
1

Incorporating Random Linear Network Coding for
Peer-to-Peer Network Diagnosis

Elias Kehdi, Baochun Li
Department of Electrical and Computer Engineering

University of Toronto
{elias, bli}@eecg.toronto.edu

Abstract—Recent studies show that network coding improves
multicast session throughput. In this paper, we demonstrate how
random linear network coding can be incorporated to provide
network diagnosis for peer-to-peer systems. We present a new
trace collection protocol that allows operators to diagnose peer-to-
peer networks. It is essential to monitor large-scale peer-to-peer
applications by collecting measurements referred to as snapshots
from the peers. However, existing solutions are not scalable and
fail to collect measurements from peers that departed before the
time of collection. We use progressive random linear network
coding to disseminate the snapshots in the network, from which
the server pulls data in a delayed fashion. We leverage the power
of progressive encoding to increase block diversity and tolerate
extreme block losses by introducing redundancy in the network.
Peers cooperate by allocating cache capacity for other peers.
Snapshots of departed peers can thus be retrieved from the
network. We show how our protocol controls the redundancy
introduced through progressive encoding and thus scales to large
number of peers and tolerates high level of peer dynamics.

I. I NTRODUCTION

Peer-to-peer applications have been successfully deployed to
provide many tasks such as content distribution, live streaming,
distributed computation and collaborations. The main advan-
tages of peer-to-peer architectures are scalability, resilience to
failure and easiness of use. However, the challenge of large-
scale peer-to-peer systems is the lack of internal knowledge
of the architecture and the Quality of Service parameters
at the participating peers, due to the nature of peer-to-peer
communication. It is critical to monitor such systems by col-
lecting measurements from the peers referred to as snapshots
or traces. Such measurements consist of Quality of Service
metrics that allow operators to diagnose large-scale peer-to-
peer applications.

A common approach to characterize and diagnose peer-to-
peer networks is to collect periodic statistics from the peers.
Users periodically measure critical parameters and send them
to logging servers. However, such periodic snapshots involve
high traffic and consume large bandwidth when the number of
peers is particularly large. UUSee Inc. [1] is a live peer-to-peer
streaming provider that relies on logging servers to collect and
aggregate snapshots periodically sent by each peer. Every five
or ten minutes, each peer sends a UDP packet to the server
containing vital statistics. However, the server bandwidth is
not sufficient to handle such excessive amount of data. In fact,

This work is supported by NSERC Discovery, CRD and StrategicGrants
(RGPIN 238994-06, CRDPJ 379623-08, STPGP 364910-08).

UUSee trace collection completely shuts down when it cannot
handle the load of periodic snapshots. Certainly, it is not a
scalable trace collection protocol.

The efficiency of a trace collection protocol depends on
the accuracy of the aggregated snapshots which is defined
by the completeness of the measurements. The goal is to
collect snapshots from all the peers even those who have left
the session before the time of collection. In other words, an
efficient trace collection protocol should be able to capture
the dynamics of the peers which is a critical parameter for
operators that allow monitoring of network performance. The
most useful statistics are those collected from peers leaving the
network due to Quality of Service degradation. The operators
of peer-to-peer systems are highly interested in those valuable
snapshots. However, they fail to capture accurate snapshots
since the amount of data is limited to the server bandwidth.
Indeed, operators tend to increase the time interval between
snapshots or pull data from a small subset of the peers.

Since the trace collection is delay-tolerant, some designs
propose to disseminate the traces produced by the peers in
the network and allow the server to probe the peers in a
delayed fashion. Such approach prevents peers from sending
excessive simultaneous flows and shutting down the server. To
tolerate traces losses due to peer dynamics, some redundancy
is injected in the network. Network coding has been proposed
to disseminate the traces in order to increase data diversity
and to be resilient to losses [2], [3]. However, they did not
demonstrate how they can control the redundancy introduced
and thus did not prove to scale to large-scale peer-to-peer
networks. The challenge is to utilize network coding in a way
that allows the protocol to scale and, at the same time, to
increase the diversity of the exchanged blocks.

In this paper, we present a new trace collection protocol
that uses random linear network coding to exchange and store
the snapshots in the network. Our protocol allows continuous
trace generation and arbitrary trace dissemination by the peers.
The peers disseminate coded snapshots and cache them in a
decentralized fashion in the peer-to-peer network. The server
periodically probes the peers using a small fixed bandwidth
in order to reconstruct the collected snapshots. The peers
cooperate in this process by allocating cache capacity to
store snapshots generated by other peers. We use progressive
encoding to control the redundancy introduced in the network
and the storage cost. Progressive network coding increases
the server decoding efficiency by progressively increasing

2

the blocks diversity. Thus, it guarantees resilience to large-
scale peer departures and allows our design to adapt to peer
dynamics and thus scale and handle flash crowds of peer
arrivals. We show how our trace collection protocol is able
to capture accurate snapshots by reporting the percentage of
generated snapshots collected by the server under high levels
of peer departures.

The remainder of the paper is organized as follows. In
Section II, we discuss related work on trace collection pro-
tocols. In Section III, we present an overview of our protocol
and discuss how progressive encoding guarantees efficient
traces dissemination. We present the complete trace collection
protocol in Section IV. We evaluate our design and demon-
strate its tolerance to high level of peer dynamics through
theoretical analysis and simulations in Section V and Section
VI, respectively. Finally, we conclude the paper in Section
VII.

