Eagle: Refining Congestion Control
by Learning from the Experts

Salma Emara', Baochun Li' and Yanjiao Chen?

YUniversity of Toronto, {salma, bli} @ece.utoronto.ca

Abstract—Traditional congestion control algorithms were de-
signed with a hardwired heuristic mapping between packet-
level events and predefined control actions in response to these
events, and may fail to satisfy all the desirable performance
goals as a result. In this paper, we seek to reconsider these
fundamental goals in congestion control, and propose Eagle, a
new congestion control algorithm to refine existing heuristics.
Eagle takes advantage of expert knowledge from an existing
algorithm, and uses deep reinforcement learning (DRL) to train
a generalized model with the hope of learning from an expert.
Learning by trial-and-error may not be as efficient as imitating
a teacher; by the same token, DRL alone is not enough to
guarantee good performance. In Eagle, we seek help from an
expert congestion control algorithm, BBR, to help us train a
long-short term memory (LSTM) neural network in the DRL
agent, with the hope of making decisions that can be as good
as or even better than the expert. With an extensive array of
experiments, we discovered that Eagle is able to match and even
outperform the performance of its teacher, and outperformed
a large number of recent congestion control algorithms by a
considerable margin.

I. INTRODUCTION

For a quarter of a century, congestion control has been a cor-
nerstone challenge and classic problem in computer network-
ing. Initially, congestion control meant to avoid congestion
collapses. Nonetheless, modern congestion control algorithms
are responsible for much more, as they are the foundation for
network services such as web services, video streaming, and
online gaming.

As new congestion control algorithms emerged, we are
always in pursuit of higher throughput, lower latencies, faster
convergence to the steady-state, and utilizing scarce bandwidth
resources fairly and optimally. The fundamental design objec-
tive of congestion control is to operate well in a wide array of
networking environments, from lossy wireless links to links
with high bandwidth and low propagation delays.

Despite a substantial amount of research, the problem of
congestion control is still considered open. Existing algorithms
may suffer from the following deficiencies:

& Lack of generalization. Most congestion control algo-
rithms werepoint solutions, i.e., they were designed for
specific network environments, but may not perform well

This work is partially funded by an NSERC Collaborative Research
and Development Grant, a Huawei Canada Research Contract, the NSERC
Discovery Research Program, the National Natural Science Foundation of
China under Grants 61972296 and 61702380, Wuhan Advanced Application
Project under Grant 2019010701011419, and Hubei Provincial Technological
Innovation Special Funding Major Projects under Grant 2017AAA125.

2Wuhan University, chenyj.thu@gmail.com

in others. For example, Sprout [1] is robust in an LTE
network environment, but not for wireline connections.

{ Oblivious to earlier traffic patterns. Not keeping a mem-
ory of preceding network events can make us forget
about traffic patterns of a flow, losing the opportunity
to make better actions in the future. For example, for a
very dynamic network connection such as a WiFi or LTE
connection, where many users join and leave the network
at the same time, by observing the history, one may know
that the traffic conditions change significantly and rapidly.
As a consequence, a sender may need to adapt quickly
to such highly dynamic conditions, as opposed to a less
dynamic environment.

& Having fixed mappings between packet-level events and
pre-defined actions. Most existing algorithms are heuris-
tics that map certain packet-level events, such as losses,
to pre-defined actions. TCP CUBIC [2], for instance, as-
sumes that packet losses are signals of congestion, which
may not hold in lossy wireless links where losses may be
due to reasons not related to congestion. Such heuristics
are manually tuned for their target network environments,
and may not be sufficiently versatile to meet the needs
of a diverse set of new network environments.

Granted, recent research works, such as Remy [3] and
Indigo [4], tried to overcome the challenges we have shown
in conventional heuristics by using offline learning techniques.
Unfortunately, the main limitations in existing heuristics, such
as having a fixed mapping between locally observed network
states and responses, still survived in offline learning tech-
niques. The design of Remy [3] and Indigo [4] does not allow
adaptation to new network conditions; therefore, the mappings
in their models remain fixed. Not only are these mappings
fixed, but they are also mostly limited to network environments
seen while training. As a result, they will perform well in
network environments they were trained on, but may not
perform as well in the others. Besides, even for network
environments, they were trained on, they were never able to
explore and extend beyond the assumptions, targets and oracles
that guided their training.

These observations on existing congestion control algo-
rithms may have already paved the way towards refining them.
Intuitively, an online learning approach may be our best bet
for achieving our goals. First, it should adapt well to new
environments and perform well in a broader range of the
different network conditions (cellular and wireline networks)

that it was not trained on. Second, it should avoid deterministic
mappings between states and actions by using a stochastic
policy.

In this paper, we propose Eagle', a new congestion control
algorithm that uses both expert knowledge and deep reinforce-
ment learning to achieve our design objectives. Our key insight
is to learn from an expert in an online fashion, with the hope
of matching and even outperforming the expert in a diverse set
of environments. The intuition is that learning is best carried
out by imitating a teacher, which should be an expert, rather
than purely with trial-and-error.

Highlights of our original contributions in this paper are
two-fold. First, Eagle is designed to match the performance
of the expert in terms of a variety of metrics, which include
the convergence rate, steady-state behaviour and the ability to
drain the queue when a queuing delay is encountered. It is
even able to outperform the expert on average, as its model
will continue to learn online in the real-world after the training
phase completes. Second, as an online learning algorithm,
Eagle is designed to adapt to newly seen network conditions
or practice more on network conditions that it has already
seen. Yet, it will not deviate substantially from its teacher to
avoid model overfitting and the ensuing poor performance.
Therefore, it can only continue to get better.

