
A Simpler and Better Design
of Error Estimating Coding

Nan Hua
School of CS
Georgia Tech

nanhua@gatech.edu

Ashwin Lall
Department of Math and CS

Denison University
lalla@denison.edu

Baochun Li
Department of ECE

University of Toronto
bli@eecg.toronto.edu

Jun Xu
School of CS
Georgia Tech

jx@cc.gatech.edu

Abstract—We study error estimating codes with the goal of
establishing better bounds for the theoretical and empirical
overhead of such schemes. We explore the idea of using sketch
data structures for this problem, and show that the tug-of-war
sketch gives an asymptotically optimal solution. The optimality
of our algorithms are proved using communication complexity
lower bound techniques. We then propose a novel enhancement
of the tug-of-war sketch that greatly reduces the communication
overhead for realistic error rates. Our theoretical analysis and
assertions are supported by extensive experimental evaluation.

I. INTRODUCTION

The seminal paper of Chen et al. [2] has brought to the fore
the problem of (approximately) estimating the number of bit
errors (correspondingly the bit error rate) that has occurred to
a packet during its transmission over a wireless network. It has
been shown in [2] that knowing this (approximate) bit error
rate (BER) of a packet makes possible a host of advanced
packet processing capabilities such as packet re-scheduling,
routing, and carrier-selection schemes that can improve the
(good) throughput of a wireless network in various ways. A
simple yet effective technique, called error estimating codes
(EEC), is proposed in [2] to help estimate this BER. Its basic
idea is for the transmitter to send along with a packet a set
of parity-check bits, each of which is the exclusive-or of a
group of bits randomly sampled from the packet. These parity
equations are designed in such a way that, by counting how
many of them are violated after the packet transmission, the
receiver can estimate, with low relative error, this BER. This
solution has some flavor of low density parity check (LDPC),
though its objective and hence parameter settings (e.g., the
distribution of “densities”) are very different.

In this work, we look at this problem from a very different
angle. While the EEC work looks at this problem from by
and large a coding theoretic perspective, our work looks at it
from a theoretical computer science perspective, modeling it
as a so-called two-party computation problem as follows. Two
parties Alice and Bob each knows a (local) binary string x and
y respectively, but Alice has no knowledge of y and vice versa.
Alice and Bob are faced with the problem of computing the
value of a function f acting upon the inputs x and y, often
approximately. Intuitively, given any “sufficiently nontrivial”
function f , for Alice and Bob to compute f(x, y) together
even approximately, either Alice has to tell Bob something

about x or Bob needs to tell Alice something about y. The
theory of two-party computation is concerned with how to
evaluate f(x, y) using as little communication (telling the
other party about their local strings) between Alice and Bob as
possible. Such a minimum amount of communication needed
for the two-party computation of f(x, y) is referred to as its
communication complexity.

In the context of this work, two parties Alice and Bob are
the transmitter and the receiver respectively. Alice knows the
string (packet) x that is transmitted and Bob knows the string
(packet) y that is received. The function f we would like to
evaluate on (x, y) is clearly the Hamming distance between x
and y, that is, ||x−y||0 (L0 norm of the difference). We would
like to find out the minimum amount of extra information
(about x) that Alice needs to send to Bob, alongside with x,
in order for Bob to approximately estimate f(x, y). Techniques
for (most) compactly encoding such extra information (about
x) are referred to as sketching algorithms and the resulting
encodings are called sketches.

Casting this BER estimation problem into the rich theoret-
ical framework of two-party computation allows us to look
much deeper into its underlying mathematical structures and
obtain a set of new and better results. Our first result is to
prove that the (randomized) communication complexity for the
two-party computation of ||x−y||0 is Ω(log n), where n is the
length of the string x and y. In other words, Alice (the sender)
needs to send to Bob (the receiver) a minimum of Ω(log n) bits
in order for Bob to approximately compute ||x−y||0. Since the
number of overhead bits used in the EEC algorithm is indeed
O(log n) [2], it matches this lower bound and is therefore
asymptotically optimal. However, it is not optimal in terms
of the constant factor, as we will explain shortly. Our second
result is a new sketching technique that is based on an existing
one with significant additional innovations. Our sketch also
matches the Ω(log n) lower bound, and has a smaller constant
factor than the EEC scheme. In fact, our scheme requires a
sketch size that is only 30% of the overhead bits used by the
EEC scheme to achieve the same or better BER estimation
accuracies. Our sketching technique also allows for a much
simplified analysis of error guarantees than that in [2].

Here we briefly describe the basic ideas behind our sketch
and innovations. Since x and y are binary strings in our
context, the Hamming distance ||x−y||0 (the number of errors

occurring during transmission) is the same as ||x − y||1 (L1

norm) and ||x− y||2 (L2 norm)1. Various sketches have been
proposed to compactly encode a (long) string x for the two-
party computations of ||x − y||0, ||x − y||1, and ||x − y||2.
Among them, we discover that the tug-of-war sketch [1]
proposed for estimating the L2 norms is most suitable for our
purposes.

However, the tug-of-war sketch per se is not yet the right
solution to our problem for three reasons:
. EEC is a symmetric scheme in the sense that every bit is

equally important or vulnerable: Flipping either an infor-
mation bit or the parity bit in a parity equation results in
this parity equation being violated. When the tug-of-war
sketch is used for estimating ||x − y||2 (mathematically
equivalent to ||x−y||0 as explained above) however, these
sketch bits are much more important and vulnerable than
the information bits in the sense that flipping a sketch bit
causes much more “damage” to the BER estimation than
flipping an information bit. Therefore, the sketch needs
some kind of “extra protection.” This is achieved using
error detection mechanisms in our scheme.

