Eagle: Refining Congestion Control by Learning from the Experts

Salma Emara¹, Baochun Li¹, Yanjiao Chen² ¹University of Toronto, {salma, bli}@ece.utoronto.ca ²Wuhan University, chenyj.thu@gmail.com

Before 2005 2000 Hybla Vegas BIC

Video Streaming Applications

2010	2015	202
CUBIC	BBR Ir	ndigo
Illinois	PCC V	ivace

[Dong et al., 2015 & 2018]

Online learning Utility framework

Before 2000

2005

Hybla BIC

[Dong et al., 2015 & 2018] **Online** learning

Utility framework

Heuristic

Before 2000

2005

Hybla

BIC

- [Cardwell et al., 2016]
 - Estimate bottleneck bandwidth and minimum RTT

[Dong et al., 2015 & 2018] **Online** learning

Utility framework

Heuristic

Before 2000

2005

Hybla

BIC

- [Cardwell et al., 2016]
 - Estimate bottleneck bandwidth and minimum RTT

[Yan et al., 2018] Offline learning Map states to actions

Existing Congestion Control Algorithms

Fixed mappings between events and control responses

Bandwidth is Dynamic or Stable? Shared with other flows? Lossy?

Existing Congestion Control Algorithms

- Fixed mappings between events and control responses
- Mappings are fixed on environments the model was trained on

Bandwidth is Dynamic or Stable? Shared with other flows? Lossy?

Existing Congestion Control Algorithms

- Fixed mappings between events and control responses
- Mappings are fixed on environments the model was trained on
- Oblivious to earlier traffic patterns

Bandwidth is Dynamic or Stable? Shared with other flows? Lossy?

1 No fixed way to play the game

1 No fixed way to play the game

2 Based on changes in the game, you make a move

No fixed way to play the game

2 Based on changes in the game, you make a move

3 Use history to understand your game environment

A Sender/Learner/Agent can be *trained* to play the Congestion Control Game

Earlier Success Stories of Training for Games

- In 2016, AlphaGo was the first to beat human expert in Go game
- It was trained using supervised and reinforcement learning

1	$ \Delta $	

Contributions

- Eagle is designed to
 - Train using reinforcement learning
 - Learn from an expert and explore on its own

Matching performance of expert and outperform it on average

1	5	
	\mathbf{U}	

What do we need to play the congestion control game?

- Consider
 - Avoiding deterministic mappings between network states and actions by the sender

- Consider
 - Avoiding deterministic mappings between network states and actions by the sender
 - Generalizing well to many network environments

- Consider
 - Avoiding deterministic mappings between network states and actions by the sender
 - Generalizing well to many network environments
 - Adapting well to newly seen network environments

- Consider
 - Avoiding deterministic
 mappings between network
 states and actions by the sender
 - Generalizing well to many network environments
 - Adapting well to newly seen network environments

Areas of focus

Stochastic policy

A more general system design

Online learning

- Consider
 - Avoiding deterministic
 mappings between network
 states and actions by the sender
 - Generalizing well to many network environments
 - Adapting well to newly seen network environments

Areas of focus

Stochastic policy

A more general system design

Online learning

General Framework of Reinforcement Learning

Challenges in using Deep Reinforcement Learning

First-Cut: GOLD

- Deep Neural Network with two hidden layers
- Congestion window size (cwnd) as the control parameter
- State space: [sending rate, loss rate, RTT gradient] in past 4 steps
- Action Space: [$\times 2.89$, $\times 1.5$, $\times 1.05$, 0, $\div 2.89$, $\div 1.5$, $\div 1.05$]
- Reward Function: dRTT $r_t = \text{goodness}^a - b \times \text{goodness} \times \frac{dT}{dT} - c \times \text{goodness} \times L_t$ $u_t = x_t - b \times x_t \times \frac{dRTT}{dT} - c \times x_t \times L_t$

Issues with GOLD

- Overly aggressive action space taking so much time to drain queues
- Not considering delays in our reward function
- Hard coded the number of past steps to be considered to 4
- Slow training convergence, since step size was dependent on RTT

Average throughput (Mbit/s) 3 2

0

5 Mbps and 40ms one-way delay

Motivating Current System Design

- Deep Reinforcement Learning:

 - LSTM neural network to save weights across time steps
 - Generalize system design
 - state space across different environments
 - Tailor reward for *different phases*

Stochastic policy, hence we choose a policy-based algorithm

Motivating Current System Design

- Why do we need an expert?
 - Get out of bad states that slo depends on RTT
 - No need to try very bad action quickly from expert
 - Avoid local optima

Get out of bad states that slows training time, since step size

No need to try very bad actions when we can learn easy tasks

Expert BBR Mechanism

- Start-up phase: aggressive increase in sending rate until delay is seen
- Queue draining phase: decrease sending rate to the last sending rate before delay
- Bandwidth probing phase: increase sending rate slowly until delay is seen

Design Decisions

- Reward function: accurate feedback to the agent
 - Start-up phase: $r_{t} \propto \Delta$ delivery rate
 - Queue draining phase: $r_t \propto -\Delta$ queueing delay
 - Bandwidth probing phase: $r_{t} \propto (\Delta \text{delivery rate} - \Delta \text{queueing delay})$

Design Parameters

- Step size: 3 × RTT
- State space (for past 4 steps)
 - Experienced Delay Before?
 - Increases Decrease Multiples
 - Percentage Change in exponentially weighted moving average (EWMA) Delivery Rate
 - Loss Rate
 - EWMA of Queueing Delay

- Algorithm: Cross-entropy method
- Neural Network: LSTM with 64 hidden units and 2 layers
- Action space on sending rate
 - ► ×2.89
 - ► ×1.25
 - Do nothing
 - ► ÷1.25
 - ► ÷2.89

Results: Pantheon LTE Environment

Results: Pantheon Constant Bandwidth Environment

Throughput (Mbit/s)

Concluding Remarks

- a teacher BBR
 - Generalize well
 - Performed well on newly seen environments
 - Step forward to self-learning congestion control
- Future work:
 - Test the performance in online-learning phase
 - Test fairness with other flows

• Eagle: Congestion Control Algorithm powered by Deep Reinforcement Leaning and

Thank you!