We have performed an extensive set of experiments us-
ing Pantheon, comparing to a large collection of modern
congestion control algorithms. Our results show that Eagle
has indeed been successful in outperforming its teacher, and
achieved its objective in generalizing well to different network
environments, even those it was never trained on. In our
test environments, Eagle outperforms most existing congestion
control protocols in the literature.

II. PRELIMINARIES

In deep reinforcement learning (RL) [5], a learner, which is
referred to as the agent, discovers what to do by interacting
with the environment, trying several actions and learning from
errors by taking higher rewarding actions. In most exciting and
challenging environments, actions affect not only the current
reward but also future ones.

At each discrete time step ¢t € 0,1,2.. ., the agent observes
a state of the environment s, and selects a specific action ay
based on that observed state. At the following time step ¢+ 1,
it observes the next state of the environment s;y; along with
a scalar reward 7,1, representing how good or bad the action
was (given the observed state on step t). The agent’s role is to
learn a policy m, which is a mapping from observable states
to actions that maximize the total expected cumulative reward
in an episode (representing a sequence of steps), as described
by V™(s) in Eqn. (1). Here, T is the number of steps in the
episode, 0 < v < 1 is the discounted factor that weights
future reward differently depending on their significance, and

'In golf, an eagle implies two under par, the number of strokes needed by
an expert player. In congestion control, we also wish to score better than an
expert.

E.{} denotes the expected total cumulative value if the agent
follows policy 7:

T

V7(s) = Be{Ry | 50 = s} =B{D _¥'riyits | 50 = s} (1)

i=0

A large collection of DRL algorithms have emerged in the
past several decades, and many of them were successful in
solving real-world challenges. An important class of DRL
algorithms is policy-based algorithms. These are algorithms
that produce a probability distribution over actions given a
particular state, denoted by m(a | s). To be more elegant when
describing a policy, it is typically parameterized by 8 as shown
in Eqn. (2):

m(a|s,0)=Plag=als; =s,0, =0} (2)

Policy-based DRL algorithms work on parameterizing the
0 to give the highest probabilities to most preferred actions.
Two commonly used policy-based algorithms are the policy
gradient (and its extensions) and cross-entropy methods.

In policy gradient methods, we try to ascent the gradient of
m(a | s) with respect to our parameterization 6, searching for
the local maxima in V(). Despite theoretically showing faster
convergence properties, policy gradient methods usually con-
verge to a local optimum and do not exhibit quick convergence
in noisy environments.

Cross-entropy methods are Monte Carlo based methods
where we consider playing entire trajectories following our
current policy 7(a | s,60). The cumulative reward of an
episode gives us a reasonable estimate of V(s). If we train
our model on episodes with higher V' (s), we can to converge
to a global optimum. However, little information is known
about whether the method can converge to a global optimum
in noisy environments?.

III. USING DRL FOR CONGESTION CONTROL:
DESIGN CHALLENGES

DRL is most suitable for playing and solving challenging
games such as AlphaZero [7], where DRL was successful in
attaining superhuman performance. If we think of congestion
control as a new game where there is no specific or fixed
technique to play and win the game, it is appropriate to model
it as a DRL task.

A policy, as defined earlier, represents the mappings from
states to actions. It can be either deterministic or stochastic.
In our case, since our environment is a Partially Observable
Markov Decision Process (POMDP), our policy needs to
be stochastic as we do not wish to have fixed mappings
between states and actions. Our environment is only partially
observable because the agent can only observe and measure
some network conditions such as the loss rate and round-
trip time (RTT). Nevertheless, we may not be able to obtain
full knowledge of the environment, such as the amount of
cross-traffic sharing the bottleneck link and the bottleneck link

2For more details about policy gradient and cross-entropy methods, inter-
ested readers are referred to [5], [6], respectively.

h) h('_) >h,_1» h, >h, > h(__)
t V>t t+ t t 1

Computational
S Graph S() st_l St St+1 S()

Fig. 1. The computational graph in a recurrent neural network: an example

capacity. Therefore, it is very likely that particular action to a
specific state can yield different rewards in different scenarios.
The policy that we will converge to will give us the maximum
reward in expectation.

Concerning the choice of our neural network model in the
DRL agent, we need a neural network to help us with making
correct sequential decisions. A fully connected feedforward
neural network would have different weights for different input
features. In contrast, a recurrent neural network (RNNs) has
the same parameters shared across different time steps [8].
Such a feature helps in representing each output as a function
of previous outputs, leading to the sharing of parameters in a
very deep computational graph, as shown in Fig. 1. This trait
helps RNNs operate on a sequence of inputs, revolutionizing
the research on sequential decision making. Since congestion
control works on a series of successive events, a RNN becomes
the best candidate for our choice of the neural network
model in the DRL agent. RNN will help us to genuinely
choose an action that depends on previous actions taken, hence
considering the history to target a better future.

In conventional congestion control protocols governed by
heuristics, a heuristic knows how good or poor its performance
is by examining the observations made by the sender. Based
on these observations, certain actions are taken. In contrast, if
we resort to online learning with DRL, the DRL agent only
has access to a scalar reward value, representing how good our
performance is. Therefore, this reward function should reflect
the actual performance as accurately as possible. However,
since different states can imply different rewards, finding a
universal reward function is not trivial, and is perhaps the
most challenging problem for using reinforcement learning in
the context of congestion control.

