance has �9 and �2 less

loss rate than Pareto-Bootstrap in the 10 to 20 Mbps and

10 to 30 Mbps environments, respectively. This is also

reflected in the lower Ankh’s numbers of Pareto-Advance

compared to Pareto-Bootstrap in Figs. 6(c) and (c).

Both Pareto-Bootstrap and Pareto-Advance do not exhibit

fair behavior on shared network links, since they were not

trained for fairness. We observe low Jain’s fairness indices in

Figs. 7(d) and 7(b).

Pareto-Fair. In Figs. 7(a)–Fig. 7(c), we show a summary of

the behavior of Pareto before and after training for fairness.

The experiment runs for 30 seconds, and the next flow com-

mences after 2 seconds after the first flow. Fig. 7(a) shows Par-

eto-Advance not allowing for a fair-allocation of bandwidth.

After training for fairness, we observe in Fig. 7(b) the

decrease in the sending rate of the old flow and increase in

sending rate of the new flow as they reach a settling average

throughput of 22 Mbps, which is approximately half of what

Pareto utilizes if one flow uses the link. A similar fair behavior

is observed when 3 flows share the bandwidth link in Fig. 7(c).

In Fig. 7(d), Pareto-Fair has at least 125% improvement in

Jain’s fairness index compared to Pareto-Bootstrap.

Apart from the fairness of Pareto, Pareto-Fair also improved

the network utilization compared to Pareto-Advance when

considering all environments, except the fixed bandwidth

environment. For example, in Table II, Pareto-Fair shows an

increased average throughput by 20% in the dynamic environ-

ment where bandwidth changes from 10 to 30 Mbps.

However, the increase in network utilization of Pareto-Fair

sometimes leads to higher delay or loss rate in some environ-

ments, leading to an increase in Ankh’s number compared to

Pareto-Advance. For example, in fixed bandwidth environ-

ment in Fig. 6(a), Pareto-Advance has lower Ankh’s number

compared to Pareto-Fair.

This was at the cost of generalization to a wider set of environ-

ments. Pareto-Fair additionally performed well on LTE environ-

ment, which it was not trained on. There is an improved average

throughput by more than 22� as illustrated in Table II. Ankh’s

number of Pareto-Fair is 14% lower than Pareto-Advance. Our

understanding is that the experiences gained during fairness

training added experiences that made Pareto more knowledge-

able to act better in environments it did not observe before.

Despite Pareto not observing old environments during fair-

ness training, degradation in its performance on old environ-

ments is minor. This is owed to the prioritized replay buffer

that retained old experiences for training. This shows that Par-

eto is avoiding catastrophic forgetting, and generalizing to a

wide set of environments.

The success of Pareto is attributed to the (i) staged training

process, which allowed training on a wide variety of environ-

ments, (ii) training for fairness, (iii) online training, which

improves the performance of Pareto in terms of Ankh’s number

and in terms of fairness after offline training, and finally (iv)

training on old retained experiences, which help in avoiding cat-

astrophic forgetting and reproducing stability in performance.

VI. RELATED WORK

More than three decades of active research in congestion

control has yielded a wide variety of congestion control

schemes, including a variety of TCP variants.

Heuristics. Among early TCP variants are TCP Reno [37]

and TCP NewReno [38]. These are AIMD-based algorithms

that use losses as congestion signals. Later, CUBIC [7]

replaced linear incremental changes to congestion window

size to follow a cubic function. Since loss-based congestion

signals lead to higher delays in the network, TCP Illinois [39]

and BBR [1] use delay and loss as congestion signals. Other

works illustrate limitations of BBR, such as high packet loss

and unfairness in certain situations [40].

Apart from the hard-wired mappings in classic heuristics,

other heuristics focus on the nature of the environment. For

example, Sprout [41] targeted cellular networks, while

DCTCP [42] and LDP [43] focused on data center networks.

The main issue with heuristics is that the mappings between

network events and control responses is fixed; therefore, if the

network does not behave according to the prior assumptions

used to design the control responses, these algorithms may not

perform well.

Learning based. Besides heuristics, several learning-based

approaches have been studied too. The main benefit of learn-

ing-based approaches is to avoid hard-wired mappings

between events and control responses that are based on certain

assumptions on the network.