. The fact that x is a binary vector (rather than a vector of
large integers or floating numbers) that can be scrambled
to have approximately equal number of 0’s and 1’s in
it provides opportunities for the tug-of-war sketch to
be further significantly compressed. In fact, through a
statistical truncation technique, described later in Sec. V,
we are able to reduce the size of each “sketch word” from
9 v 14 bits to 5 bits for typical application scenarios.
This size reduction carries the additional benefit that only
a much smaller sketch needs to be protected through error
detection codes.

. The tug-of-war sketch is not as space-efficient as sam-
pling in the high BER region. Our scheme explores the
optimal way of combining them to achieve the best size-
accuracy tradeoffs possible in that case.

The remainder of this paper is organized as follows. We in-
troduce notations and some background information in Sec. II.
Sec. III analyzes the lower bounds of error estimating codes, in
terms of the number of overhead bits needed. Sec. IV describes
the tug-of-war sketch, and gives a simple analysis to show
that it accurately computes BER if the sketch is not corrupted
by errors. In Sec. V, we propose our enhanced tug-of-war
sketch that removes the assumption of integrity of the sketch
and substantially improves its performance. We experimentally
validate the efficacy of our scheme in Sec. VI. We discuss the
related work in Sec. VII, and conclude in Sec. VIII.

II. PRELIMINARIES

We start by introducing some notations needed to formally
define the problem. To make the presentation and analysis of
our algorithms much simpler, a 0 bit in a packet is represented

1Let xi and yi be the ith bit in x and y respectively, i = 1, 2, ..., n.
Then the Lp norm of the difference vector x − y is defined as(∑n

i=1 |xi − yi|p
)1/p.

by a ‘-1’ signal (like in the Code Division Multiple Access
literature), and a 1 bit by a ‘1’ signal. We denote the packet
sent out as b ∈ {−1, 1}n (0 represented as ‘-1’) and the packet
received with errors as b′ ∈ {−1, 1}n. Like in the original
EEC scheme [], we assume that some of the bits of the packet
may have been flipped, but the length of the packet remains
the same. The goal of this paper is to compute with as little
overhead as possible the number of errors in transmission,
which is exactly the Hamming distance between b and b′, and
which we denote as d. We can then use this number to compute
the bit error rate (BER) p = d/n.

We now briefly introduce the notions of randomized approx-
imation and communication complexity, which we will later
use in this paper.
Randomized approximation: The original EEC scheme, and
the tug-of-war sketch presented in Section IV-A of this paper,
are (ε, δ)-approximation schemes. An (ε, δ)-approximation
algorithm is one that produces an estimate X̂ for some
quantity X with the guarantee that the absolute relative error
|X̂ −X|/X is at most ε with probability at least 1− δ. It is
assumed that 0 < ε, δ < 1 are arbitrary constants that can be
tuned by the designer of the algorithm. Typically, the cost of
the scheme is dependent on these two parameters.
Communication complexity: Many of our lower bounds on
this paper make direct use of results from the communication
complexity literature [9]. As mentioned before, communica-
tion complexity deals with the problem of determining the
exact amount of communication needed between two parties
to compute some function on their non-overlapping but jointly
complete input. The communication complexity of a function
at input size n is the largest number of bits that the two parties
have to communication with each other using the optimal
protocol for any input of size n. The basic communication
complexity model can be generalized in many ways, two of
which—randomization and one-round—appear in this paper.
The randomized communication complexity of a function
is the communication complexity of an optimal randomized
protocol that is correct with some positive constant probability
(over random choices of the protocol). The one-round com-
munication complexity of a function is the communication
complexity of an optimal protocol in which Alice sends a
single message to Bob, and Bob then computes the result of
the function with no further communication. The problem of
estimating BER clearly corresponds to the one-round model.
Randomization is also allowed in our context and is actually
used by both EEC and our scheme.

III. LOWER BOUNDS

We next show lower bounds for the BER estimation prob-
lem, demonstrating the optimality of our algorithms. In Sec.
III.A, we show that deterministically estimating the error rate
(i.e., without the use of randomization) requires the coding
scheme to use Ω(n) bits of overhead even when we allow the
estimate to err by over 10% from the actual value. Similarly,
we show in Sec. III.B that randomization alone cannot produce
the exact BER estimation using a well-known result from the

area of communication complexity. Based on these two results,
one can see why we can only approximate the result with high
probability. Finally, we show in Sec. III.C why the O(log n)-
bit sketch our algorithms use is necessary.

A. Why Randomization Is Needed

Theorem 1: Any error-estimating scheme that estimates the
number of the bits in an n-bit packet that change during
transmission to within n/8 must use Ω(n) overhead bits.

Proof: Let n be divisible by 8 (the argument works for
all n with some slight modifications). It is known that there
exists a family G of 2Ω(n) subsets of {1, 2, 3, . . . , n} such that
(i) each set in G has cardinality exactly n/4, and (ii) every
pair of sets in G have at most n/8 elements in common. The
existence of such a family can be shown using the probabilistic
method, but this is omitted here for brevity.