To improve the convergence rate of a DRL model — espe-
cially during the online learning phase after deployment — we
wish to carefully design the reward function to produce scalar
reward values that are not specific to certain environments, and
that represent the performance of the agent given the chosen
action.

To design a reward function so that it is even more general
and universally applicable to a variety of environments, one
can consider several phases that any flow will have to expe-
rience during its lifetime. These phases may include startup,
queue draining, and bandwidth probing, similar to those that
have been governing the behaviour of conventional heuristics,
such as BBR and TCP CUBIC. The upshot of designing
separate reward functions for different phases is that, we can

focus on a certain subset of performance metrics in each phase
(but not all of them), depending on their relative priorities.
For example, in the startup phase, we can focus more on
the change in delivery rate until queuing delays start to be
experienced. In the queue draining phase, on the other hand,
we may only focus on negative changes in queuing delays
until the queue is drained completely. Finally, in the bandwidth
probing phase, we should focus on the changes in both delays
and delivery rates. This way, we may be able to design much
simpler reward functions, without the risk of losing its ability
to generalize to a variety of network environments and flows.

IV. SYSTEM DESIGN

Training a model using DRL is seldom straightforward,
since we have many design parameters such as the action and
state space, the reward function, the neural network model and
the DRL algorithm. Even the best possible conceptual design
on paper may still not work well in practice, due to reasons we
may only find with an extensive array of experimentation. In
this paper, we take a practical approach and make our design
decisions based on hands-on experiences learned from actual
experiments.

A. Designing the GOLD DRL Agent: A First Cut

We begin our exploration of designing the DRL agent with a
first cut, tentatively called GOLD, which may help us visualize
and spot through experiments our issues and locate areas for
improvement. Results from our preliminary experiments may
offer some lessons to help achieve better performance in the
next iteration of our design.

Our first cut design, GOLD, used the Vanilla Policy Gradi-
ent DRL algorithm to train its agent. We used the conges-
tion window size (cwnd) as our control parameter and an
aggressive multiplicative action space containing four actions:
increasing or decreasing cwnd by a factor of 2.89, 1.5, 1.05
or does nothing.

We only had one reward function in GOLD, Eqn. 3, similar
to the one Aurora [9] was using. However, instead of through-
put, we replaced that with a more interesting measure called
“goodness." Here we define “goodness” as the ratio between
the current cwnd and the cwnd that gave us the best utility as
per Eqn. 4, which is used by PCC Vivace [10]. The intuition
behind using “goodness" is to make the reward function more
general (and less specific) to the network environments, as
discussed in the previous section.

Besides, our state-space in GOLD was simple. It was the
tuple of the sending rate, loss rate and RTT gradient (the
change in RTT over the step size) in the past four time steps.

ry = goodness® — b x goodness X

— ¢ x goodness X L;
3)

dRTT

uy =y —bx 1z X —cXxe X Ly 4)

where a, b and c are constant that we set to a = 0.9,0 = 0.5
and ¢ = 0.5, x; is the sending rate at time step ¢ in Mbps,

local test in mahimahi, 2 runs of 40s each per scheme FillP-Sheep

Copa

Ll FillP
< 4 < GOLD
44 * * TCP Cubic
+ Sprout
<« PCC-Vivace
34 SCReAM
Indigo
TCP Vegas
21 TCP BBR
Verus
PCC-Allegro
11 PCC-Expr
GoldLSTM
TaoVA-100x
LEDBAT

«F®
°

Average throughput (Mbit/s)
*

<4 < *

A & + A

10‘24 512 2.":6 1&8 6‘4 32
95th percentile one-way delay (ms)

0 T
4096 2048

Fig. 2. The performance of DRL agents in our first cut: GOLD and
GoldLSTM.

% is the RTT gradient in milliseconds, and L; is the loss

rate ratio at time step ¢ .

To show an illustrative example of the performance of
GOLD, we can see in Fig. 2 the performance of GOLD
as compared to other congestion control algorithms. The
experiment is carried out using a 5 Mbps emulated link, and
a one-way delay of 40 ms. It achieves high throughput, but at
the cost of high delays. After a detailed post-mortem analysis
of the logs, we found that the main reasons leading to this
behaviour are as follows:

& An overly aggressive action space: The multiplicative
numbers in our action space, especially the factor of
2.89, caused the sending rate to elevate significantly,
causing a significant amount of queuing delay, which
requires a much longer time to drain if no complementary
immediate action is taken.

& Not considering delays: Not including delays in our
reward function made us perform poorly in terms of
delays. We initially conceptualized that the RTT gradient
would help provide a good reward if we decrease the
sending rate when we have a high delay since the rate at
which the delay will increase is lower according to [10].
However, if we drop the sending rate from a value that
is already above the optimum to an amount that is still
above the optimum, the queue will continue to build up,
and the rate at which we increase RTT continues to grow.

& Not considering a sequence of events: As mentioned in
the previous section, we need to maintain a history of
events and learn the best possible actions over all possible
states. Here, we only consider that the history of the past
four steps is estenial, and the rest is not. For this purpose,
RNN models provide better flexibility in acquiring the
traffic pattern, because it shares parameters across several
time steps.