Online learning. To avoid hard-wired mappings between

events and control responses, PCC [6] and PCC-Vivace [2]

work on live evidence from the network environment to try to

learn online the behavior of the network. However, as they try

different actions and move towards sending rates that give them

a higher utility, their critical limitation is the high convergence

time to reach the optimum throughput and delay within a flow.

Offline learning. Indigo [9] trains a LSTM using imitation

learning, where an oracle serves as an expert to label actions

to observations. Remy [8] is another offline optimization

framework for congestion control. Even though Indigo and

Remy has a near-optimal performance on environments they

were trained on, the apparent limitation is that their behavior

does not adapt when they see newly seen environments.

RL approaches. The sequential decision-making process in

congestion control fits very well with reinforcement learning

objectives [4]. Aurora [5], Eagle [3] and Orca [4] used DRL

algorithms to train either an LSTM model or simple neural

network using off-the-shelf RL algorithms.

Aurora and Eagle did not perform well in our experiments

because their design did not allow them to(i) generalize well

to a wide variety of environments and (ii) train for fairness.

While actions of Orca were used to improve CUBIC’s perfor-

mance, yet both (Orca and CUBIC) are offline learned

3746 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 5, SEPTEMBER-OCTOBER 2022

Authorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:17:56 UTC from IEEE Xplore. Restrictions apply.

algorithms, and hence won’t be able to perform well on newly

seen networks.

QTCP [44] and SmartCC [45] are examples of RL

approaches not using deep neural networks. However, as men-

tioned earlier, the training time would increase significantly if

larger history size is to be incorporated.

Network-assisted. Some other algorithms require feedback

from entities on a path. For example, XCP [46] uses explicit

feedback from the network, where the routers inform the send-

ers about the degree of congestion at the bottleneck. However,

this requires new of routers/switches and collaboration of dif-

ferent entities on a path, which may not be feasible for the

Internet.

Stability analysis. There are various papers analyzing the sta-

bility and fairness in heterogeneous networks, such as the Inter-

net and wireless networks [47]–[49]. These works use Lyapunov

theory-based approaches for stability analysis. Conditions

for stability of heterogeneous-flow networks are obtained to effi-

ciently and fairly support multiple applications. However, these

methods require information about the network that may be hid-

den to clients, for example, queue-length at a buffer. Hence,

these methods require the replacement of network switches,

which is not practical for the Internet. Our DRLmethod does not

require replacement of switches or routers, and uses only data

that can bemeasured from receiver acknowledgements.

Fairness in multi-agent reinforcement learning (MARL). As

raised by Aurora [5], fairness in congestion control powered

by RL is challenging as the agent is supposed to take actions

fairly guided only by the reward function. Several works work

on providing fairness in MARL environments; however, they

require communication between agents such as CommNet [50]

and ATOC [51].

VII. CONCLUSION

In this paper, we present Pareto, a new congestion control

protocol fueled by staged DRL training process, fairness train-

ing and online learning. Our staged training technique allowed

Pareto to gain more experiences compared to other algorithms

powered by DRL, hence Pareto performs well in a wide vari-

ety of environments. During fairness training, Pareto learned

to excel in shared networks. Pareto has up to 40% and 20%

better fairness compared to BBR and CUBIC respectively,

and 129% and 33% better fairness compared to Aurora and

Eagle, respectively, which are fueled by DRL too.

Pareto’s online learning algorithm ensures adaptation to

newly seen environments. The trade-off between throughput,

latency and loss rate improved by 40% after online training in

LTE networks. In addition, fairness of Pareto improved by �
13% after online adaptation. Overall, Pareto is capable of sur-

passing the state-of-the-art congestion control algorithms by

improving the trade-off between throughput, latency and loss

rate, fairness towards flows sharing the same link, generaliza-

tion and online adaptability.

In our future work, we aim to study the possibility of deriv-

ing theoretical guarantees on performance boundaries when

designing learning-based congestion control algorithms.

REFERENCES

[1] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-based congestion control,” Commun. ACM, vol. 60,
no. 2, pp. 58–66, Feb. 2017.