II. RELATED WORK

Little literature exists on protocols designed to collect
measurements from peer-to-peer systems. Astrolabe [4] is a
distributed information management system that aggregates
measurements with gossip-based information exchange and
replication. However, such information dissemination imposes
significant bandwidth and storage costs. NetProfiler, proposed
by Padmanabhanet al. [5], is a peer-to-peer application
that enables monitoring of end-to-end performance through
passive observations of existing traffic. The measurements
are aggregated along DHT-based attribute hierarchies and
thus may not be resilient to high peer churn rates. Several
other tools have been developed for connectivity diagnosis
such as pathchar [6] and tulip [7]. But these tools can be
expensive and infeasible since they rely on active probing of
routers. Stutzbachet al. [8] present a peer-to-peer crawlers
to capture snapshots of Gnutella network. The goal of the
crawler is to increase the accuracy of the captured snapshots by
increasing the crawling speed. The protocol leverages the two-
tier topology of Gnutella and thus is difficult to be generalized
to other peer-to-peer systems.

On the other hand, Echelon [2] uses network coding to dis-
seminate the snapshots in the network. Only coded snapshots
are exchanged in the network. It utilizes the advantage of
block diversity and failure tolerance brought by randomized
network coding. However, the number of peers that produce
the snapshots is limited since the block size grows with the
amount of snapshot peers. Also, the snapshots generation is
divided into epochs during which each peer is required to
receive a coded block of all the snapshots. This limits the
amount of traces generated or the set of peers that collect
measurements. Niuet al. [3] present a theoretical approach
on using network coding for trace collection. Also, in their
protocol, the traces generation is divided into periods of time.
The mechanism is a probabilistic gossip protocol that performs
segment based network coding to buffer the snapshots in the
network for the server to collect them in a delayed fashion.
But such gossip protocol results in a significant redundancy
which limits its scalability. The segment size factor playsan

important role in controlling the coded blocks disseminated
in the network and allowing the server to reconstruct the
traces generated by the peers. Hence, the design of a scalable
trace collection protocol that adapts to peer dynamics remains
to be a major challenge. As in [2], [3], we leverage the
power of network coding to collect snapshots. However, we
present a more practical way to use network coding for the
dissemination of the traces in the network. In fact, choosing a
segment size equal to the number of generated blocks during
an epoch, as in [2], limits the scalability of the protocol and,
on the other hand, reducing the segment size to the number
of generated blocks of a single peer during an epoch, as in
[3], limits the diversity of the exchanged blocks. To solve this
problem, we propose to use progressive encoding. First, we
remove the periodic snapshot capturing restriction and allow
arbitrary trace dissemination in order to collect measurements
from departing peers. Second, we use progressive random
linear network coding for trace dissemination to increase the
block diversity and reduce storage cost. Finally, our protocol
controls the redundancy introduced in the network and adapts
to peer dynamics, and hence, unlike previously proposed
schemes, it scales to large-scale peer-to-peer sessions.

First introduced by Ahlswedeet al. [9], network coding has
been shown to improve information flow rates in multicast
sessions [9]–[11]. The main idea is to allow the nodes to
perform coding operations, instead of simple replication and
forwarding, in order to alleviate competition among flows at
the bottlenecks. In a more practical setting, random linearnet-
work coding, first proposed by Hoet al. [12], has been shown
to be feasible. For instance, Avalanche [13] uses randomized
network coding for content distribution to reduce downloading
times. Network coding is performed within segments to which
a random linear code is applied. Another advantage of random-
ized network coding is its ability to increase the diversityof
data blocks and improve resilience to block losses. Wu [14]
also argues that network coding adapts to network dynamics,
such as packet loss and link failures. In this paper, we leverage
the power of network coding to diagnose large-scale peer-to-
peer systems using vital statistics collected from the network.

III. PROTOCOLOVERVIEW

We present a new trace collection protocol for large scale
live peer-to-peer applications. The protocol allows continu-
ous trace generation and arbitrary trace dissemination from
participating peers. The server collects the snapshots by pe-
riodically probing the network. Depending on their Quality
of Service experience, the peers generate vital statisticsand
exchange them with neighbors allowing the participating peers
to cache them in a decentralized fashion. We do not assume
a periodic fixed size trace exchange but rather the peers
produce data independently at any time depending on their
Quality of Service experience. Such trace generation allows
the peers to produce more traces when experiencing important
performance changes and to disseminate them even at the time
they have to leave the session. On the other hand, the server
allocates a small bandwidth to periodically pull data from a
randomly selected set of peers during the streaming session.

3

By buffering the traces in the network, we prevent the peers
from uploading their data simultaneously and hence we allow
the server to collect excessive data traffic in a delayed fashion
when the number of peers increases dramatically. In order to
be tolerant to peer dynamics, the trace collection mechanism
disseminates copies of the data generated in the network. By
introducing redundancy in the network, the server can pull
the traces produced by the peers even after they have left the
session.

In our protocol, we use randomized linear network coding
for traces exchange and storage. Network coding increases
the diversity of the data blocks and the tolerance to block
losses upon peer departures. Network coding is performed
within segments, where each segment is defined by each peer
as the set of blocks forming their snapshots. Random linear
combinations are applied to each segment,i.e. to the blocks
generated by the same peer. For instance, a peer that has
received blocks, that belong to the same segment, generates
new coded blocks by the linear combinations of the received
blocks over a Galois fieldGF (2q), using randomly chosen
coefficients. It sends those blocks to neighbors and stores
one coded block to be sent to the server once probed. The
segment size is a key factor in the design of the trace collection
protocol. The best solution would require maximizing the
segment size. As such, we maximize the blocks diversity
and solve the caching capacity problem of the peers. When
the segment size is small, the snapshots are less tolerant
to peer dynamics and the peers inject more segment in the
network. Therefore, neighbors would have to decide which
segment to cache and which segment to send. In contrast,
when the segment size is larger, the coded blocks can be
better disseminated in the network without generating many
dependencies. The goal is to propagate the coded blocks to
as many peers as possible, in order to resist peer departures,
without resulting in many block dependencies at the server.