To focus more on delays, we designed and implemented
an improved version of GOLD, referred to as GoldLSTM,
where we changed the model from a simple neural network
to an LSTM. We also used a less aggressive action space

where we increase or decrease congestion window size by
a factor of 1.75, 1.5, 1.05 or do nothing. At the same time,
we also improved the reward function to focus more on delays
when we have a high queuing delay. The utility function in
GoldLSTM is defined in Eqn. 5, and its reward function is
simply the change of the utility function as in Eqn. (6):

goodness® delay = 0

uy = < goodness® — b x goodness x delay (5)
—c % goodness X Ly delay > 0

ry = A’Ut. (6)

We may observe in Fig. 2 that, the performance of GoldL-
STM improved by a remarkable margin compared to GOLD in
terms of delays. However, after another round of log analysis,
we found that the main issue in GoldLSTM was mainly in
the phase after draining the queue. GoldLSTM would prefer
to continue probing up aggressively as it did in the startup
phase, where there was no delay. The two main actions that it
was using is multiplying cwnd by 1.75 or divide it by 1.5. This
is what GoldLSTM converged to, which is not the optimum
performance.

The intuitive way of addressing this issue is to add another
case to the reward function, where we reward an increase in
the sending rate as long we have not experienced any delay
before (i.e., when we are in the startup phase). In contrast,
after entering the queue draining phase, we penalize the reward
significantly for any small increases in delays.

In both GOLD and GoldLSTM, our DRL agent did not
generalize well to other network environments. Also, a ran-
domly initialized model can perform extremely bad actions in
the beginning, causing very high delays. Since our step size
depends on RTTs, bad actions can increase the step size to
hours, leading to very long training times.

B. Eagle: Design Choices and Rationale

To overcome all the issues encountered in GOLD and
GoldLSTM, we are now ready to discuss the choices we made
in our new DRL-based algorithm, Eagle, with respect to our
model parameters and the DRL algorithm.

Neural Network Model. There are several different neural
network models that prove their applicability in different
applications. However, given our problem, which is based on
sequential decision making to reach an optimum utilization of
a network, we need a model that remembers the past states
well and act accordingly. Therefore, we use Long-short term
memory (LSTM) as our neural network model to train. It is a
two layered LSTM with 64 hidden units.

Actions. Actions are discrete changes to the sending rate
and the size of the congestion window (cwnd). In our formal-
ization, our agent resides at the sender, and it interacts with
the environment by adjusting its sending rate by a;.

Typically, we want cwnd to be equal to the bottleneck
bandwidth-delay product (BDP) to maximize network utiliza-
tion. Intuitively, this would be equivalent to having a sending

rate equal to the bottleneck bandwidth for fully utilizing the
network. As the agent adjusts its sending rate, it changes its
cwnd to a small multiple of its estimate of the BDP. The
BDP estimate is the product of the highest delivery rate and
minimum round-trip time. As inspired from BBR, the sender
can increase or decrease its sending rate by a factor of 2.89
or 1.25 or do nothing. With a 2.89 or 1.25 times increase or
decrease in sending rate, cwnd is increased or reduced by a
factor of 2 or 1.25, respectively. We use the same numbers
used by BBR since it has been proved to converge quickly in
practice.

Time is divided into unequal non-overlapping intervals, as
time steps ¢ in reinforcement learning. The sender adjusts its
sending rate given the observed network state at the beginning
of each time step t. Each time step lasts for three RTTs. This
is to allow enough time for the network conditions to settle,
and for the newly adjusted sending rate of the agent to take
effect. Though pre-defined step sizes can also be considered, it
is always advisable to have a small action space when possible
to help in fast convergence.

States. Information related to the observed network condi-
tions are measured by the agent. Aurora [9] mentioned that
the more past observations you take into consideration, the
better performance will be. However, there is always a tradeoff
between converging to an optimum policy quickly and having
a large representative state space. To take the best of both
worlds, we choose a state s; to be a summary of the past
four observation steps as inspired by the DRL applied to Atari
games in [11]. Observations in each step are:

¢ abinary number indicating whether the agent experienced

delay before;
¢ if we experience a long delay, the difference between the
number of times of decreases and increases in the sending
rate, starting from the point the queuing delay increases;

¢ an exponentially weighted moving average (EWMA) of
the queuing delay, calculated as the difference between
the currently measured RTT and the minimum RTT
observed in the past 50 steps;

¢ an EWMA of the loss rate;

¢> the ratio of the change in the delivery rate.

Reward Function. Learning from our experiences with
GOLD and GoldLSTM, we train Eagle with different reward
functions for different cases, which we classify into phases:
the startup, queue draining, and bandwidth probing phase.

Startup. This is the initial phase in which the sender has not
experienced any delay yet. Initially, as the flow starts, it begins
with an initial sending rate of 300 Kbps and an initial cwnd of
10. After the first two steps, the round-trip propagation time
can be estimated. The product of the newly estimated round-
trip time and the next chosen sending rate multiplied by a
small multiple is then set to be the cwnd. This is to ensure
that we are effectively sending at the sending rate selected.

As long as the sender did not measure any increase in
queuing delay, the reward is measured as the ratio of change
in the delivery rate as ratio Ad as shown in Eqn. 7. Since
we want good actions in different phases to have reasonably

similar rewards, the constant five used is to help set an upper
bound of the reward, comparable to the upper bounds of the
reward functions in other phases. The higher the change in
the delivery rate, the higher will the reward be. For example,
Fig. 3 shows an example of the decisions of an agent during
the early iterations of the training phase, where the bottleneck
bandwidth is 10 Mbps. The startup phase observed from time
step 0 to 3. Fig. 3a shows the chosen sending rate, Fig. 3b
shows the queuing delay measured, and Fig. 3c shows the
reward corresponding to each time step. From time step O to
3, the sending rate is increasing, and the delay is negligible;
therefore, the reward can be seen to increase.

reward = 5 X ratio Ad @)

Queue draining. The agent enters into this phase when it
experiences its first increase in delay. As the queuing delay
is experienced for the first time, we start to accumulate
the actual time of increases and decreases in the sending
rate. For example, Fig. 3a shows some example decisions
and how the times of increases and decreases vary as these
decisions change. In time step 4, the sending rate increases by
2.89 and in time step 5, it increases again by 2.89, making
the cumulative increase times 8.35. As observed, when the
difference between the times of decreases and increases goes
up, the reward decreases since this is causing an increase in
queuing delay. However, step 4 caused a small increase in the
delivery rate, so the reward of that action in step 4 is not
too high as it was still in the startup phase. As the times of
decreases approach the times of increases, we wish to drain
the queue and reward that positively. This can be seen in steps
6 to 8 in Fig. 3. The exact algorithm for computing the reward
used in the queue draining phase is shown in Algorithm 1.

