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Internet Congestion Control
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Internet Congestion Control

[Dong et al., 2015 & 2018] [Cardwell et al., 2016] 'Yan et al. 2018]
- Online learning - Heuristic

- Offline learning

- Utility framework - Estimate bottleneck - Map states to actions

bandwidth and
minimum RTT
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Existing Congestion Control Algorithms

» Fixed mappings between
events and control
responses

» Mappings are fixed on
environments the model
was trained on

Bandwidth is Dynamic or

Stable?
Shared with other flows?
Lossy?

» Oblivious to earlier traffic
patterns
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Think of Congestion Control as a Game
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Based on changes Use history to
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A Sender/Learner/Agent can be
trained to play the Congestion Control

¥ Game




Earlier Success Stories of Training for Games

» |n 2016, AlphaGo was the first to beat human expert in Go game

> |t was trained using supervised and reinforcement learning
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Contributions

» Eagle is designed to
> Train using reinforcement learning
» Learn from an expert and explore on its own

» Matching performance of expert and outperform it on average
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What do we need to play the congestion
control game?




Target Solution Characteristics

» Consider

> Avoiding deterministic
mappings between network
states and actions by the
sender
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Target Solution Characteristics

» Consider » Areas of focus

> Avoiding deterministic
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Target Solution Characteristics

» Consider » Areas of focus

> Avoiding deterministic
mappings between network —
states and actions by the sender

Stochastic policy

A more general

» Generalizing well to many :
system design

network environments

» Adapting well to newly seen
network environments

L ey Online learning
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General Framework of Reinforcement Learning

Agent
state reward action

S, | (R A

Rt+1
S.. | Environment
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Challenges in using Deep Reinforcement
Learning




First-Cut: GOLD

» Deep Neural Network with two hidden layers
» Congestion window size (cwnd) as the control parameter

» State space: [sending rate, loss rate, RTT gradient] in past 4 steps

> Action Space: [ X 2.89, x 1.5, x1.05,0, =2.89, = 1.5, =1.05]

» Reward Function:

dRTT
r, = goodness? — b X goodness X T — ¢ X goodness X L,
dRTT
u, = x,— b Xx, X —CcXx, XL,

dT



lssues with GOLD
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Motivating Current System Design

» Deep Reinforcement Learning:
> Stochastic policy, hence we choose a policy-based algorithm
> LSTM neural network to save weights across time steps
> Generalize system design
» state space across different environments

» Tailor reward for different phases
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Motivating Current System Design

» Why do we need an expert?

» Get out of bad states that slows training time, since step size
dependson RTT

> No need to try very bad actions when we can learn easy tasks
quickly from expert

> Avoid local optima
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Expert BBR Mechanism

> Start-up phase: aggressive
INncrease In sending rate until delay
IS seen

» Queue draining phase: decrease
sending rate to the last sending rate
before delay

> Bandwidth probing phase: increase
sending rate slowly until delay is
seen

Throughput (mbps)

Delay (ms)
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Design Decisions

Start up Draining probing

~

» Reward function: accurate
feedback to the agent

(&)}

/

Available Bandwidth

&)

» Start-up phase:
r, < Adelivery rate

AN

Throughput (mbps)
w

N

>~ Queue draining phase:
r,  — Aqueueing delay

A

0
0 1 2 3 o 5 6 7 8 9 10

> Bandwidth probing phase: Time steps
r, « (Adelivery rate — Aqueueing delay)
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Design Parameters

» Step size: 3 X RTT > Algorithm: Cross-entropy method

> Neural Network: LSTM with 64 hidden

> State space (for past 4 steps) units and 2 layers

> Experienced Delay Before? » Action space on sending rate
> |[ncreases - Decrease Multiples » X2.89
> Percentage Change in » X1.25

exponentially weighted moving

average (EWMA) Delivery Rate > Do nothing
» Loss Rate > +1.25
» =2.89

> EWMA of Queueing Delay



System Design

Agent

Synthesized BBR °

Congestion| ' St .
Signals

Sending Rate
Adjustments
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Results: Pantheon LTE Environment

Average throughput (Mbit/s)

local test in mahimahi, 1 run of 30s each per scheme
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Results: Pantheon Constant Bandwidth Environment

Average throughput (Mbit/s)

local test in mahimahi, 2 runs of 15s each per scheme
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Concluding Remarks

» Eagle: Congestion Control Algorithm powered by Deep Reinforcement Leaning and
a teacher — BBR

» Generalize well

> Performed well on newly seen environments

» Step forward to self-learning congestion control
> Future work:

> Test the performance in online-learning phase

» Jest fairness with other flows
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Thank you!