However, if peers wait to generate additional snapshots in
order to increase the number of blocks forming their segment,
they might leave the session and hence, their measurements
would be lost. We attempt to solve this problem by using
progressive encoding in our protocol. The peers perform
progressive encoding by grouping newly generated traces ina
segment containing previous traces already disseminated in the
network. Hence, the segment size is defined by each peer and
increases depending on the Quality of Service experience. As
the segment size increases, the blocks are disseminated further
in the network to tolerate peer departures. Hence, peers control
the redundancy introduced in the network by modifying the
segment size. A cached block is replaced with its random
linear combination with a newly received block that belongs
to the same segment and which can contain more coefficients.
Through progressive encoding, the peers effectively dissem-
inate the coded blocks in the network. Also, the protocol
takes advantage of the fact that the server is periodically
probing the network since blocks containing different number
of coefficients are utilized to reconstruct the snapshots and
hence, are used to decode parts of the segment they belong
to. Finally, our protocol adapts to peer dynamics by allowing
the peers to adjust the amount of disseminated coded blocks

depending on their local view of neighbors’ departure rate.
We study and present an in-depth view of our protocol in the
subsequent sections.

IV. T RACE COLLECTION PROTOCOL

In this section, we present our trace collection protocol
which applies progressive random linear network coding on
the snapshots disseminated in the network. We assume that
all the peers allocate a cache capacity to store snapshots from
other peers. The participating peers encode blocks that belong
to the same segment, hence generated by the same peer. They
generate and distribute snapshots independently without any
time interval restrictions. We first present the data block format
and then describe our trace collection protocol.

A. Data Block Format

The format of the coded data block, shown in Figure 1,
addresses the progressive encoding used in our trace collection
protocol. We include the ID of the peer that produced the
trace associated with the data block. We also include an entry
to indicate the segment number defined by the peer that has
produced the block. TheSF entry represents the spreading
factor that defines how far should the blocks associated with
this segment propagate. We also append the coefficients used
in the encoding process and the payload of the data block.

ID Seg SF C2C1 ... Cs Payload

Fig. 1. Data block format.

The peers do not exchange any acknowledgements or re-
quests, instead they only disseminate sufficient data blocks in
the network so that the server can decode their traces. The
server, on the other hand, does not send any acknowledg-
ment to the peers, instead it periodically collects data blocks
cached in the network and reconstructs original segments when
possible. Otherwise, such messages would lead to significant
overhead when used.

B. Protocol Description

Our goal is to control the redundancy introduced by the
dissemination of the traces in the network and to efficiently
store the coded blocks in the peers’ caches until they are
collected by the server. We start by discussing the spreading
factor entry, shown in Figure 1, that corresponds to the group
of blocks forming a segmentk. Its value is set by the peer
that has generated the segment and is modified whenever
new blocks are added to the segment. The spreading factor
determines the number of blocks that should be disseminated
in the network. In other words, it is an indicator of the
number of peers that should be reserving an entry in their
caches for that segmentk. In our trace collection protocol, the
spreading factor of a segment depends on its size, defined by
the number of blocks it contains, and the neighbors’ departure
rate. In fact, coded blocks belonging to a larger segment should
be cached more frequently in the network in order for the
server to decode them. Furthermore, a higher spreading factor

4

guarantees better tolerance to peer dynamics. Blocks should
spread further in the network to resist losses due to high
level of peer departures. In our protocol, peers choose the
appropriate spreading factor for the newly generated blocks
based on the local view of neighbor dynamics. Hence, the
number of coded blocks disseminated in the network adapts
to the dynamic of the peers.

The spreading factor of a segmentk is calculated using a
logarithmic function as shown in Equation (1). We use a loga-
rithmic function to take into account previously disseminated
blocks of segmentk. Those blocks, with different number of
coefficients, are used in the decoding process by the server.
The spreading factor is defined as

SF = α(d) log2(βnc + 1), (1)

where nc is the number of coefficients of segmentk. The
parametersα(d) and β determine the redundancy or the
number of coded blocks to be injected in the network. The
variabled is the dynamic percentage rate measured using the
local view of neighbor dynamics. In our protocol,α(d) is a
step function as shown in Equation (2). A peer measures its
neighbor dynamics and modifies the spreading factor based on
its sensitivity indicated by the percentage levelspl.

α(d) =






α1 d <= p1

α2 p1 < d < p2

· · ·
αl d > pl

(2)

Our design objective is to effectively cache the traces in the
network and communicate them in a manner that resists high
level of peer dynamics and allows the server to reconstruct
the traces by periodically pulling a fixed amount of arbitrarily
blocks from the network. The protocol is implemented using
progressive encoding as shown in Algorithm 1.

Upon experiencing Quality of Service changes, a peer
produces new measurements to be collected by the server.
Consequently, it generates traces and divides them into blocks
of size 1 KB each which fits in a single UDP packet. Then,
it adds those blocks to its segmentk that was previously
disseminated in the network. After modifying the segment
and increasing its size, the peer recalculates the spreading
factorSF using Equation (1). Accordingly, when it decides to
inject those newly generated blocks in the network, it sends
coded blocks from segmentk. A peer can decide to switch
to a new segment whennc reaches a maximum value that
leads to significant coefficient overhead. Note that the blocks
exchanged in the network, that belong to the same segment,
can have different number of coefficients. Such blocks are
encoded together after appending a corresponding number of
zeros to adjust their sizes.