Algorithm 1 Calculating the reward in the queue draining
phase

1: if did not experienced delay before then

2: reward = ratio Ad x 5 — 0.5 x queuing delay

3: if experienced delay before then
4: reward = 5 X % of decreases in (increases — de-
creases)
5: if (increases < decreases) then
reward = % decrease in delay

Bandwidth probing. After the queue is drained, and the de-
lay goes to 0, the cumulative times of increases and decreases
are reset back to 1. This starts from time step 12 in Fig. 3.
However, the sender still needs to probe up for the sending
rate to fully utilize the link capacity. Here, we wish to reward
any increase in ratio Ad, but penalize any increase in queuing
delays (as opposed to the startup phase) as shown in Eqn. 8. If
we again encounter an increase in queuing delays, we reward
actions as in the queue draining phase.

reward = ratio Ad x 5 — 0.5 x queuing delay)

Sending rate Increases

©
S

Decreases

Sending Rate
(Mbps)
@ @
g 3

Optimum sending rate

o

0o 1 2 3 4 5 6 7 8
Time step (t)

9 10 11 12 13

(a) Sending Rate

Il Delay
700
7
E
> 350
8
3
o
0
0o 1 2 3 4 5 6 7 8 9 10 11 12 13
Time step (t)
(b) Delay
Reward
10
B 5
g o
Q
T 5
-10
0 1 2 3 4 5 6 7 8 9 10 11 12 13
Time step (t)
(c) Reward
Fig. 3. All possible phases of a flow: an example

C. Eagle: Learning from Expert Demonstrations

To overcome the challenges above and successfully design
a DRL agent for congestion control that can outperform the
state-of-the-art congestion control protocols, we seek help
from an expert congestion control algorithm: BBR.

Just like humans, when they learn a task, trial-and-error
may not always be their best technique; instead, it is still
better to watch a teacher do a job first. As humans start
to master the task, they could be as good as the teacher or
become even better if they practice more. In the context of
congestion control, our teacher is BBR, and our pre-trained
model is the student. The heuristic algorithm in BBR may not
always be optimal or perfect. Still, as it is proven to outperform
TCP CUBIC, we believe it is an all-round performer and an
excellent choice as a teacher. This can also guarantee that we
do not converge to an unsatisfactory policy in our agent since
the right actions of BBR will help us get out of the local
optimum.

In addition, we also consider BBR perfect in emergency
bad situations, where the delay is notably high, and the model
is immature and does not know how to reduce it. This can
help us overcome long training times due to large step sizes
since step sizes depend on RTT. This is also important after
convergence if the model starts to perform poorly in unseen
network conditions, there will always be an expert to help it
adapt to newly encountered network conditions.

Though the idea of learning from an expert is appealing, it
is non-trivial to design Eagle to implement it. As an example
of the challenges involved, BBR takes sequential decisions
based on its own previous good actions that it made in dif-
ferent working modes (startup, queue draining and bandwidth
probing). It will not be straightforward to use BBR after our

4 Agent

H

- Synthesized BBR @
> .
State Reward Action
St " ::rm Network &

Environment
st+1

Fig. 4. The framework of Eagle

model performs some bad actions. This is because BBR is not
designed for that and will not perform well. It was difficult
for us to have BBR show some expert demonstrations after
our untrained model performs some good and bad actions.

Our solution addresses these challenges using a synthesized
BBR algorithm that imitates its behaviour, rather than directly
using BBR’s real-world implementation. We wish to not only
ensure that the performance of our synthesized BBR is as
good as BBR’s real-world implementation, but also prepare
our synthesized BBR for deplorable network conditions (that
will never be experienced by the actual BBR), where the delay
or loss rate is too high.

Fig. 4 helps in visualizing Eagle’s final design framework,
covering all the details we highlighted in this section.

D. Training Eagle

We train the DRL agent in Eagle using a custom made
OpenAl Gym environment, in which we run mahimahi shells
[12]. Mahimahi in Linux is a container-based network em-
ulator that uses the real Linux stack across virtual network
interfaces to send and receive packets. These emulated net-
works have five parameters to emulate in the network: (1)
the fixed round-trip propagation time, (2) the fixed or variable
bandwidth capacity, (3) the queue size, (4) queuing disciplines
such as Drop Tail FIFO, and (5) the stochastic packet loss
rate. We used a wide variety of fixed and stochastic bandwidth
values to train our model (20 — 120 Mbps), fixed round-trip
propagation times (10 — 400 ms), as well as different queue
sizes and loss rates.

In the emulated network for training, we consider an episode
spanning 50 steps, where each step is 3 RTTs. Every time
the environment resets, a new flow starts with new network
parameters. Changing network parameters helps us avoid
overfitting our model to specific network conditions. In other
words, since we are not training our model over just a few
tasks, the shared network patterns among different conditions
are learned. Therefore, if our agent is to “play" or send over
a network that it has not seen before, it will still perform
reasonably well.

