
Eagle: Refining Congestion Control
by Learning from the Experts

Salma Emara1, Baochun Li1, Yanjiao Chen2

1 University of Toronto, {salma, bli}@ece.utoronto.ca
2 Wuhan University, chenyj.thu@gmail.com

Internet Congestion Control

2

Video Streaming Applications

Vegas Hybla
BIC

CUBIC
Illinois

Before
2000 2005 2010 2020

BBR

2015

PCC Vivace
Indigo

Internet Congestion Control

3

Vegas Hybla
BIC

CUBIC
Illinois

Before
2000 2005 2010 2020

BBR
2015

PCC Vivace
Indigo

[Dong et al., 2015 & 2018]
- Online learning
- Utility framework

Internet Congestion Control

4

Vegas Hybla
BIC

CUBIC
Illinois

Before
2000 2005 2010 2020

BBR

2015

PCC Vivace
Indigo

[Cardwell et al., 2016]
- Heuristic
- Estimate bottleneck

bandwidth and
minimum RTT

[Dong et al., 2015 & 2018]
- Online learning
- Utility framework

Internet Congestion Control

5

Vegas Hybla
BIC

CUBIC
Illinois

Before
2000 2005 2010 2020

BBR

2015

PCC Vivace
Indigo

[Cardwell et al., 2016]
- Heuristic
- Estimate bottleneck

bandwidth and
minimum RTT

[Dong et al., 2015 & 2018]
- Online learning
- Utility framework

[Yan et al., 2018]
- Offline learning
- Map states to actions

Existing Congestion Control Algorithms

‣ Fixed mappings between
events and control
responses

6

Bandwidth is Dynamic or
Stable?

Shared with other flows?
Lossy?

?

Existing Congestion Control Algorithms

‣ Fixed mappings between
events and control
responses

‣ Mappings are fixed on
environments the model
was trained on

7

Bandwidth is Dynamic or
Stable?

Shared with other flows?
Lossy?

?

Existing Congestion Control Algorithms

‣ Fixed mappings between
events and control
responses

‣ Mappings are fixed on
environments the model
was trained on

‣ Oblivious to earlier traffic
patterns

8

Bandwidth is Dynamic or
Stable?

Shared with other flows?
Lossy?

?

Think of Congestion Control as a Game

Think of Congestion Control as a Game

1
No fixed way to

play the game
2 3

Think of Congestion Control as a Game

1
No fixed way to

play the game

2
Based on changes

in the game, you
make a move

3

Think of Congestion Control as a Game

1
No fixed way to

play the game

2
Based on changes

in the game, you
make a move

3
Use history to

understand your
game environment

A Sender/Learner/Agent can be
trained to play the Congestion Control
Game

Earlier Success Stories of Training for Games

‣ In 2016, AlphaGo was the first to beat human expert in Go game

‣ It was trained using supervised and reinforcement learning

14

Contributions
‣ Eagle is designed to

‣ Train using reinforcement learning

‣ Learn from an expert and explore on its own

‣ Matching performance of expert and outperform it on average

15

What do we need to play the congestion
control game?

Target Solution Characteristics

‣ Consider

‣ Avoiding deterministic
mappings between network
states and actions by the
sender

17

Target Solution Characteristics

‣ Consider

‣ Avoiding deterministic
mappings between network
states and actions by the
sender

‣ Generalizing well to many
network environments

18

Target Solution Characteristics
‣ Consider

‣ Avoiding deterministic
mappings between network
states and actions by the sender

‣ Generalizing well to many
network environments

‣ Adapting well to newly seen
network environments

19

Target Solution Characteristics
‣ Consider

‣ Avoiding deterministic
mappings between network
states and actions by the sender

‣ Generalizing well to many
network environments

‣ Adapting well to newly seen
network environments

20

‣ Areas of focus

Stochastic policy

A more general
system design

Online learning

Target Solution Characteristics
‣ Consider

‣ Avoiding deterministic
mappings between network
states and actions by the sender

‣ Generalizing well to many
network environments

‣ Adapting well to newly seen
network environments

21

‣ Areas of focus

Stochastic policy

A more general
system design

Online learning

General Framework of Reinforcement Learning

22

Challenges in using Deep Reinforcement
Learning

First-Cut: GOLD
‣ Deep Neural Network with two hidden layers

‣ Congestion window size (cwnd) as the control parameter

‣ State space: [sending rate, loss rate, RTT gradient] in past 4 steps

‣ Action Space: []

‣ Reward Function:

× 2.89, × 1.5, × 1.05, 0, ÷ 2.89, ÷ 1.5, ÷ 1.05

rt = goodnessa − b × goodness ×
dRTT

dT
− c × goodness × Lt

ut = xt − b × xt ×
dRTT

dT
− c × xt × Lt

24

Issues with GOLD
‣ Overly aggressive action space

taking so much time to drain
queues

‣ Not considering delays in our
reward function

‣ Hard coded the number of past
steps to be considered to 4

‣ Slow training convergence, since
step size was dependent on RTT

25

3

Fig. 2. The performance of DRL agents in our first cut: GOLD and
GoldLSTM.

dRTT
dT is the RTT gradient in milliseconds, and Lt is the loss

rate ratio at time step t .
To show an illustrative example of the performance of

GOLD, we can see in Fig. 2 the performance of GOLD
as compared to other congestion control algorithms. The
experiment is carried out using a 5 Mbps emulated link, and
a one-way delay of 40 ms. It achieves high throughput, but at
the cost of high delays. After a detailed post-mortem analysis
of the logs, we found that the main reasons leading to this
behaviour are as follows:
} An overly aggressive action space: The multiplicative

numbers in our action space, especially the factor of
2.89, caused the sending rate to elevate significantly,
causing a significant amount of queuing delay, which
requires a much longer time to drain if no complementary
immediate action is taken.

} Not considering delays: Not including delays in our
reward function made us perform poorly in terms of
delays. We initially conceptualized that the RTT gradient
would help provide a good reward if we decrease the
sending rate when we have a high delay since the rate at
which the delay will increase is lower according to [10].
However, if we drop the sending rate from a value that
is already above the optimum to an amount that is still
above the optimum, the queue will continue to build up,
and the rate at which we increase RTT continues to grow.

} Not considering a sequence of events: As mentioned in
the previous section, we need to maintain a history of
events and learn the best possible actions over all possible
states. Here, we only consider that the history of the past
four steps is estenial, and the rest is not. For this purpose,
RNN models provide better flexibility in acquiring the
traffic pattern, because it shares parameters across several
time steps.

To focus more on delays, we designed and implemented
an improved version of GOLD, referred to as GoldLSTM,
where we changed the model from a simple neural network
to an LSTM. We also used a less aggressive action space

where we increase or decrease congestion window size by
a factor of 1.75, 1.5, 1.05 or do nothing. At the same time,
we also improved the reward function to focus more on delays
when we have a high queuing delay. The utility function in
GoldLSTM is defined in Eqn. 5, and its reward function is
simply the change of the utility function as in Eqn. (6):

ut =

8
><

>:

goodnessa delay = 0

goodnessa � b⇥ goodness ⇥ delay
�c⇥ goodness ⇥ Lt delay > 0

(5)

rt = �ut. (6)

We may observe in Fig. 2 that, the performance of GoldL-
STM improved by a remarkable margin compared to GOLD in
terms of delays. However, after another round of log analysis,
we found that the main issue in GoldLSTM was mainly in
the phase after draining the queue. GoldLSTM would prefer
to continue probing up aggressively as it did in the startup
phase, where there was no delay. The two main actions that it
was using is multiplying cwnd by 1.75 or divide it by 1.5. This
is what GoldLSTM converged to, which is not the optimum
performance.

The intuitive way of addressing this issue is to add another
case to the reward function, where we reward an increase in
the sending rate as long we have not experienced any delay
before (i.e., when we are in the startup phase). In contrast,
after entering the queue draining phase, we penalize the reward
significantly for any small increases in delays.

In both GOLD and GoldLSTM, our DRL agent did not
generalize well to other network environments. Also, a ran-
domly initialized model can perform extremely bad actions in
the beginning, causing very high delays. Since our step size
depends on RTTs, bad actions can increase the step size to
hours, leading to very long training times.

B. Eagle: Design Choices and Rationale
To overcome all the issues encountered in GOLD and

GoldLSTM, we are now ready to discuss the choices we made
in our new DRL-based algorithm, Eagle, with respect to our
model parameters and the DRL algorithm.

Neural Network Model. There are several different neural
network models that prove their applicability in different
applications. However, given our problem, which is based on
sequential decision making to reach an optimum utilization of
a network, we need a model that remembers the past states
well and act accordingly. Therefore, we use Long-short term
memory (LSTM) as our neural network model to train. It is a
two layered LSTM with 64 hidden units.

Actions. Actions are discrete changes to the sending rate
and the size of the congestion window (cwnd). In our formal-
ization, our agent resides at the sender, and it interacts with
the environment by adjusting its sending rate by at.