Upon receiving blocks from a segmentk, a peer retrieves
the spreading factor from the messages. It then applies random
linear combinations to the newly received blocks and the
cached blocks that belong to that same segmentk. According
to the retrieved spreading factor, it sends coded blocks to
neighbors and sets their appropriateSF entries. Finally, it
stores a coded block by replacing previous cache entry of the

Algorithm 1 Trace Collection Protocol.
Sending original coded blocks

M ← collect measurements
B̂ ← divide M and packetize it into block of 1KB each
k ← previously disseminated segment or new segment

ID
B̂k ← B̂k ∪ B̂
SF = α(d) log2(β × sizeof(B̂k) + 1)
for u = 1 to sizeof(Neighbors)

SFu ← Disseminate blockss.t.
∑

SFu = SF
for i = 1 to SFu

C ← sizeof(B̂k) random coefficients
b = C × B̂k

Sendb to peeru
end for

end for

Receiving coded blocks
B̂ ← received coded blocks
SF ← retrieved message spreading factor
SF = SF − 1
ID ← retrieved message source ID
k ← retrieved message segment ID
j ← Cache entry for segmentk from peerID
B̂′ ← B̂j ∪ B̂
for u = 1 to sizeof(Neighbors)

SFu ← Disseminate blockss.t.
∑

SFu = SF
for i = 1 to SFu

C ← sizeof(B̂′) random coefficients
b = C × B̂′

Sendb to peeru
end for

end for
C ← sizeof(B̂′) random coefficients
if j == Ø

if cache is full
j ← oldest cache entry

else
j ← new cache entry

end if
end if
B̂j = C × B̂′

segmentk, if it exists. In case the cache is full, it replaces
the oldest segment entry in the cache memory. Hence, as the
segment size increases, the blocks propagate further in the
network replacing previous versions of that same segment.
The number of disseminated blocks is determined by the
spreading factor set by the peer that has produced the traces.
By controlling the number of disseminated blocks, the protocol
allows the server to decode a large segment of snapshots and
limits the number of linear dependent blocks in case of a
small segment size. As such, our protocol decreases the chance
of linear dependency when there are few coded blocks and
increases the chance of decoding a segment when it contains
a large number of coded blocks.

Progressive encoding is significant and effective when we

5

avoid using acknowledgments and requests in the trace col-
lection protocol. In fact, through the segment replacement
mechanism, progressive encoding solves the problem of data
block caching, where the peers have to decide wether to
keep an existing block or replace it with a new one. The
idea behind using progressive encoding is to increase blocks
diversity in order to spread traces to as many peers as possible
without introducing many block dependencies at the server.By
encoding previously disseminated blocks with newly generated
blocks, we increase blocks diversity in live trace generation.
The server, on the other hand, collects blocks belonging to
segments that are increasing in size as it periodically probes
the network and deletes them from the peers’ caches. With
progressive encoding, such cached blocks are more meaning-
ful since they help decoding segments that are increasingly
containing newly generated blocks. In addition, we avoid the
problem of decoding all or nothing since the server can decode
part of the segment if it has collected enough blocks during
its periodic probing.

V. THEORETICAL ANALYSIS

In this section, we study the overhead generated by the
dissemination of coded blocks and the relationship between
the parameters of our trace collection protocol discussed in
the previous sections.

A. Data Dissemination Overhead

In order for the design to scale, it should control the
redundancy introduced by the dissemination of the snapshots
in the network. The segment size is an important factor
in regulating the overhead involved in our trace collection
mechanism.

With progressive encoding, the coefficient overhead of a
segment depends on its size defined by the number of coeffi-
cientsnc it contains. Network coding operations are performed
over a Galois field2q. In a network ofn peers the coefficient
overhead is aroundr× q + log2 n bits. We limit the size of a
block to 1KB which fits in a single UDP packet.

On the other hand, the communication overhead is defined
by the redundancy ratio and the cache capacity allocated by the
peers. Redundant blocks are not duplicates distributed in the
network. Instead, when network coding is applied, redundant
blocks are additional coded blocks exchanged. The server has
to collectnc blocks in order to decode a segment containing
nc coefficients. However, to tolerate peer dynamics, peers have
to disseminate additional blocks which introduces redundancy
in the network. Based on the protocol described in Algorithm
1, the redundancy ratio is defined as

RR =
α(d) log2(βnc + 1)

nc
. (3)

Note from Equation (3) that the redundancy adapts to
the dynamics of the peers. Based on the local view of
neighbor dynamics, a peer can adjust the spreading factor
of its segments. Indeed, with higher level of peer dynamics,
a peer should disseminate more blocks to tolerate the loss
due to the departure of neighbors storing its data. Hence our

trace collection protocol adapts to peer dynamics and prevents
redundant blocks from flooding the network.

As previously discussed, the cooperation of the peers is
determined by the cache capacity allocated to store blocks
from other peers. Peers with long lifetime contribute the
most to the system. In our design, we fix the cache capacity
allocated for other peers and replace oldest entries when the
cache is full. Peers store one copy of each segment received,
to be sent to the server once probed. The server, on the other
hand, pulls a fixed amount of dataQs from the network every
period of time Ts. Each block pulled from the network is
deleted from the caches.