We train Eagle using the cross-entropy method, in which
we play a certain number of episodes and calculate the total
reward for each episode, as the sum of the rewards of the
50 steps in the episode. We then choose the elite percentile
of these episodes (3 out of 5 in a batch) with the best total

reward, labelling the actions taken in these episodes as desired
actions. We repeat this process until we converge to a policy
that stops changing.

In noisy (non-deterministic) environments, such as the In-
ternet environment, we know very little about the convergence
properties of cross-entropy, and this is the main reason we use
our synthesized BBR as a teacher. However, our experiences
have shown that cross-entropy has a faster convergence rate
as compared to other policy gradient methods.

Since we wish our agent to outperform synthesized BBR,
we do not wish to have many actions played by synthesized
BBR. Therefore, our training process starts in the first batch
with having synthesized BBR play only two episodes out of
five, then slowly decrease this number to one.

In addition, in the episodes where the model takes actions,
we periodically play some actions by synthesized BBR. The
number of such actions decays with time to allow Eagle to
explore the state space more — more precisely, “the most likely
to see" state space. Seeking help from BBR eliminated the
very corrupt observations in the state space and did not limit
Eagle’s exploration. In cases where the observed state shows
a high delay, this is an emergency, and the model actions may
make it worse if it has not experienced such states before.
In such emergencies, synthesized BBR intervenes to act and
quickly get out of these corrupt states. Complete details of our
training algorithm are presented in Algorithm 2.

Algorithm 2 Training Eagle by Learning from Synthesized
BBR
1: procedure TrainEagle

2: Initialize network parameters randomly

3: 140

4 for all batches do

5: Play a decreasing small portion of the batch using
BBR

6 for all episodes € batch do

7: if emergency then

8 1 i+1

9: else ¢+ 0

10: if + > emergencies to ignore then

11: Play a synthesized BBR action

12: if time to play BBR action then

13: Play a synthesized BBR action

14: else Play Eagle agent action

15: Train on elite episodes

16: Decrease the ratio of BBR:Eagle actions in an
episode

17: if episodicRewardMean > 200 then

18: Increment number of emergencies to ignore

19: Reduce frequency of BBR actions to 5%

E. Testing and Deployment

After Eagle is fully trained, it is deployed in emulated
networks for testing. At this point, the definition of episode

changes. The size of the flow is now the size of the episode. In
order not to favour longer flows in the online learning process,
we decide to weigh the episodic return of each episode in the
batch with a ratio between the total number of steps in the
batch and the number of steps in this episode.

Algorithm 3 shows how we continue to train Eagle on-
line after deployment. We still have some flows played by
synthesized BBR, as we do not wish Eagle to deviate much
from BBR’s performance. This is to make sure Eagle does not
deviate towards worse performance. From our observations,
the fully trained Eagle takes at most 2 — 4 steps to drain
a queue. This is why we choose to have synthesized BBR
intervene when the delay remains high for more than 4 steps.

Finally, even in deployment, we find that having synthesized
BBR playing some steps in an episode gives us a better per-
formance. This is because synthesized BBR in the bandwidth
probing phase, takes the "do nothing" action; however, Eagle
is more aggressive towards exploring the environment quickly.
By mixing the teacher and the “student,” we take the best of
both worlds.

Algorithm 3 Training Eagle Online after Deployment
1: procedure DeployEagle

2: Use pre-trained network parameters

3 1+ 0

4 for all batches do

5 Play a small portion of the batch using BBR
6: for all flows € batch do

7 if emergency then

8 1 1+1

9: else i<+ 0

10: if 7 > emergency situations to ignore then
11: Play a synthesized BBR action

12: if time to play BBR action then

13: Play a synthesized BBR action

14: else Play Eagle agent action

15: Train on elite flows

V. PERFORMANCE EVALUATION

To evaluate Eagle’s performance, we use an accessible
standard testbed for congestion control schemes: Pantheon
[4]. Results from Pantheon are reproducible, and closely
approximate real-world results. This is because Pantheon uses
mahimahi shells to emulate the network accurately.

We choose to present test scenarios that are different from
the training environment, and that involve highly dynamic
links such as LTE cellular links. It is worth noting that Eagle
always performs as well as alternative schemes in network
environments it was never trained on. One of the main design
objectives of Eagle that it should generalize well to different
network scenarios, and this is shown by performing well in
network environments it was never trained on. It is important
to note here that our model updates its weights only after a
batch has been played, hence there were no gradient updates

Eagle
local test in mahimahi, 1 run of 30s each per scheme FiII?’-Sheep
. * < e Copa
7 FillP
— ° GOLD
Lo » TCP Cubic
g 1 Sprout
=5 4 + Aurora
2 "
2 < PCC-Vivace
Sa SCReAM
o N
g ¢ Indigo
3 P TCP Vegas
g . TCP BBR
o -
g2 Verus
< PCC-Allegro
1 <« PCC-Expr
o - v WebRTC media
8192 4096 2048 1024 512 256 128 64 32 16 8 ¢ TaoVA-100x
95th percentile one-way delay (ms) <« LEDBAT

Fig. 5. Performance over an emulated Verizon LTE network link

while running Eagle in these tests. In other words, current tests
were only carried out on the pre-trained model of Eagle.