Typically, we want cwnd to be equal to the bottleneck
bandwidth-delay product (BDP) to maximize network utiliza-
tion. Intuitively, this would be equivalent to having a sending

5 Mbps and 40ms one-way delay

Motivating Current System Design
‣ Deep Reinforcement Learning:

‣ Stochastic policy, hence we choose a policy-based algorithm

‣ LSTM neural network to save weights across time steps

‣ Generalize system design

‣ state space across different environments

‣ Tailor reward for different phases

26

Motivating Current System Design
‣ Why do we need an expert?

‣ Get out of bad states that slows training time, since step size
depends on RTT

‣ No need to try very bad actions when we can learn easy tasks
quickly from expert

‣ Avoid local optima

27

Expert BBR Mechanism
‣ Start-up phase: aggressive

increase in sending rate until delay
is seen

‣ Queue draining phase: decrease
sending rate to the last sending rate
before delay

‣ Bandwidth probing phase: increase
sending rate slowly until delay is
seen

28

Design Decisions
‣ Reward function: accurate

feedback to the agent

‣ Start-up phase:

‣ Queue draining phase:

‣ Bandwidth probing phase:

rt ∝ Δdelivery rate

rt ∝ − Δqueueing delay

rt ∝ (Δdelivery rate − Δqueueing delay)
29

Design Parameters
‣ Step size: 3 RTT

‣ State space (for past 4 steps)

‣ Experienced Delay Before?

‣ Increases - Decrease Multiples

‣ Percentage Change in
exponentially weighted moving
average (EWMA) Delivery Rate

‣ Loss Rate

‣ EWMA of Queueing Delay

×

30

‣ Algorithm: Cross-entropy method

‣ Neural Network: LSTM with 64 hidden
units and 2 layers

‣ Action space on sending rate

‣ 2.89

‣ 1.25

‣ Do nothing

‣ 1.25

‣ 2.89

×

×

÷

÷

System Design

31

LSTM

Agent

Softmax

State
st

Action
 atNetwork

Environment

Reward
 rt rt+1

st+1

ORSynthesized BBR

Congestion
Signals

Sending Rate
Adjustments

Results: Pantheon LTE Environment

32

We choose to present test scenarios that are different from
the training environment, and that involve highly dynamic
links such as LTE cellular links. It is worth noting that Eagle
always performs as well as alternative schemes in network
environments it was never trained on. One of the main design
objectives of Eagle that it should generalize well to different
network scenarios, and this is shown by performing well in
network environments it was never trained on. It is important
to note here that our model updates its weights only after a
batch has been played, hence there were no gradient updates
while running Eagle in these tests. In other words, current tests
were only carried out on the pre-trained model of Eagle.

Fig. 5 shows Eagle tested with other congestion control
algorithms in Pantheon. The test involves running a trace file
emulating a Verizon LTE link provided by mahimahi, with
a one-way delay of 10 ms. As depicted in Fig. 5, we can
observe that Eagle enjoys a level of performance that is close
to BBR and the top-3 congestion control algorithms. This
illustrates two main properties in Eagle. First, it converges
rapidly in both the startup and the queue draining phase.
Second, although Eagle never saw such a network environment
as it was trained on only fixed bandwidth links, its performance
is close to BBR. It can even perform better if it is provided
the opportunity to train more on the LTE link.

To better show the strength of Eagle, Indigo [4] is an
example of a pre-trained model offline. As [4] mentioned,
Indigo was trained on a wide range of settings to ensure it
performs well in various environments. In contrast to such a
claim, in this testing scenario we have shown a failed example
for Indigo, in which it did not generalize well to the LTE
wireless network environment.

Our first cut, GOLD, performed even better than Aurora,
which is a pre-trained DRL agent [10]. It has a lower delay by
3.3 times, and comparable average throughput. In comparison,
other online learning methods such as PCC and its extensions
[11], [14] performed poorly as well, since they have lower
convergence rates, which is not suitable for the dynamically
changing LTE link.

Another strength in Eagle is that it indeed was capable of
outperforming its teacher, the synthesized BBR. Fig. 6 shows
by how much is Eagle performing better than its teacher. The
one-way delay is lower for Eagle by almost 5⇥, loss rate is
lower by 2⇥, and the throughput is comparable.