B. Decoding Condition

In order to simplify the analysis, we assume that the events
occur at discrete timet = 0, T, 2T, Consider a peer that
has generated a segmentk of sizenc and has disseminated its
coded blocks toC peers in a network of sizeN . The server has
to collectnc coded blocks in order to decode and reconstruct
the snapshots. However, the server uses a limited bandwidth
to periodically probe the network consisting of dynamic peers
that leave the session at a constant rate. We assume that the
session terminates when all the peers depart.

We use the following parameters in our analysis. We denote
by Ct the number of peers that store coded blocks from seg-
mentk at timet. Also, we denote the number of participating
peers at timet by Nt. Assume that the server probes the
network at a rate of one coded block from each of theRp

peers every period of timeT . The peers, on the other hand,
depart at rateRd peers every period of timeT . Hence, in this
scenario, we haveNt = N−t×Rd and the redundancy ration
RR = C/nc.

Assume that the random variablesCt at different timest
are independent. We defineCt as the number of peers that
have cached blocks from segmentk after the departure of
t × Rd peers. The probabilityP (Ct = l) is equivalent to
the probability thatC − l peers that store coded blocks from
segmentk have left the session before timet. We thus have

P (Ct = l) =

(
C

C−l

)(
N−C

tRd−C+l

)
(

N
tRd

) . (4)

The expected value of the random variableCt is

E(Ct) =
1(
N

tRd

)
min{C,N−tRd}∑

l=0

l

(
C

C − l

)(
N − C

tRd − C + l

)
. (5)

Define the random variablext as the number of collected
blocks by the server when it probes the network at timet. The
variablext follows a binomial distribution with parametersRp

and Ct

Nt
. The probability that the server collectsl coded blocks

from segmentk at time t by probing l peers storing those
blocks is

P (xt = l) =

(
Rp

l

)(
Ct

Nt

)l (
1−

Ct

Nt

)Rp−l

. (6)

Therefore, the expected value ofxt is E(xt) = Rp ×
Ct

Nt
. In

other words, the expected number of collected coded blocks

6

when the server probes the network at timet is equal to
Rp×

Ct

Nt
. Since the session terminates when all the peers leave

the session at timet = N
Rd

, we express the total number of
collected blocks as the random variableX such that

X =

N/Rd∑

t=0

xt = Rp

N/Rd∑

t=0

Ct

Nt
.

We thus have

E(X)

= Rp

N/Rd∑

t=0

E(Ct)

Nt

=
Rp(
N

tRd

)
N/Rd∑

t=0



 1

Nt

min{C,N−tRd}∑

l=0

l

(
C

C − l

)(
N − C

tRd − C + l

)



In order for the server to reconstruct the snapshots from
segmentk, it has to collect at leastnc independent coded
blocks. Hence, the expected number of collected blocksE(X)
should be at least equal tonc. Therefore, we need to enforce
the following condition:

Rp(
N

tRd

)
N/Rd∑

t=0



 1

Nt

min{C,N−tRd}∑

l=0

l

(
C

C − l

)(
N − C

tRd − C + l

)

 ≥ nc,

(7)
whereNt = N − tRd.

In our trace collection, the parameterC in condition (7)
can be replaced byRR × nc which refers to the number of
coded blocks disseminated in the network, hence, the number
of peers that store a coded block from segmentk. It is evident
that a larger segment sizenc requires more peers to store
coded blocks. Note that the further the right hand side of
condition (7) exceeds the segment size, the higher is the
expected number of dependent blocks at the server. In our
protocol, we approximate the rates and messaging intensityin
order to satisfy condition (7).

We note from condition (7) that the most efficient way to
disseminate the coded blocks is by spreading the blocks to
as many peers as possible. In fact, increasing the number of
coded blocks stored at the peers does not adjust the value
of C to satisfy condition (7). Instead,C only depends on
the number of peers storing coded blocks from segmentk.
By choosing the appropriate messaging intensity we satisfy
the condition and hence tolerate the peer dynamics. This also
applies to the number of segments generated by a single peer.
To better resist network dynamics, a peer should maximize
the segment size used and hence, minimize the number of
injected segments to efficiently spread its coded blocks in the
network. For this purpose, we implement progressive encoding
in our trace collection protocol, through which, we increase
the segment size and control the redundancy introduced in the
network.

VI. PROTOCOLEVALUATION

In this section we study the efficiency of our trace collection
protocol and its resilience to high level of peer dynamics. We
simulate a live peer-to-peer session where the peers arbitrarily

exchange data blocks as previously discussed in order to
disseminate their snapshots in the network. The duration of
the session is 600 minutes. We use event-driven simulations
and model the peer dynamics using exponential distribution
with a mean valuee. The peers generate traces and send
their blocks independently. We also model their behavior
using exponential distribution. The mean of the distribution
ai defines the aggressiveness of a peeri. The server collects
a fixed amount of dataQs from the network every period of
time Ts. The number of blocks generated by the peers during
the session should be less thanQs×Ts in order for the server
to decode all the traces. We use the ratio of decoded blocks
to the blocks generated as a metric to evaluate our protocol
under different levels of peer dynamics. We also measure the
redundancy collected or the linear dependent blocks collected
by the server. Furthermore, we evaluate the messaging inten-
sity defined as the average number of blocks sent by each peer
during the session. We generate various random topologies and
investigate parameters such as peer dynamics, associated with
the mean of the exponential distributione, the peers’ cache
capacity and the spreading factorSF . In the simulations, we
fix the parameterβ of SF to 0.25 and varyα(d).