Let us assume for a contradiction that there exists a de-
terministic sketch of size less than Ω(n) bits that allows the
computation of the Hamming distance between the original
and transmitted codewords within an error of less than n/8.
Consider what happens when we sketch all the codewords
formed by the characteristic vectors of the sets in G. Since the
sketch size is less than log (|G|) = Ω(n), by the pigeonhole
principle we know that two of the sets, say g1 and g2,
in G must result in the same sketch value, making them
indistinguishable. The Hamming distance between these two
sets is at least n/8 + n/8 = n/4. As a result, since the
sketch cannot distinguish between the cases when the original
codeword and the transmitted codeword correspond to g1 and
g1, versus when they correspond to g1 and g2, respectively,
one of these two cases must have an error of at least n/8.

B. Why Approximation is Needed

Theorem 2: Any error-estimating scheme that computes the
exact number of bits in an n-bit packet that change during
transmission with probability at least 3/4 must use Ω(n)
overhead bits.

Proof: For this result, we use the communication
complexity of the Set Disjointness problem. It is known
that for two parties to compute whether their subsets of
{1, 2, 3, . . . , n} have any elements in common requires Ω(n)
communication, even when randomization (with 1/4 failure
probability) is allowed [7].

Assume for a contradiction that there is a randomized
sketch using less than Ω(n) bits that can be used to compute
the Hamming distance between the original and transmitted
codewords exactly. We use this to create the following protocol
for Set Disjointness. Alice uses the sketch to summarize the
characteristic vector of her set and sends the sketch (less
than Ω(n) bits) and the number of elements in her set (log n
bits), call it na, to Bob. Bob can now use this information
to compute the Hamming distance (call it h), the number of
elements in his set (call it nb), and then compute the size of
the intersection of his and Alice’s set as (na+nb−h)/2. This
is a one-round randomized protocol to compute the size of
the intersection of Alice and Bob’s sets, and hence must use

Ω(n) communication, contradicting our assumption about the
size of the sketch.

C. Randomized Approximation

We now use a lower bound in [8] to show that the asymp-
totic complexity of the tug-of-war sketch and the original EEC
scheme are optimal in terms of their dependence on n and ε,
the relative error bound. The lower bound result we use is as
follows:

Theorem 3 ([8], [12]): The randomized one-round two-
party communication complexity of approximating the Ham-
ming distance of the n-bit vectors of two parties up to a relative
error of ε with constant probability is at least Ω(log (n)/ε2).

The reduction is the same as the last, and a lower bound of
Ω(log (n)/ε2) on the sketch size follows.

IV. TUG-OF-WAR SKETCH
FOR ERROR ESTIMATING CODING

A. The sketch

In this section, we briefly describe and analyze the plain
vanilla tug-of-war sketch [1] in the context of error estimating
coding, under the assumption that the sketch per se is not
subject to bit errors during transmission. The tug-of-war sketch
of a bit array (packet) b is comprised of a constant number c of
counters (c is determined by the desired error guarantees) that
are maintained using the same update algorithm (with possibly
different update values) and is sent to the receiver alongside
with b. After the execution of these update algorithms, each
counter contains the inner product of the bit array2 −→b with a
pre-defined pseudorandom vector −→s ∈ {+1,−1}n. Note the
actual update algorithm is not shown here because it is not
relevant to our context; Only its “net effect” after execution
is.

As shown in the following algorithm, upon the receipt of
the transmitted bit array

−→
b′ and the sketch (assumed to have

no bit error during transmission), the receiver computes the
c inner products using the received packet (possibly with bit
errors)

−→
b′ , takes the difference between them and the counters

in the sketch sent along the packet, and squares the result.
Each of these results is now an unbiased estimate (proved
in [1]) of the Hamming distance between the original and the
transmitted packets, and can be averaged to give an accurate
estimate of the Hamming distance3, d. The details are given
in Algorithm 1.

B. Analysis

We now show that this estimator (the average of component
random variables X1, X2, . . . , Xc) has low variance. To

2Here
−→
b is the vector representation of the packet b, where ‘0’s have been

converted to ‘-1’s as discussed earlier.
3Note that this is a simplified form of the tug-of-war sketch proposed in [1].

The original version reduced the dependence on δ to log (1/δ) by computing
the average of O(1

ε2
) estimators and then finding the median of O(log (1/δ))

such groups, at the cost of a larger constant multiplicative factor. For simplicity
of the analysis in the following section, we omit this asymptotic improvement
here.

Algorithm 1 The tug-of-war sketch for EEC.

SKETCH–CREATION(~b)
Input ~b: original data bits vector.
Output z: the sketch encoding ~b.
pre-compute random vectors ~sj,1≤j≤c : [n]→ {−1, 1}
for j = 1 to c do
zj := (~b · ~sj)/2

return z = 〈z1, . . . , zc〉

DISTANCE–ESTIMATION(~b′, z)
Input ~b′: received data bits vector, z: received sketch.
Output p̂: the estimated error rate.
pre-compute random vectors ~sj,1≤j≤c : [n]→ {−1, 1}
for j = 1 to c do
Xj := (zj − ~b′ · ~sj/2)2

return p̂= 1
naverage(X1, . . . , Xc)

compute the variance of each component Xj , we first compute

E[X2
j] = E

(
∑
bi 6=b′i

bisj [i])
4

= E

∑
bi 6=b′i

(bisj [i])
4

+E

6
∑

bi 6=b′i∧bk 6=b′k∧i 6=k

(bisj [i])
2(bksj [k])2

= d+ 6d(d− 1)/2

= 3d2 − 2d, (1)

Substituting this into the expression for the variance of Xj ,
we obtain

Var[Xj] = E[X2
j]− (E[Xj])

2

= 3d2 − 2d− d2

≤ 2d2.