[2] M. Dong, T. Meng, D. Zarchy, E. Arslan, and Y. Gilad, “PCC vivace:
Online-learning congestion control,” in Proc. 15th USENIX Symp. Net-
worked Syst. Des. Implementation, 2018, pp. 343–356.

[3] S. Emara, B. Li, and Y. Chen, “Eagle: Refining congestion control by
learning from the experts,” in Proc. IEEE Int. Conf. Comput. Commun.,
2020, pp. 676–685.

[4] S. Abbasloo, C.-Y. Yen, and H. J. Chao, “Classic meets modern: A prag-
matic learning-based congestion control for the internet,” in Proc. Annu.
Conf. ACM Special Int. Group Data Commun. Appl. Technol. Architec-
tures Protoc. Comput. Commun., 2020, pp. 632–647.

[5] N. Jaya, N. Rotman, P. B. Godfrey, M. Schapira, and A. Tamar, “A deep
reinforcement learning perspective on internet congestion control,” in
Proc. 36th Int. Conf. Mach. Learn., 2019, pp. 3050–3059.

[6] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira, “PCC: Re-
architecting congestion control for consistent high performance,” in
Proc. 12th USENIX Symp. Networked Syst. Des. Implementation, 2015,
pp. 395–408.

[7] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly high-speed
TCP variant,” ACM SIGOPS Operating Syst. Rev., vol. 42, no. 5,
pp. 64–74, 2008.

[8] K. Winstein and H. Balakrishnan, “TCP ex machina: Computer-gener-
ated congestion control,” in Proc. Annu. Conf. ACM Special Int. Group
Data Commun. Appl. Technol. Architecture Protoc. Comput. Commun.,
2013, pp. 123–134.

[9] F. Y. Yan et al., “Pantheon: The training ground for internet congestion-
control research,” in Proc. USENIX Annu. Tech. Conf., 2018, pp. 731–
743.

[10] X. Nie et al., “Dynamic TCP initial windows and congestion control
schemes through reinforcement learning,” IEEE Journal. Sel. Areas
Commun., vol. 37, no. 6, pp. 1231–1247, Jun. 2019.

[11] S. Abbasloo, C.-Y. Yen, and H. J. Chao, “Wanna make your TCP
scheme great for cellular networks? let machines do it for you!,” IEEE
J. Sel. Areas Commun., vol. 39, no. 1, pp. 265–279, Jan. 2021.

[12] E. S. Floyd, “Metrics for the evaluation of congestion control mechanisms,”
2008. [Online]. Available: https://datatracker.ietf.org/doc/html/rfc5166

[13] K. Khetarpal, M. Riemer, I. Rish, and D. Precup, “Towards continual
reinforcement learning: A review and perspectives,” 2020,
arXiv:2012.13490.

[14] Y. Li, “Deep reinforcement learning: An overview,” 2017, arXiv:
1701.07274.

[15] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[16] S. D. Whitehead and L.-J. Lin, “Reinforcement learning of non-Markov
decision processes,” Artif. Intell., vol. 73, pp. 271–306, 1995.

[17] K. Murphy, “A survey of POMDP solution techniques,” Environment,
vol. 2, no. 10, 2000.

[18] L. Lin and T. Mitchell, “Memory approaches to reinforcement learning
in non-Markovian domains,” Carnegie Mellon Univ., Pittsburgh, PA,
USA, Tech. Rep. CMU-CS-92-138, 1992.

[19] D. Wierstra, A. Foerster, J. Peters, and J. Schmidhuber, “Solving deep
memory POMDPs with recurrent policy gradients,” in Proc. Int. Conf.
Artif. Neural Netw., 2007, pp. 697–706.

[20] S. W. Hasinoff, “Reinforcement learning for problems with hidden
state,” University of Toronto, Toronto, Canada, Tech. Rep., 2002.

[21] W. S. Lovejoy, “A survey of algorithmic methods for partially observ-
able Markov decision processes,” Ann. Operations Res., vol. 28, no. 1,
pp. 47–65, 1991.

[22] A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo sam-
pling methods for Bayesian filtering,” Statist. Comput., vol. 10, no. 3,
pp. 197–208, 2000.