A. Delayed Data Collection

Through simulations, we show how our protocol can scale to
large-scale peer-to-peer networks. For this purpose, we report
the percentage of generated blocks decoded by the server when
it periodically pulls a fixed amount of data from the network.
With this delayed trace collection, the server can handle large-
scale peer-to-peer networks and prevent peers from sending
simultaneous excessive data.

Figure 2 shows the number of decoded blocks in function
of the spreading factor in a network consisting of 1000 peers.
We fix β to 0.25 and vary the parameterα(d) of the spreading
factorSF . In this scenarioα(d) does not depend on neighbor
dynamics. We model the peer dynamics by setting the mean of
the exponential distributione to 100 minutes. We notice that
the peers generate around 30,000 blocks during the session.
The server collects a fixed amount of 800 blocks every 10
minutes. By caching the coded blocks in the peer-to-peer
network, the server is able to collect and reconstruct the
traces under the specified rate of peer departures. We notice
from Figure 2, that for small values ofSF , the redundancy
created in the network is not sufficient to tolerate the peer
dynamics which limits the decoding capabilities of the server.
On the other hand, as we increase the spreading factor, the
blocks reach more peers and hence resist losses due to peer
departures. Therefore, the server is able to collect enough
packets to reconstruct most of the traces generated. We also
observe that the number of dependent blocks collected by the
server slightly increases. In fact, the redundancy disseminated
in the network are coded blocks that are equally useful in
the decoding process since progressive encoding increases
the diversity of the blocks exchanged. This is one of the
advantages of using progressive network coding for blocks
dissemination. Moreover, we note that the message intensity
is around 900 KB. It increases as we increase the spreading

7

factor. In fact, more redundancy is cached in the network and
more data blocks are exchanged by the peers for larger values
of α(d).

20 40 60 80
0

1

2

3

4
x 10

4

α(d)

N
u

m
b

e
r

o
f
b

lo
c
k
s

Generated

Decoded

Dependent

Message Intensity

Fig. 2. Message intensity and decod-
ing efficiency as a function ofα(d).

0 200 400 600
0

1

2

3

4x 10
4

N
um

be
r

of
 b

lo
ck

s
Minutes

Disseminated
Collected

Fig. 3. Blocks dissemination and
collection in function of time.

Furthermore, to clearly see how the server collects data in
a delayed fashion, we report the blocks dissemination and
collection in function of time in Figure 3. Note that the
number of blocks collected follows a straight line since the
server periodically pulls 800 blocks from the network, and
as such prevents the peers from uploading excessive flows.
The gap between the curves demonstrates how the blocks are
disseminated first in the network and then collected by the
server at a later time. Between time 150 and 400 the blocks
generation slows down since the number of participating peers
dramatically decreases. The remaining peers, with a long
lifetime, store the snapshots of other peers that have already
left. We observe from Figure 3, how the server is able to pull
data from those peers until time 400, where all the participants
have left the session. Note that in this scenario, the serverwas
able to reconstruct more than90% of the generated snapshots.
The difference between the number of blocks collected and
those disseminated, shown after 400 minutes, is equal to the
number of dependent coded blocks collected by server.

In Figure 4, we show how the probing quantityQs affects
the decoding efficiency. We fix the probing periodTs to 10
minutes. The parameterα(d) and β of the spreading factor
are fixed to 50 and 0.25 respectively. Also the network size
is set to 1000. Figure 4 reveals that the decoding is limited
when the number of collected blocks is less than the number
of generated blocks. We note a fast increase in the amount of
decoded packets asQs×Ts approaches the number of blocks
generated by the peers. A probing quantityQs equal to 800 is
sufficient to allow the server reconstruct most of the traces. As
we further increaseQs, the number of decoded packets slightly
increases but the amount of linear dependent blocks collected
by the server increases significantly. Hence, a careful selection
of probing quantityQs, can save the server bandwidth from
dependent coded blocks.

Figure 5 demonstrates how the progressive encoding used
in our trace collection protocol allows the server to reconstruct
some snapshots from a segment received, even when it does
not have enough blocks to decode all the segment. We report
the number of decoded blocks collected from a randomly
selected peeru, as the server is periodically probing the
network. Figure 5(a) shows the distribution of the collected
blocks from peeru as a function of the number of coefficients
retrieved from the messages. On the other hand, Figure 5(b)

500 1000 1500
0

1

2

3

4x 10
4

Q
s

N
um

be
r

of
 b

lo
ck

s

Generated Decoded Dependent

Fig. 4. Probing efficiency as a function of the periodic probing quantityQs.

shows how the number of decoded blocks increases as the
server collects additional data. For instance, we observe that al-
though the server collected 7 blocks containing 10 coefficients
each, it was able to decode them using previously collected
blocks containing only 5 coefficients. All the blocks reported
in Figure 5 belong to the same segment. The server was
able to decode 60 out of the 80 blocks forming the segment.
Figure 5 shows that our protocol increases the diversity of the
exchanged blocks through progressive encoding and allows
the server to reconstruct snapshots from a segment without
the need to completely decode it. Indeed, when Algorithm 1
is applied during a session, the size of the segments grows
and the number of coefficients contained in the exchanged
blocks increases. As the server periodically pulls data form the
network, blocks containing different number of coefficients are
used in the decoding process. As such, we avoid the problem
of decoding all the segment or nothing.

0 20 40 60 80
0

5

10

15

20

25

30

Coefficients

R
ec

ei
ve

d
bl

oc
ks

(a)

0 20 40 60 80 100
0

10

20

30

40

50

60

Received blocks

D
ec

od
ed

 b
lo

ck
s

(b)

Fig. 5. Reconstructing blocks of a segment collected by the server.