Although the variance of a single component Xj may
look large (giving a standard deviation larger than d itself),
averaging c of them reduces it by a factor of c. Using
Chebyschev’s inequality then allows us to bound the failure
probability arbitrarily small as well (depending solely on how
large we allow c to get). More concretely, if we pick c = 2

ε2δ ,
then by Chebyschev’s inequality we get that the estimate d̂
from the above algorithm has the guarantee

Pr[|d̂− d| ≥ εd] ≤ Var[d̂]

ε2d2
≤ 2d2

cε2d2
= δ.

Correspondingly, the relative error of the final estimate of
p̂ = 1

n d̂ would also satisfy the ε− δ bound:

Pr[|p̂− p| ≥ εp] = Pr[|d̂− d| ≥ εd] ≤ δ.

The total overhead of this scheme is that of sending c = 2
ε2δ

(a constant, independent of n) counters, each of which contains

a number in the range [−n, n]. Hence, the asymptotic cost is
O(log n) bits.

C. Cost and Overhead for EEC applications

In this section, we perform a rough estimate of the total
size of the sketch if the plain vanilla tug-of-war sketch is used
directly for EEC applications. This is needed for us to compare
it with our enhanced sketch, to be described in the next section.
To allow for a fair comparison, here we no longer assume the
sketch is immune from bit errors during transmissions. The
total size of the sketch is determined by three factors: the
number of counters c, the size of each counter (denoted as
k), and the number of extra bits needed to protect the sketch.
Since our enhanced sketch uses the same number of counters,
we only need to discuss the second and third factors here for
comparison purposes.

To estimate the size of each counter, let us assume that the
(maximum) length of the packet is 1500 bytes = 1.2×104 bits.
In the worst case log2(n) = log2(12000) ≈ 14 is needed per
counter, since max(~b · ~s/2) = n/2 and min(~b · ~s/2) = −n/2.
However, the value of each counter in the sketch, which is
a random variable, has its probability densities concentrated
around its mean 0, since ~b · ~s is the sum of n i.i.d. Bernoulli
random variables bisi, each of which takes value +1 or −1
with equal probability 0.5. We calculate the tail probability of
the resulting Binomial distribution and find Pr(|Z| > 255) ≈
3 × 10−6. Therefore, if we truncate each counter to 9 bits
(including one sign bit, since z could be positive or negative)
from 14, we risk overflowing it with probability 3× 10−6.

A lower bound of the number of additional bits needed
to protect the sketch can be estimated using information
theory as follows. Suppose the bit errors are symmetric (equal
probability in flipping 1 to 0 and the other way around)
and random, the amount of information brought by each bit
received is:

I(p) = 1 + p lg p+ (1− p) lg(1− p).

Therefore, the final size of the sketch, including all the
protection bits, needs to be at least I(p)−1 times larger than
the original sketch. For example, when the error rate is 0.15,
the blowup factor I(0.15)−1 is equal to 2.56.

V. ENHANCED TUG-OF-WAR SKETCH:
SCHEME AND ANALYSIS

As mentioned before, we enhance the vanilla tug-of-war
sketch in the following three ways to achieve better space-
accuracy tradeoffs and to be able to handle bit errors that may
occur to the sketch. As shown in Algorithm 2, our enhanced
sketch contains a number of important improvements.

First, in some BER estimation scenarios, we need only
know whether the BER falls into a certain interval like
[2−i, 2−i+1], as suggested in [2], rather than the exact BER
value. In some others, only a rough BER estimation is called
for. The vanilla tug-of-war sketch can be an overkill for
both types of scenarios at the cost of an unnecessarily large
sketch size. Adding to the problem is the fact that a larger

Fig. 1. Overview of Enhanced Tug-of-war Sketch (Algorithm 2)

sketch is more susceptible to bit errors during transmission
and requires stronger protections which we can ill afford. Our
solution is to combine sampling with sketching, in which we
randomly sample l bits of the packet and sketch only these l
bits according to Algorithm 2. A smaller l value leads to a
smaller counter size and hence a smaller sketch size, at the
cost of lower BER estimation accuracy due to higher sampling
error. By adjusting this parameter l, we can minimize the
sketch size needed to achieve a desired level of accuracy.
The analysis needed for tuning this parameter for best size-
accuracy tradeoffs is presented later in Sec. V-A.

Second, as we mentioned before, since the counter value (a
random variable) stays close to its mean 0 with high probabil-
ity, we may use fewer (say k) bits to store it without causing
an “overflow” most of time. We refer to this enhancement as
“statistical truncation”, or truncation in short, for the lack of a
better word. Even when an overflow (at either the sender or the
receiver side) does happen (albeit with a small probability), its
impact on estimation is small because with high probability
truncation happens at both sides, in which case their difference
remain the same as when there are no truncations. The impact
of statistical truncation on the estimation accuracy will be
analyzed in Sec. V-B.

Finally, as previously mentioned, the sketch is not immune
to bit errors during transmission and requires some protection.
In our scheme, each counter (5 bits long) will be protected by
a parity bit (an overhead ratio of 20%). Any counter that fails
the parity check will be considered corrupted and will not be
included in the estimation. The rationale for this choice will
be explained in Sec. V-C.

The parameters of the enhanced tug-of-war sketch in the
following analyses are as follows. We let c be the total number
of counters, l the number of bit positions sampled, k the
length of each counter, and r the length of the parity bits
of each counter. For convenience, we denote the sketch by
Sketch(c, l, k, r). The total transmission cost is c(k + r).