TABLE I
LOSS RATES IN DIFFERENT SETTINGS

Protocol LTE 120 mbps 10 mbps

Aurora 11.45 9.81 4.45
BBR 0.07 0.37 0.90
Eagle 0.26 0.07 1.19
Indigo 0.02 0.13 0.42

PCC-Allegro 0.48 0.16 0.35
Sprout 0.04 0.35 0.29

PCC-Vivace 0.00 0.15 0.41

We also wanted to test Eagle in narrower fixed-bandwidth
links outside its training range of bandwidths. For this purpose,
we used an emulated link of 10 mbps and RTT of 100 ms. In

3

Fig. 5. Performance over an emulated Verizon LTE network link

3

Fig. 6. Performance over a Verizon LTE link: comparison with Synthesized
BBR

Fig. V, we still see Eagle ranking among the best 5 schemes.
Here, we see a generalized good performance as opposed to
Indigo, PCC, PCC Vivace, Aurora and Sprout, which did not
perform well in a cellular environment. Another important trait
that we see in Eagle is its consistent performance over two
different runs, as compared to the high variance we observed
with Aurora.

We now move to show the convergence properties of Eagle
in the startup phase to investigate what to expect of Eagle
when it operates on a short flow. We decrease the time length
of flows to 3 seconds with RTTs of 100 ms, it still ranks to
be one of the best 4 protocols as shown in Fig. 8.

Now, we wish to take an in-depth look into the performance
of Eagle and BBR at steady state, to examine how well Eagle
performs. Fig. V and Fig. V show the performance of Eagle
and BBR respectively for the same emulated link of 10 mbps
and 100 ms RTT. We see that BBR and Eagle have almost the
same dynamics at steady state; however, what may currently
prevent Eagle from outperforming BBR is its slightly more
aggressive behavior during the startup phase.

Table I shows the loss rate of Eagle and a few other well-
performing protocols. We may observe that Aurora experi-
enced very high loss rates. The other protocols, such as PCC,

Results: Pantheon Constant Bandwidth Environment

33

3

Fig. 7. 10 mbps bandwidth and 100 ms RTT

3

Fig. 8. Convergence properties of Eagle for shorter flows and longer RTTs

could not be competitive with the best five protocols over LTE
links, and their loss rates were high as well. Eagle, on the other
hand, showed the lowest loss rate in the setting with a fixed
bandwidth of 120 mbps.

VI. RELATED WORK

Online Learning. To avoid any hard wired mappings
between states and actions, PCC [14] and PCC Vivace [11]
proposed new Internet congestion control protocols based on
live evidence. By trying marginally smaller and larger sending
rates of the current sending rate, the sender increases or
decreases their sending rates respectively in the direction of an
increased utility function. Although both PCC [14] and PCC
Vivace [11] are robust because they depend on live empirical
evidence, their slow convergence time still serve as a critical
limitation.

Offline Learning. At this core, Indigo [4] is an offline-
trained neural network model. Indigo is trained using imitation
learning, where oracles serve as the expert. An LSTM saves
the mappings between states and actions, and these mappings
are never changed. Remy [3] is another offline optimization
framework for congestion control. An obvious limitation for
both techniques is that Indigo and Remy would have a near-
optimum performance when it runs on links it was pre-trained

Run 1: Report of Eagle — Data Link

14

Fig. 9. Eagle’s steady-state behaviorRun 1: Report of TCP BBR — Data Link

10

Fig. 10. BBR’s steady-state behavior

on. However, as the network environment changes, the models
may not generalize well.

RL Approaches. Iroko et al. [15] develop a new RL-
based congestion control protocol, but it is highly specific
to datacenter networks only. With the assumption that nodes
are all managed by the same organization, it is able to
exploit global visibility of the network. Aurora [10] uses a
simple neural network and an off-the-shelf RL algorithm for
congestion control over the Internet. However, it does not
perform well in our experiments, and since it is not designed
for online training, it may not generalize and adapt to new
network conditions.

VII. CONCLUDING REMARKS

In this paper, we presented Eagle, a new congestion control
protocol powered by deep reinforcement learning, a synthe-
sized BBR teacher, and a hands-on approach in its design
philosophy. Our evaluation results show that Eagle is compet-
itive with the state-of-the-art, and generalized well to different
network environments. It even performed well in network
environments it was never trained on, including dynamic
networks such as LTE and stable ones with fixed bandwidth.
Not only was Eagle was capable of beating its teacher, but its
performance is very close to BBR in steady state. We believe
that Eagle represents a step forward towards realizing self-
learning congestion control protocols that generalizes well to
a wide range of network environments.

Concluding Remarks
‣ Eagle: Congestion Control Algorithm powered by Deep Reinforcement Leaning and

a teacher — BBR

‣ Generalize well

‣ Performed well on newly seen environments

‣ Step forward to self-learning congestion control

‣ Future work:

‣ Test the performance in online-learning phase

‣ Test fairness with other flows
34

Thank you!

35