Next, we fix the probing quantityQs to 800 and the probing
period Ts to 10 minutes and investigate the effect of the
peers’ cache size on the protocol. We set the mean value
of the exponential distribution that models peer dynamics
to 80 minutes. Figure 6 shows that with a cache size of
100 KB the amount of decoded blocks is limited to60%
independent of the spreading factor. In fact, the peers that
have a longer lifetime are supposed to cache the data blocks
of the peers that have left the session in order for the server
to pull their blocks in a delayed fashion. However, with a
cache size of 100 KB the peers have to drop blocks previously
buffered. The server fails to collect sufficient number of blocks
to reconstruct additional snapshots under such rate of peer
departures. On the other hand, observe that a cache size of 300
KB is sufficient to allow the server decode most of the blocks
generated using an appropriate spreading factor. We note a
slight decrease in the decoding efficiency for small cache sizes.

8

This is due to the fact that for large values ofα(d), segments
occupy peer caches more than needed by the server, creating
additional dependency and preventing other generated blocks
from getting buffered. In our protocol, progressive encoding
decreases the number of segments injected in the network and
through segment replacement mechanism it efficiently uses the
neighbors’ cache capacity.

20 40 60 80
40

50

60

70

80

90

100

α(d)

P
e

rc
e

n
ta

g
e

 o
f
d

e
c
o

d
e

d
 b

lo
c
k
s

Cache = 400

Cache = 300

Cache = 200

Cache = 100

Fig. 6. The effect of cache size on the decoding efficiency.

B. Peer Dynamics Factor

Our trace collection protocol adapts to peer dynamics and
controls the redundancy disseminated in the network. We
study the effect of peer dynamics and show how our protocol
can tolerate high level of peer departures. By modifying the
spreading factorSF , based on their local view of neighbor
dynamics, peers can determine the redundancy that should be
disseminated in the network.

In order to reveal the relation between the spreading factor
and the peer dynamics, we evaluate the percentage of decoded
blocks under different values of the parametere, as shown in
Figure 7. The network size is set to 3000 peers. We note that
under extreme level of peer dynamics, wheree is equal to
30 minutes, the spreading factor parameterα(d) is required
to be as high as 90 in order for the server to reconstruct
most of the traces. With such rate of peer departures, the
cached blocks losses prevent the server from reconstructing the
generated snapshots. Hence, a segment should spread further
in the network reaching more peers in order to tolerate such
high level of peer dynamics. However, selecting a large value
for α(d) under a low peer departures rate would result in many
block dependencies at the server. Therefore, the spreading
factor should be chosen according to the peer dynamics. In our
protocol, peers determine the number of blocks to disseminate
using Equation (1) which is a function of neighbors’ dynamic
percentage rate.

In the previous scenarios, the parameterα(d) did not depend
on neighbor dynamicsd. However, Figure 7 indicates that the
peers should modify the spreading factor depending on the
rate of peers’ departure. Since a peer does not have a global
knowledge of peer dynamics, it modifies its spreading factor
based on the local view of neighbor dynamics. In our protocol,
as the rate of neighbor departures augments, a peer increases
the spreading factor of its segment to disseminate additional
coded blocks in the network. As the blocks are disseminated
further in the network, a peer can tolerate neighbor dynamics

20 40 60 80
20

40

60

80

100

α(d)

P
e

rc
e

n
ta

g
e

 o
f
d

e
c
o

d
e

d
 b

lo
c
k
s

 e = 120

 e = 100

 e = 50

 e = 30

Fig. 7. Decoding efficiency as a
function of the spreading factor un-
der different level of peer dynamics.
Network consists of 3000 peers.

0 20 40 60 80 100
0

20

40

60

80

p1 Level

P
er

ce
nt

ag
e

Decoded blocks
1/RR

Fig. 8. Decoding efficiency and
message intensity as a function of the
dynamic sensitivity level.

and hence allow the server to collect its data and reconstruct
its snapshots. The redundancy ratioRR of Equation (3) is an
indicator of the level of redundancy injected in the network.
In our simulations, we calculateRR by measuring the ratio
of blocks disseminated in the network to blocks generated by
the peers. We report in our results the percentage1

RR where
smaller values of 1

RR imply higher redundancy exchanged by
the peers.

In the scenario of Figure 8,α(d) has a single sensitivity
level p1 at which the peers change their spreading factor
according to Equation (8). The parameterβ of SF is set to
0.25 and the peers varyα(d) depending on their neighbor
departures rate. We fix the mean valuee of the exponential
distribution, that models peer dynamics, to 20 minutes.

α(d) =

{
50 d <= p1

80 d > p1

(8)

We observe from Figure 8 that for small values ofp1, the
server is able to reconstruct more snapshots. Indeed, when the
peers are more sensitive to neighbor departures, they adjust
their spreading factor faster and hence resist high level ofpeer
dynamics by injecting additional coded blocks in the network.
On the other hand, for large values ofp1, many coded blocks
would be lost before the peers decide to adjust the spreading
factor used. Note that when we reduce the sensitivity level
p1, the redundancy ratio increases. In fact, whenp1 is small,
more peers would increase their spreading factor and hence
increase the messaging intensity. Peers become more sensitive
to their neighbor dynamics and more blocks are exchanged
and cached in the network.

0 20 40 60 80 100
0

20

40

60

80

100

e

P
er

ce
nt

ag
e

Decoded blocks 1/RR

Fig. 9. Protocol’s adaptability to peer dynamics in a networkconsisting
of 5000 peers. The variablee is the mean of the peer dynamics distribution
model.