A. Analysis of the effect of sampling

Here we provide a simple analysis of the “sampled tug-of-
war sketch” and show the benefits of sampling. In this analysis,

Algorithm 2 Enhanced tug-of-war sketch with parameters
(c, l, k, r).

SKETCH–CREATION(~b)
Input ~b: original data bits vector.
Output z: the sketch of ~b.
pre-compute l-bit-long vectors ~sj,1≤j≤c : [l]→ {−1, 1}
for j = 1 to c do
l-bits-long vector ~bj : sampled with replacement from ~b

Random projection: z̃j := (~bj · ~sj)/2
k-bits-long truncated projection: zj := trunck(z̃j)
r-bits-long parities qj := parityr(zj)

return c(k+r)-bits long sketch z = 〈z1, . . . , zc〉〈q1, . . . , qc〉

DISTANCE–ESTIMATION(~b′, ž)
Input ~b′: received data bits vector, ž′: received sketch.
Output p̂: estimate of the error rate p.
pre-compute l-bit-long vectors ~sj,1≤j≤c : [l]→ {−1, 1}
for j = 1 to c do
l-bits-long vector ~b′j : sampled with replacement from ~b′

(with the same hash seed pre-configured.)
Random projection: z̃j ′ := (~b′j · ~sj)/2
Estimation Yj := trunck(z̃j

′ − žj) ,Xj = Y 2
j

Check parities Vj := 1{qj=parityr(trunck(z̃j ′)}

return p̂ =
∑c

j=1 VjXj

l
∑c

j=1 Vj
as the estimation of error rate p.

we assume that no truncation is used and that no bit error
happens during the transmission of the sketch. The value of a
full (un-truncated) counter (a random variable) is denoted as
z̃. Note that we use X̃j := 1

l (z̃j − zj)
2 to estimate the error

rate p = d/n.
Note that the Hamming distance between the two sampled

segments, denoted by D, is no longer a constant. From Sec-
tion IV, we have E[X2

j |Dj] = Dj and Var[X2
j |Dj] = 3D2

j −
2Dj . Since the l bits are sampled with replacement, D follows
a binomial distribution, E[D] = lp and Var[D] = lp(1 − p),
where p is the error rate.

The new estimator of p̂ = 1
l X̃j is still unbiased:

E[p̂] =
1

l
E[X̃j] =

1

l
E[E[X̃j |D]] =

1

l
E[H] = p.

As for variance, we have

Var[p̂] =
1

l2
Var[X̃j]

=
1

l2
(Var[E[X̃j |D]] + E[Var[X̃j |D]])

=
1

l2
(Var[D] + E[2D2 − 2D])

=
1

l2
(lp(1− p) + 2lp(1− p) + 2l2p2 − 2lp)

= p2(2 +
1

pl
− 3

l
) < p2(2 +

1

pl
). (2)

Compared with (1), the relative variance of the sampled
tug-of-war sketch is bounded by 2 plus an additional term 1

pl .

10
−3

10
−2

10
−1

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Error Rate

re
la

tiv
e

S
ta

nd
ar

d
D

ev
ia

tio
n

Original ToW Sketch, c=16

Sampled ToW Sketch with l=512,c=16

Sampled ToW Sketch with l=1024,c=16

Fig. 2. Comparison of the variance of the sampled tug-of-war sketches and
the original one, with c = 16.

This means only when p is Ω(1
l) will the estimator achieve

good performance. We can clearly observe this difference in
Fig. 2. The sampled sketch with l = 512 performs very close
to the original tug-of-war sketch when p > 10−2, and much
worse when p < 10−3. From a practical perspective, this is
exactly what we have intended. In typical application scenarios
exemplified by [2], very accurate estimation (constant relative
error) for very small bit error rates is not needed. In other
words, the sampled tug-of-war sketch enables users to make
the best use of bits for the applications we are interested in.

As discussed in Sec. III, the communication complexity
bound for measuring the Hamming distance is Ω(log n). Both
the original tug-of-war sketch and the EEC sketch match this
bound. The sampled tug-of-war sketch uses only O(log l)
bits, where l is a constant parameter that can be much less
than n. This does not contradict our lower bound, however,
since it does not deliver the target estimation accuracy ((ε, δ)-
approximation) for inputs with certain BER parameter settings.

B. Analysis of truncation and sampling together

In this section, we analyze the impact of truncation on
the overall estimation accuracy. The operation of truncating
a counter value to a k-bit number (including one bit needed
to represent the sign) can be formalized as follows:

z = trunck(z̃) ≡ z̃(mod 2k), z ∈ [−2k−1, 2k − 1]. (3)

As shown in Algorithm 2 and Figure 1, we defined Z̃j
′

=
~b′j ·~sj and Yj = trunck(Z̃j

′−Zj). We can find the following
relationship between Yj and the original (un-truncated) sketch
values Z̃j and Z̃j

′
as follows:

Yj = trunck(Z̃j
′ − Zj) , Y ∈ [−2k−1, 2k − 1]

≡ Z̃j
′ − Zj (mod 2k)

≡ Z̃j
′ − Z̃j (mod 2k), due to (3)

≡ trunck(Z̃j
′ − Z̃j) (mod 2k) (4)

In the following, we derive the distribution, expectation
and variance of each estimator p̂j = 1

lXj = 1
l Y

2
j =

1
l trunck(Z̃j

′ − Z̃j)2.