Fig. 5 shows Eagle tested with other congestion control
algorithms in Pantheon. The test involves running a trace file
emulating a Verizon LTE link provided by mahimahi, with
a one-way delay of 10 ms. As depicted in Fig. 5, we can
observe that Eagle enjoys a level of performance that is close
to BBR and the top-3 congestion control algorithms. This
illustrates two main properties in Eagle. First, it converges
rapidly in both the startup and the queue draining phase.
Second, although Eagle never saw such a network environment
as it was trained on only fixed bandwidth links, its performance
is close to BBR. It can even perform better if it is provided
the opportunity to train more on the LTE link.

To better show the strength of Eagle, Indigo [4] is an
example of a pre-trained model offline. As [4] mentioned,
Indigo was trained in a wide range of settings to ensure it
performs well in various environments. In contrast to such a
claim, in this testing scenario, we have shown a failed example
for Indigo, in which it did not generalize well to the LTE
wireless network environment.

Our first cut, GOLD, performed better than Aurora, which
is a pre-trained DRL agent [9]. It has 3.3x lower delay,
and similar average throughput. In comparison, other online
learning methods such as PCC and its extensions [10], [13]
performed poorly, since they have lower convergence rates,
which is unsuitable for the dynamically changing LTE link.

Another strength in Eagle is that it indeed was capable of
outperforming its teacher, the synthesized BBR. Fig. 6 shows
by how much is Eagle performing better than its teacher. The
one-way delay is lower for Eagle by almost 5, the loss rate
is lower by 2x, and the throughput is comparable.

We also wanted to test Eagle in narrower fixed-bandwidth
links outside its training range of bandwidths. For this purpose,
we used an emulated link of 10 Mbps and RTT of 100 ms. In
Fig. 7, we still see Eagle ranking among the best five schemes.
Here, we see a generalized excellent performance as opposed
to Indigo, PCC, PCC Vivace, Aurora and Sprout, which did
not perform well in a cellular environment. Another essential
trait that we see in Eagle is its stability over two different runs,

local test in mahimahi, 1 run of 30s each per scheme

7.3
*

7.2

7.1

7.0 + Eagle
¢ SynBBR

Average throughput (Mbit/s)

6.7

1024 512 256 128
95th percentile one-way delay (ms)

Fig. 6. Performance over a Verizon LTE link: Eagle Vs. Synthesized BBR

local test in mahimahi, 2 runs of 15s each per scheme

10

>
9] +
>
2 o7 «
2 8- +
g + Eagle
5 7 & Indigo
£ Sprout
2 6 + Aurora
_g <« PCC-Vivace
o 37 PCC-Allegro
g TCP BBR
o 44
>
<
3
2

2048 10‘24 5i2 2_%6 1é8 64
95th percentile one-way delay (ms)

Fig. 7. 10 Mbps bandwidth and 100 ms RTT

as compared to the high variance we observed with Aurora.

We now move to show the convergence properties of Eagle
in the startup phase to investigate what to expect of Eagle
when it operates on a short flow. We decrease the time length
of flows to 3 seconds with RTTs of 100 ms, it still ranks to
be one of the best four protocols as shown in Fig. 8.

Now, we wish to take an in-depth look into the performance
of Eagle and BBR at steady state, to examine how well Eagle
performs. Fig. 9 and Fig. 10 show the performance of Eagle
and BBR respectively for the same emulated link of 10 Mbps
and 100 ms RTT. We see that BBR and Eagle have almost the

TABLE 1
LOSS RATES IN DIFFERENT SETTINGS

Protocol LTE | 120 Mbps | 10 Mbps

Aurora 11.45 9.81 4.45
BBR 0.07 0.37 0.90
Eagle 0.26 0.07 1.19
Indigo 0.02 0.13 0.42
PCC-Allegro | 0.48 0.16 0.35
Sprout 0.04 0.35 0.29
PCC-Vivace 0.00 0.15 0.41

local test in mahimahi, 1 run of 3s each per scheme

9
84
@ *
=
27 + + Eagle
= & Indigo
3 +
&6 Sprout
= < + Aurora
.g 51 < PCC-Vivace
° PCC-Allegro
gad TCP BBR
[
>
<
3
24 T T T
1024 512 256 128 64

95th percentile one-way delay (ms)

Fig. 8. Convergence properties of Eagle for shorter flows and longer RTTs

same dynamics at steady state; however, what may currently
prevent Eagle from outperforming BBR is its slightly more
aggressive behaviour during the startup phase.

Average capacity 10.00 Mbit/s (shaded region)

17.5
15.0

1
125 AR

Throughput (Mbit/s)

0.0 25 5.0 75 10.0 12.5 15.0 17.5
Time (s)

-=-- Flow 1 ingress (mean 8.10 Mbit/s) ~—— Flow 1 egress (mean 8.11 Mbit/s)

Fig. 9. Eagle’s steady-state behaviour

Average capacity 10.00 Mbit/s (shaded region)

Throughput (Mbit/s)

0.0 25 5.0 75 10.0 12.5 15.0 17.5
Time (s)

--- Flow 1ingress (mean 9.61 Mbit/s) ~—— Flow 1 egress (mean 9.56 Mbit/s)

Fig. 10. BBR’s steady-state behaviour

Table I shows the loss rate of Eagle and a few other well-
performing protocols. We may observe that Aurora experi-
enced very high loss rates. The other different protocols, such
as PCC, could not be competitive with the best five protocols
over LTE links, and their loss rates were high as well. Eagle,

on the other hand, showed the lowest loss rate in the setting
with a fixed bandwidth of 120 Mbps.