9

Finally, we fix the sensitivity levels and vary the mean value
e to study how our trace collection protocol adapts to high
level of peer dynamics. For this purpose, we apply our protocol
in a network consisting of 5000 peers under different levels
of peer departures. Peers change the spreading factor they
use according to Equation (9) and thus, adjust the messaging
intensity.

α(d) =






30 d <= 20
50 20 < d <= 35
80 d > 35

(9)

We report, in Figure 9, the decoding efficiency and the
redundancy rationRR. We observe that the server is able
to decode more than80% of the generated snapshots inde-
pendent of the mean valuee. This demonstrates how our trace
collection protocol adapts to peer dynamics. Depending on the
neighbors departure rate, peers adjust the messaging intensity
to allow the server reconstruct their snapshots. As such, the
decoding efficiency does not drop even under an extreme level
of peer dynamics with a mean valuee equal to 20. We also
note, from Figure 9, that the percentage1RR grows as the
mean valuee increases. Indeed, as neighbors become more
dynamic, peers modify the spreading factor they use, hence,
disseminate additional coded blocks of their segments in the
network. The blocks spread further in the network in order
to tolerate the losses due to peers leaving the session. As a
result, the ratio of the number of blocks generated to blocks
disseminated increases.

By adapting to neighbor dynamics, peers disseminate the
appropriate amount of redundancy to resist the losses due to
peers leaving the session. As such, they efficiently use the
server bandwidth and reduce the number of collected blocks
that are dependent. The ability to adapt to peer dynamics
allows our protocol to collect the traces from the network
under high rate of peers’ departure and at the same time allows
it to scale to large-scale peer-to-peer networks.

VII. C ONCLUSION

In this paper, we have shown how random linear network
coding can be used to help operators diagnose large-scale peer-
to-peer networks. We presented a new trace collection protocol
to monitor and diagnose large-scale peer-to-peer networks.
We incorporate network coding to disseminate snapshots over
the network. Peers cooperate by allocating cache capacity for
snapshots from other peers. Since, the measurements are not
time sensitive, the server periodically pulls a fixed amountof
data from the network in a delayed fashion, in order to recon-
struct the generated snapshots. We used progressive encoding
to tolerate extreme level of peer dynamics and reduce storage
cost. The protocol adapts to peer departures rate and controls
the redundancy introduced in the network. The redundancy
are coded blocks that allow the server decode the traces
under extreme block losses. Through progressive encoding,
we increase the blocks diversity as the traces are generated
and efficiently use the storage capacity at the peers. We
studied the performance of our trace collection protocol under
different level of peer dynamics and demonstrated the benefits

of progressive encoding. We used event-driven simulationsto
model the trace collection mechanism. Our protocol proved to
scale and tolerate high level of peer departures. The results
showed how it adapts to peer dynamics by disseminating the
appropriate amounts of coded blocks in order for the server to
reconstruct most of the traces. The protocol presented in this
paper shows the benefits offered by random linear network
coding in peer-to-peer architectures. We demonstrated howwe
can leverage the power of network coding once incorporated
in our design.

REFERENCES

[1] “UUSee Inc.” http://www.uusee.com/.
[2] C. Wu and B. Li, “Echelon: Peer-to-peer network diagnosis with network

coding,” in Proc. of IWQoS 2006, New Haven, CT, USA, June 2006.
[3] D. Niu and B. Li, “Circumventing Server Bottlenecks: Indirect Large-

Scale P2P Data Collection,” inProc. of the 28th International Confer-
ence on Distributed Computing Systems (ICDCS 08), June 2008.

[4] R. van Renesse, K. Birman, and W. Vogels, “Astrolabe: A Robust and
Scalable Technology for Distributed System Monitoring, Management
and Data Mining,”ACM Transactions on Computer Systems, vol. 21,
no. 2, pp. 164–206, May 2003.

[5] V. N. Padmanabhan, S. Ramabhadran, and J. Padhye, “NetProfiler:
Profiling Wide-Area Networks Using Peer Cooperation,” inProc. of
IPTPS 2005, February 2005.

[6] A. B. Downey, “Using Pathchar to Estimate Internet Link Characteris-
tics,” SIGMETRICS Performance Evaluation Review, vol. 27, no. 1, pp.
222–223, 1999.

[7] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “User-Level
Internet Path Diagnosis,”SIGOPS Operating System Review, vol. 37,
no. 5, pp. 106–119, 2003.

[8] D. Stutzbach and R. Rejaie, “Capturing Accurate Snapshots of the
Gnutella Network,” inProc. of IEEE Global Internet Symposium, March
2005.

[9] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network Information
Flow,” IEEE Transactions on Information Theory, vol. 46, no. 4, pp.
1204–1216, 2000.

[10] S. Y. R. Li, R. W. Yeung, and N. Cai, “Linear Network Coding,” in
Proc. of IEEE Transactions on Information Theory, vol. 49, 2003, p.
371.

[11] R. Koetter and M. Medard, “An Algebraic Approach to Network
Coding,” IEEE/ACM Transactions on Networking, vol. 11, no. 5, pp.
782–795, 2003.

[12] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, “The Benefits
of Coding over Routing in a Randomized Setting,” inProc. of IEEE
International Symposium on Information Theory (ISIT 2003), 2003.

[13] C. Gkantsidis and P. Rodriguez, “Network Coding for Large Scale
Content Distribution,” inProc. of IEEE INFOCOM 2005, 2005.

[14] Y. Wu, “Network Coding for Multicasting,” Princeton University, Tech.
Rep., Nov. 2005.