Note Yi, i = 1, 2, ..., c, are i.i.d. discrete random vari-
ables. Let Y be an arbitrary Yi. In the following we
will derive the probability mass function (PMF) of Y so
that we can analyze the impact of truncation on our es-
timation accuracy. Define K as 2k−1. Since Y takes val-
ues on exactly 2k integer values {−K,−K + 1, ...,K −
1}, its PMF can be determined by a 2k-dimensional vec-
tor ~γ(p, l) ≡ 〈γ−K(p, l), γ−K+1(p, l), ..., γK(p, l)〉 where
γi(p, l) ≡ Pr(Y = i|p, l), i ∈ [−K,−K + 1, ...,K − 1].
Note that each scalar γi is a function of the error rate p and
the number of bits sampled l. We show that ~γ(p, l) can be
computed from the following recurrence relation. We omit its
proof in the interest of space.

Lemma 4:

~γ(p, l)1×2k = ~γ(p, l − 1)1×2kM(p)2k×2k , (5)

where

M(p) =

1-p p/2 · · · 0 · · · p/2
p/2 1-p p/2 · · · 0 · · ·

p/2 1-p p/2 · · · 0 · · ·
· · · · · ·

· · · 0 · · · p/2 1-p p/2
p/2 · · · 0 · · · p/2 1-p

2k×2k

To allow for efficient matrix computations, M(p) can be
diagonalized as follows.

M(p) =
1

2k
Ω′Diag(d0, d1, . . . , d2K)Ω,

where Ω = {ωik}, ωik = exp (2πikj
K), j is the imaginary unit,

and di = 1− 2 sin2 (iπ/2k)p.
Considering that ~γ(p, 0) = [0, · · · , 0, 1, 0, · · ·]1×2k , where

1 appears at the (2k−1 + 1)th position, we have

~γ(p, l) = [0, · · · , 1, 0, · · ·]M(p)l

=
1

2k
[0, · · · , 1, 0, · · ·]Ω′Diag(dl0, d

l
1, . . . , d

l
K)Ω

=
1

2k
[dl0,−dl1, . . . , dl2k−2,−d

l
2k−1]Ω. (6)

Finally, we can calculate the expectation and the variance
of Y 2 from ~γ(p, l) as follows:

E[Y 2] = ~γ(p, l)β2 (7)
Var[Y 2] = ~γ(p, l)β4 − (~γ(p, l)β2)2, (8)

where βi = [(−K)i, (−K + 1)i, ..., (K − 1)i].
After summing up all c counters in the sketch, we finally

arrive at the Mean Squared Error of the estimator,

l2MSE[p̂] = E[(
1

c

∑
Y 2
i − pl)2]

=
1

c
Var[Y 2] + (E[Y 2]− pl)2. (9)

Since 1
l Ỹj

2
is unbiased and |trunck(x)| ≤ |x|, 1

l Yj
2

will be (slightly) negatively biased. Note the aforementioned
Chebyshev’s inequality still holds for the mean squared error,
while it does not for the variance when the estimator is biased.

10
−3

10
−2

10
−1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Error Rate

re
la

tiv
e

ro
ot

ed
 M

S
E

0.15

0.15

rRMSE when k=4 l=512

rRMSE when k=4 l=1024

rRMSE when k=5 l=512

rRMSE when k=5 l=1024

rRMSE when k=6 l=512

rRMSE when k=6 l=1024

l=1024

k=6

k=5

k=4

l=512

Fig. 3. The relative Rooted Mean Squared Error of the enhanced tug-of-war
sketch (fully protected) with different sampling and truncation parameters,
when c = 16, l = {512, 1024}, k = {4, 5, 6}.

Because of the bias, the aforementioned (ε, δ)-approximation
guarantee no longer holds for the truncated version of the tug-
of-war sketch.

In Fig. 3, we plot the relative Rooted Mean Squared Error
parameterized by several combinations of k and l. It shows
that the sampling parameter l shifts the left wing of the relative
error curve, while the truncation parameter k shifts the right
wing.

C. Impact of bit errors on counters and protection

In this section, we discuss the types of error detection mech-
anisms that are appropriate for protecting our enhanced sketch
and derive the formula for analyzing their error probabilities.
An error detection code can be defined by its generating

matrix. For example matrix
[

1 1 1 1 1
0 0 1 1 1

]
means

there are two parity bits per counter. The first parity bit is
XOR of all five bits and the second is the XOR of the
three most significant bits. A counter is considered corrupted
during transmission if it fails at least one of the parity checks.
A corrupted counter thus detected will not be used in the
BER estimation. However, all corrupted counters may not be
detected. The following analysis will derive the distribution,
expectation and variance of the sketch differences Y , denoted
by γq(p), when the effects of both types of corruptions
(detected and undetected) are factored. Based on this analysis,
our scheme chooses to have one parity bit per counter, which
is the XOR of all 5 bits in the counter (corresponding to the
first row of the above matrix).

We first model the distributions of the errors that survive
the parity checking (undetectable errors). The impact of those
errors on the estimates Yi can be calculated as follows:

γq(p) ≈ γ(p)Q(p),

where Q(p) is determined by the design of the parity bit(s).
We can then replace the γq in (7-9) with γq(p) to derive the
expectation, variance and MSE of the final estimate Y 2

i .