VI. RELATED WORK

Online Learning. To avoid any hard wired mappings
between states and actions, PCC [13] and PCC Vivace [10]
proposed new Internet congestion control protocols based on
live evidence. By trying marginally smaller and larger sending
rates of the current sending rate, the sender increases or
decreases their sending rates respectively in the direction of an
increased utility function. Although both PCC [13] and PCC
Vivace [10] are robust because they depend on live empirical
evidence, their slow convergence time still serve as a critical
limitation.

Offline Learning. At this core, Indigo [4] is an offline-
trained neural network model. Indigo is trained using imitation
learning, where oracles serve as the expert. An LSTM saves
the mappings between states and actions, and these mappings
are never changed. Remy [3] is another offline optimization
framework for congestion control. An obvious limitation for
both techniques is that Indigo and Remy would have a near-
optimum performance when it runs on links it was pre-trained
on. However, as the network environment changes, the models
may not generalize well.

RL Approaches. Iroko [14] develops a new RL-based con-
gestion control protocol, but it is highly specific to datacenter
networks only. With the assumption that nodes are all managed
by the same organization, it is able to exploit global visibility
of the network. Aurora [9] uses a simple neural network and
an off-the-shelf RL algorithm for congestion control over the
Internet. However, it does not perform well in our experiments,
and since it is not designed for online training, it may not
generalize and adapt to new network conditions. There are
also some preliminary results by [15], [16].

VII. CONCLUDING REMARKS

In this paper, we presented Eagle, a new congestion control
protocol powered by deep reinforcement learning, a synthe-
sized BBR teacher, and a hands-on approach in its design phi-
losophy. Our evaluation results show that Eagle is competitive
with the state-of-the-art, and can generalize well to different
network environments. Eagle even performed well in network
environments it was never trained on, including dynamic
networks such as LTE and stable ones with fixed bandwidth.
Not only was Eagle was capable of beating its teacher, but its
performance is very close to BBR in steady-state. We believe
that Eagle represents a step forward towards realizing self-
learning congestion control protocols that generalize well to a
wide range of network environments.

In future work, we plan to extend our experimental setup
to examine Eagle’s behaviour thoroughly in the online-training
phase — after deployment. This is to ensure that online learning
doesn’t make our model deviate much from its pre-trained
model, and if it deviates it only deviates to a better perfor-
mance. We also want to test the fairness among different Eagle
flows, even after they change slightly during online training.

[1]

[2]
[3]
[4]

[6]
[7]
[8]
[9]

[10]

REFERENCES

K. Winstein, A. Sivaraman, and H. Balakrishnan, “Stochastic forecasts
achieve high throughput and low delay over cellular networks,” in
Proc. 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2013.

S. Ha, I. Rhee, and L. Xu, “CUBIC: a new tcp-friendly high-speed tcp
variant,” ACM SIGOPS Operating Systems Review, 2008.

K. Winstein and H. Balakrishnan, “TCP ex Machina: computer-
generated congestion control,” in Proc. ACM SIGCOMM, 2013.

F. Y. Yan, J. Ma, G. D. Hill, D. Raghavan, R. S. Wahby, P. Levis, and
K. Winstein, “Pantheon: the training ground for Internet congestion-
control research,” in Proc. USENIX Annual Technical Conference (ATC),
2018.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1998.

R. Rubinstein and D. Kroese, The Cross-Entropy Method.
2004.

D. Silver, J. Schrittwieser, K. Simonyan, and et al., “Mastering the game
of Go without human knowledge,” Nature, vol. 550, 2017.

1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

N. Jaya, N. Rotman, P. B. Godfrey, M. Schapira, and A. Tamar, “A
deep reinforcement learning perspective on Internet congestion control,”
in Proc. 36th International Conference on Machine Learning (ICML),
2019.

M. Dong, T. Meng, D. Zarchy, E. Arslan, and Y. Gilad, “PCC Vivace:
Online-learning congestion control,” in Proc. 15th USENIX Symposium

Springer,

(11]

[12]

[13]

[14]

[15]

[16]

on Networked Systems Design and Implementation (NSDI), 2018, pp.
343-356.

T. Hester, M. Vecerik, and O. Pietquin, “Deep Q-Learning from demon-
strations,” in Proc. 32nd AAAI Conference on Artificial Intelligence,
2018.

R. Netravali, A. Sivaraman, S. Das, and A. Goyal, “Mahimahi: Accu-
rate record-and-replay for HTTP,” in Proc. USENIX Annual Technical
Conference (ATC), 2015.

M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira, “PCC:
Re-architecting congestion control for consistent high performance,”
in Proc. 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2015.

F. Ruffy, M. Przystupa, and I. Beschastnikh, “Iroko: A framework
to prototype reinforcement learning for data center traffic control,” in
Proc. NeurlPS Workshop on Machine Learning for Systems, 2018.

J. Fang, M. Ellis, B. Li, S. Liu, Y. Hosseinkashi, M. Revow,
A. Sadovnikov, Z. Liu, P. Cheng, S. Ashok, D. Zhao, R. Cutler, Y. Lu,
and J. Gehrke, “Reinforcement learning for bandwidth estimation and
congestion control in real-time communications,” in Proc. NeurIPS
Workshop on Machine Learning for Systems, 2019.

V. Sivakumar, T. Rocktischel, A. Miller, H. Kiittler, N. Nardelli, M. Rab-
bat, J. Pineau, and S. Riedel, “MVFST-RL: An asynchronous 1l frame-
work for congestion control with delayed actions.” in Proc. NeurlPS
Workshop on Machine Learning for Systems, 2019.