[23] D. Ha and J. Schmidhuber, “Recurrent world models facilitate
policy evolution,” in Proc. 32th Adv. Neural Inf. Process. Syst., 2018,
pp. 123–134.

[24] H. van Hasselt, M. Hessel, and J. Aslanides, “When to use parametric
models in reinforcement learning,” in Proc. 32th Adv. Neural Inf. Pro-
cess. Syst., 2019.

[25] B. Bakker, “Reinforcement learning with LSTM in non-Markovian
tasks with long-term dependencies,” Leiden University, Tech. rep.,
2001.

[26] B. Bakker, “Reinforcement learning with long short-term memory,” in
Proc. 14th Adv. Neural Inf. Process. Syst., 2001, pp. 1475–1482.

EMARA et al.: PARETO: FAIR CONGESTION CONTROLWITH ONLINE REINFORCEMENT LEARNING 3747

Authorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:17:56 UTC from IEEE Xplore. Restrictions apply.

https://datatracker.ietf.org/doc/html/rfc5166

[27] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[28] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” in Proc. 35th Int. Conf. Mach.
Learn., 2018, pp. 1587–1596.

[29] E. Bengio, J. Pineau, and D. Precup, “Interference and generalization in
temporal difference learning,” in Proc. 37th Int. Conf. Mach. Learn.,
2020, pp. 767–777.

[30] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” in Proc. 4th Int. Conf. Learn. Representations, 2016.

[31] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller
, “Deterministic policy gradient algorithms,” in Proc. 31th Int. Conf.
Mach. Learn., 2014, pp. 387–395.

[32] M. Jing et al., “Reinforcement learning from imperfect demonstrations
under soft expert guidance,” in Proc. 34th AAAI Conf. Artif. Intell.,
2020, pp. 5109–5116.

[33] V. Sivakumar et al., “MVFST-RL: An asynchronous rl framework for
congestion control with delayed actions,” in Proc. NeurIPS Workshop
Mach. Learn. Syst., 2019.

[34] R. Netravali, A. Sivaraman, S. Das, and A. Goyal, “Mahimahi: Accurate
record-and-replay for HTTP,” in Proc. USENIX Annu. Tech. Conf.,
2015, pp. 417–429.

[35] R. Gail and L. Kleinrock, “An invariant property of computer network
power,” in Proc. Int. Conf. Commun., 1981, pp. 1–63.

[36] R. Jain, D.-M. Chiu, andW. R. Hawe, “A quantitative measure of fairness
and discrimination for resource allocation in shared computer systems,”
Eastern Res. Lab. Digit. Equip. Corporation, vol. 21, pp. 1–37, 1984.

[37] V. Jacobson, “Congestion avoidance and control,” in Proc. Annu. Conf.
ACM Special Int. Group Data Commun. Appl. Technol. Architecture
Protoc. Comput. Commun., vol. 18, no. 4, pp. 158–173, 1988.

[38] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida, The NewReno Modi-
fication to TCP’s Fast Recovery Algorithm, Internet Eng. Task Force
(IETF), Fremont, CA, USA, IETF Standard RFC 6582, 2012.

[39] S. Liu, T. Başar, and R. Srikant, “TCP-Illinois: A loss- and delay-based
congestion control algorithm for high-speed networks,” Perform. Eval.,
vol. 65, no. 6, pp. 417–440, 2008.

[40] Y.-J. Song, G.-H. Kim, I. Mahmud, W.-K. Seo, and Y.-Z. Cho,
“Understanding of BBRv2: Evaluation and comparison with BBRv1
congestion control algorithm,” IEEE Access, vol. 9, pp. 37 131–37 145,
2021.

[41] K. Winstein, A. Sivaraman, and H. Balakrishnan, “Stochastic forecasts
achieve high throughput and low delay over cellular networks,” in Proc.
10th USENIX Symp. Networked Syst. Des. Implementation, 2013,
pp. 459–471.

[42] M. Alizadeh et al., “Data center TCP (DCTCP),” in Proc. Annu. Conf.
ACM Special Int. Group Data Commun. Appl. Technol. Architecture
Protoc. Comput. Commun., 2010, pp. 63–74.