10
−3

10
−2

10
−1

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Error Rate

R
el

 M
S

E

0.15

k=5 Chk=[11111]

k=5 Chk=[00111]

k=5 Chk=[00011]

k=5 Chk=[00111;11111]

k=5 fully protected

k=6 Chk=[000111]

k=6 Chk=[000011;000111]

k=6 fully protected

Fig. 4. Comparisons of different constructions of parity-checking bits. When
k = 5, we use sampling length l = 512; when k = 6, we use l = 1024

The next step is to take into consideration the impact of
detectable errors. Such errors will not affect the bias of the
final p̂, but will increase its MSE because fewer counters are
included in the average. The MSE of p̂ when considering such
errors is as follows:

l2MSE[p̂] =

c∑
k=1

1

k

(
c

k

)
θk(1− θ)c−kVar[Y 2]

+ (E[Y 2]− pl)2, (10)

where θ is the probability with which each counter survives
the parity checking. As discussed earlier, θ is a function of p
and the generating matrix. The error distribution of the final
estimator is also numerically computable, but we omit the
details here in the interest of space.

We compare different constructions of generating matrices
in Fig. 4 and the results can be summarized as follows. First,
it is not necessary to parity-check all sketch bits. However,
if too few sketch bits are parity-checked, the accuracies in
estimating low BER can be impaired. This phenomena can be
observed by comparing the first three curves in the legend.
Second, two parity bits per counter instead of one does not
considerably improve the accuracy of the final estimation. For
this reason, we choose to have one parity bit per counter in
our scheme.

VI. EVALUATION

In this section, we evaluate the performance of our sketch
experimentally and compare it with the original EEC scheme.
For the EEC scheme, we use the parameters recommended
in [2] for Wifi applications, i.e., with 9 levels and each level
comprised of 32 bits. In total the EEC scheme costs 288 bits
per packet and is targeted for estimating error rates in the
[10−3, 0.15] region. The authors of [2] have proposed three
different estimators for their scheme. A naive estimator for p̂
(BER) is qi/2i (defined in their paper); Two more sophisticated

and accurate estimators are the roots of φ(2i, p) = qi and
φ(2i, p) = qi/2+qi−1(1−qi−1) respectively. We find that the
latter two estimators both have better estimation accuracies
than the naive one, and neither of them dominates the other.
For convenience, we use p̂1 and p̂2 to denote the latter
estimators, respectively.

Next, we discuss the parametrization of our sketch. As
analyzed in Section V, the sampling parameter l and truncation
parameter k can be tuned for different target error rate regions.
Since we will show (in Figure 5) that the experimental results
are nearly identical to the analytical results, we present only
the analytical results with the optimal parameter settings: c=16
or 48, l=768, k=5, and one parity checking bit per counter
generated by the matrix [0 0 1 1 1]. The sketch
with 16 counters consumes only 96 bits per sketch, 33.3%
of that consumed by the original EEC scheme; The sketch
with 48 counters consumes 288 bits, the same as the original
EEC scheme.

As for the performance metric used for comparisons, the
relative deviation from the truth value (rRMSE= 1

p

√
MSE[p̂])

is an important indicator of the performance, but is not
enough to represent all its characteristics. To complement that,
we present also the percentage of trials with relative errors
larger than 25%, 50% and 75% respectively. In addition, we
directly compare the tail distribution of estimates on some
representative BER values, such as 0.005 and 0.05.

The experimental results are shown in Figure 5. Each curve
is generated from the results obtained from 8000 experiments.
We can make two observations from these results. First, we
observe that all experimental results are nearly identical to the
analytical results. Second, we observe that the performance
(i.e., estimation accuracy) of the enhanced tug-of-war sketch
of size 96 bits is close to or even better than the original
EEC scheme of size 288 bits in the target error rate region,
while the enhanced tug-of-war sketch of size 288 bits performs
way better than the original EEC scheme. To summarize, our
scheme achieves similar BER estimation accuracies with a
sketch size that is only 1/3 of that used by the original EEC
scheme.

The computational overhead of our scheme is also very
low. The enhanced scheme requires a combination of inner
products as well as modulo and other arithmetical operations,
all of which have cost O(n). In practice, the inner product is
equivalent to the bit counting operation. All of these operation
took very little time in our experiments and therefore we do
not present any computation time measurements here.

VII. RELATED WORK

The study of error estimating codes was pioneered by
Chen et al. in [2]. Although there has been much study of
error correcting codes (e.g., LDPC [10]), this was the first
paper to formalize the problem of estimating the bit error
rate during transmission. Besides an extensive study of the
many applications of EEC, ranging from the setting of wi-fi
rates to routing, their paper gives the first (ε, δ)-approximation

algorithm for the problem. We briefly describe the algorithm
here for comparison purposes

The seminal paper of Chen et al. [2] proposed an error
estimating code scheme that was able to estimate the BER to
within small relative error with high probability. The key idea
of the scheme proposed in [2] is to send several levels (groups)
of additional parity bits with the data together and use those
bits to infer the BER in the data. A code bit at different levels
i = 1, 2, ... is the parity of different number (li, i = 1, 2, ...)
of sampled data bits. Hence the scheme can maintain a good
“estimation resolution” on a wide range of different BERs.
They showed that that their scheme with 9 levels and less
than 300 additional bits in total per packet would be able
to well differentiate BER rate in range [10−3, 0.15], and it
would work well in real-world wireless experiments and is
a great enhancement. They also show that they provide a
(ε, δ) bound analysis of the proposed scheme, i.e. they could
guarantee at most ε relative error that failed with probability
less than δ, where ε and δ are arbitrarily tunable parameters
that determine the overhead cost of their algorithm. In total
they need about O(log (n)) overhead for an n bit packet to
achieve error estimating rates within the threshold desired by
target applications.

One of the major technical contribution that we make in
this paper is to adapt sketching algorithms from the field of
data streaming to this problem. Data streaming is a well-
studied area with a rich literature [11]. In the data streaming
model, the input is provided as a long stream of updates
in which only a single pass is allowed over the stream and
the memory and time of the algorithm is heavily constrained
(in particular much smaller than the size of the input). The
connection to this problem is that there are many streaming
algorithms that can be used to compute the difference (or
distance) between two streams, and the summaries of these
algorithms (called sketches) are what we can use as overhead
bits for this problem. We tried several different sketching
algorithms, including the count-min sketch [3], the Flajolet-
Martin (FM) sketch [5], the stable distribution sketch [6],
before settling on our variation on the tug-of-war sketch [1].
The tug-of-war sketch was originally suggested by Alon et
al. [1] for estimating the second frequency moment of a data
stream. The governing characteristic of this sketch, that we
make use of in this paper, is that it is a random projection of the
input, thereby allowing for deletions from the received packet.
This sketch was modified for measuring the L1 distance of
streams by Feigenbaum et al. [4].

Finally, our lower bounds make direct use of known re-
sults for the communication complexity [9] of the Ham-
ming distance problem. Our main lower bound, showing that
Ω(log (n)/ε2) overhead is necessary is a consequence of the
communication complexity result from [8].

VIII. CONCLUSIONS

In this paper we cast the recently proposed BER estimation
problem as a two-party computation problem. From a theoret-
ical standpoint, we proved that even when approximation and

10
−3

10
−2

10
−1

0.2

0.4

0.6

0.8

Error Rate (a)

re
la

tiv
e

R
oo

te
d

M
S

E

relative Rooted Mean Squared Error (rRMSE)

0.15

10
−3

10
−2

10
−1

0

0.1

0.2

0.3

Error Rate (d)

R
at

io
 o

f L
ar

ge
 E

rr
or

s

Ratio of Relative Error>75%

0.15

0 1 2 3 4 5

x 10
−3

0

0.05

0.1

0.15

Estimated Error Rate (g)C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

(c
df

)

the truth p is 0.005

10
−3

10
−2

10
−1

0.2

0.4

0.6

0.8

Error Rate (b)

R
at

io
 o

f L
ar

ge
 E

rr
or

s

Ratio of Relative Error>25%

0.15

0 0.01 0.02 0.03 0.04 0.05
0

0.05

0.1

0.15

Estimated Error Rate (e)C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

(c
df

)

the truth p is 0.05

0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0.85

0.9

0.95

1

Estimated Error Rate (h)C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

(c
df

)

the truth p is 0.005

10
−3

10
−2

10
−1

0

0.1

0.2

0.3

0.4

0.5

Error Rate (c)

R
at

io
 o

f L
ar

ge
 E

rr
or

s

Ratio of Relative Error>50%

0.15

0.06 0.07 0.08 0.09 0.1 0.11 0.12
0.85

0.9

0.95

1

Estimated Error Rate (f)C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

(c
df

)

the truth p is 0.05

Original EEC p̂1

Original EEC p̂2

Enhanced T-O-W, c=16

Enhanced T-O-W, c=48

Analytical result,c=16

Fig. 5. Comparisons among the original EEC scheme and the enhanced tug-of-war sketches, measured by of relative rooted MSE, tail distributions, and
ratio of large errors.

randomization are allowed the cost of this problem is Ω(log n),
where n is the length of data transmitted, which explains why
both the EEC scheme and the tug-of-war sketch both need this
much overhead. From a practical standpoint we presented an
enhanced tug-of-war sketch with significant additional innova-
tions for better fitting BER estimation applications. We found
that our enhanced sketch uses only around 30% percent of
the overhead bits used by EEC scheme to deliver comparable
performance, and can deliver much better performance when
the overhead is the same. The performance of the proposed
sketch is fully analyzable and easily tunable. The efficacy of
our sketch is demonstrated experimentally.

Acknowledgement: The work of Hua and Xu is supported
in part by the US National Science Foundation through grants
CNS 0905169 and CNS 0910592.

REFERENCES

[1] N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy. Tracking join and
self-join sizes in limited storage. J. Comput. Syst. Sci., 64(3):719–747,
2002.

[2] B. Chen, Z. Zhou, Y. Zhao, and H. Yu. Efficient error estimating coding:
feasibility and applications. In SIGCOMM, pages 3–14, 2010.

[3] G. Cormode and S. Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. J. Algorithms, 55(1):58–75,
2005.

[4] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. An
approximate l1-difference algorithm for massive data streams. SIAM
J. Comput., 32(1):131–151, 2002.

[5] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data
base applications. J. Comput. Syst. Sci., 31(2):182–209, 1985.

[6] P. Indyk. Stable distributions, pseudorandom generators, embeddings,
and data stream computation. J. ACM, 53(3):307–323, 2006.

[7] B. Kalyanasundaram and G. Schnitger. The probabilistic communication
complexity of set intersection. SIAM J. Discrete Math., 5(4):545–557,
1992.

[8] D. M. Kane, J. Nelson, and D. P. Woodruff. On the exact space
complexity of sketching and streaming small norms. In SODA, pages
1161–1178, 2010.

[9] E. Kushilevitz and N. Nisan. Communication complexity. Cambridge
University Press, 1997.

[10] S. Lin and D. J. C. Jr. Error control coding - fundamentals and ap-
plications. Prentice Hall computer applications in electrical engineering
series. Prentice Hall, 1983.

[11] S. Muthukrishnan. Data streams: Algorithms and applications. Founda-
tions and Trends in Theoretical Computer Science, 1(2), 2005.

[12] D. P. Woodruff. personal communication, 2011.