[43] H. Zhang, X. Shi, X. Yin, F. Ren, and Z. Wang, “More load, more differ-
entiation – a design principle for deadline-aware congestion control,” in
Proc. IEEE Int. Conf. Comput. Commun., 2015, pp. 127–135.

[44] W. Li, F. Zhou, K. R. Chowdhury, and W. Meleis, “QTCP: Adaptive
congestion control with reinforcement learning,” IEEE Trans. Netw. Sci.
Eng., vol. 6, no. 3, pp. 445–458, Jul.-Sep. 2019.

[45] W. Li, H. Zhang, S. Gao, C. Xue, X. Wang, and S. Lu, “SmartCC: A
reinforcement learning approach for multipath TCP congestion control
in heterogeneous networks,” IEEE J. Sel. Areas Commun., vol. 37,
no. 11, pp. 2621–2633, Nov. 2019.

[46] D. Katabi, M. Handley, and C. Rohr, “Congestion control for high band-
width-delay product networks,” in Proc. Annu. Conf. ACM Special Int.
Group Data Commun. Appl. Technol. Architectures Protoc. Comput.
Commun., 2002, pp. 89–102.

[47] H. Balakrishnan, N. Dukkipati, N. Mckeown, and C. J. Tomlin,
“Stability analysis of explicit congestion control protocols,” IEEE Com-
mun. Lett., vol. 11, no. 10, pp. 823–825, Oct. 2007.

[48] L. Wang, L. Cai, X. Liu, and X. Shen, “Stability and fairness analysis of
AIMD/RED system with heterogeneous delays,” in Proc. IEEE Glob.
Telecommun. Conf., 2007, pp. 1813–1817.

[49] L. Georgiadis, M. J. Neely, and L. Tassiulas, Resource Allocation and
Cross-Layer Control in Wireless Networks. Foundations Trends Netw.
vol. 1, no. 1, pp. 1–144, 2006.

[50] S. Sukhbaatar, A. Szlam, and R. Fergus, “Learning multiagent commu-
nication with backpropagation,” in Proc. 30th Adv. Neural Inf. Process.
Syst., 2016, pp. 2252–2260.

[51] J. Jiang and Z. Lu, “Learning attentional communication for multi-agent
cooperation,” in Proc. 32th Adv. Neural Inf. Process. Syst., 2018,
pp. 7265–7275.

Salma Emara (Graduate Student Member, IEEE)
received the B.A.Sc. degree in electronics and com-
munications engineering from the American Univer-
sity in Cairo, New Cairo, Egypt, in 2018. She is
currently is currently working toward the Ph.D.
degree with the Department of Electrical and Com-
puter Engineering, University of Toronto, Toronto,
ON, Canada. Her research interests include rein-
forcement learning, congestion control, and resource
allocation.

Fei Wang received the B.Eng. degree in computer
science and technology from Hongyi Honor College,
Wuhan University, Wuhan, China, in 2020. She is
currently working toward the M.A.Sc. degree with
the Department of Electrical and Computer Engineer-
ing, University of Toronto, Toronto, ON, Canada.
Her research interests include intersections of rein-
forcement learning, networking, and communication.

Baochun Li (Fellow, IEEE) received the Ph.D. degree
from the Department of Computer Science, University
of Illinois at Urbana-Champaign, Champaign, IL,
USA, in 2000. Since then, he has been with the
Department of Electrical and Computer Engineering,
University of Toronto, Toronto, ON, Canada, where
he is currently a Professor. He holds the Bell Canada
Endowed Chair in computer engineering since August
2005. His research interests include large-scale dis-
tributed systems, cloud computing, peer-to-peer net-
works, applications of network coding, and wireless
networks. He is a Member of the ACM.

Timothy Zeyl received the B.Eng. and M.A.Sc. degrees from McMaster Uni-
versity, Hamilton, ON, Canada, in 2007 and 2010, respectively, and the Ph.D.
degree in biomedical engineering from the University of Toronto, Toronto,
ON, Canada, in 2015. He is currently a Staff Engineer with Distributed Sched-
uling and Data Engine Laboratory, Huawei Canadian Research Institute. His
research interests include machine learning, signal processing, and data
science.

3748 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 5, SEPTEMBER-OCTOBER 2022

Authorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:17:56 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

