
1
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Abstract—Distributed resource allocation and sharing can
often be formulated as a utility maximization problem, with
the objective being the sum of user utilities minus a coupled
cost. A traditional distributed solution to such problems, called
“consistency pricing”, decouples the objective function via dual
decomposition, which is then iteratively solved by the subgradient
method. However, such gradient-based approaches may require
many iterations of message passing to converge, which may not be
sufficient in large-scale real-time applications. In this paper, we
propose a new fixed-point-like distributed solution to resource
sharing problems with coupled objective functions. While pre-
serving the simple pricing interpretation, our approach speeds up
convergence by exploiting the structural difference between user
utilities and the coupled cost function. We theoretically analyze
the asynchronous algorithm convergence conditions based on
contraction mapping. Through a detailed case study of cloud
bandwidth reservation based on real-world workload traces, we
demonstrate the benefits of the proposed algorithm over state-
of-the-art distributed optimization techniques including gradient
descent, dual decomposition and ADMM. In addition, we also
extend the proposed algorithm to approach a more general class
of consensus optimization problems with not only a coupled
objective function, but also a certain class of coupled constraints.

Index Terms—Network utility maximization, coupled objective,
resource allocation, distributed algorithm, decomposition, pric-
ing, network control, sharing, consensus optimization, fixed-point
iteration, asynchronous convergence.

I. INTRODUCTION

Traditional network utility maximization (NUM) problems,
including TCP congestion control models [1], [2] and wireless
cross-layer designs [3], [4], generally aim to maximize uncou-
pled utilities [4], [5] in an additive form of

∑
i Ui(xi), where

each utility function Ui depends only on its local decision
variable xi. Under this assumption, distributed solutions can
be derived, using standard primal or dual decomposition to
decouple resource sharing constraints [4], [5]. For example,
dual decomposition [5] can be used to decouple an additive re-
source constraint in the form of

∑
i hi(xi) ≤ C, such that each

entity solves a local subproblem to maximize Ui(xi)−λhi(xi),
where λ is a dual variable (or price) that is associated with the
resource constraint and is to be updated in a master problem
iteratively.

However, many modern distributed resource allocation
problems with sharing or competition need be modelled as
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utility maximization problems with a coupled objective func-
tion [4], [5], where the utility Ui of each entity may depend not
only on its local variable xi but also on the variables of other
entities. In many applications, it is even more suitable to model
sharing or competition with a coupled objective function rather
than with hard additive resource constraints.

For example, in a multiparty conference operated by Skype,
a cluster of centralized servers is used to relay video traffic
among end users [6]. If we increase the video rate of each
user, its content will be streamed to other users at a higher
throughput, whereas in the meantime all users may suffer from
a higher latency due to increased processing and queueing
delays at the servers due to more traffic. Note that in this case,
there is generally no hard constraint on the sum of user sending
rates, since Skype video bit rates mostly range from 5 kbps
up to only 1200 kbps [6] and the server bandwidth is over-
provisioned. As another example, Linux containerization [7] is
an emerging way of sharing parts of a single operating system
among multiple isolated applications, as opposed to VM-based
virtualization which supports multiple apps with their own
OS on top of a single hypervisor. Google is launching on
average about 3, 300 containers per second running discrete
small jobs of their massive distributed applications in short
order [8]. On a cluster of interconnected physical servers,
there is a tradeoff between running as many containerized
jobs as possible on each server to increase its utility and
the job service delay caused by interference between jobs.
Although one can specify on which core each container runs
as well as its share of CPU time, memory and block I/O
access, performance interference still exists due to resources
shared on-chip, including inter-server connection networks,
cache space, and memory bandwidth [9]. When interference
is severe, all containerized jobs will suffer from longer delays
and such delays are intercorrelated. A further example is
wireless power control and DSL spectrum management of
copper wires in a cable binder [5], where a user’s utility is
not only determined by its own transmit power but also by
the signal-to-interference ratios that depend on the transmit
powers of other users.

Nonetheless, in the NUM and pricing literature, few dis-
tributed solutions have been developed for utility maximization
problems where competition is modeled through a coupled
objective function. The only existing approach is the so-
called “consistency pricing” [10], which seeks decomposition
from the dual problem by introducing auxiliary variables and
then solves the dual problem with the subgradient method.
However, similar to gradient descent, the subgradient method
usually requires to update variables for a large number of iter-
ations before convergence. Given message-passing delays be-
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tween entities in practical large-scale systems, more iterations
will slow down the entire optimization process. On the other
hand, although faster centralized algorithms such as interior-
point methods or Newton methods need fewer iterations to
converge, they use more than first-order information and are
thus harder to be decomposed and executed in a distributed
manner.

In this paper, we propose a new distributed solution to
resource sharing problems with coupling in the objective
function. Our goal is to achieve convergence in only a few
number of iterations to reduce the impact of iterative message
passing delays and scale up to large systems. We begin
with studying the classical sharing problem [11], that is to
maximize

∑n
i=1 Ui(xi) − C(x1, . . . , xn), i.e., the sum of

utilities, each depending on a local variable xi, minus a cost
that is coupled among all variables x1, . . . , xn. Our algorithm
proceeds in the following iterative steps. First, given all the
local decision variables xi (e.g., resource requests) from users,
the resource provider sets a price pi = ∂C(x1, . . . , xn)/∂xi
for each user i under all current resource requests. Then, each
user updates its resource request xi under the new price pi
by maximizing its own benefit Ui(xi)− pixi and submits the
updated xi to the resource provider which in turn updates
the prices. The above process is repeated until the algorithm
converges. This conceptually simple method could be viewed
as a fixed-point iteration in search for a resource allocation
vector (x∗1, . . . , x

∗
n) such that U ′i(xi) = ∂C(x1, . . . , xn)/∂xi

at (x∗1, . . . , x
∗
n) for all i, i.e., to equalize the marginal cost and

marginal utility for every user.
The new approach differs from consistency pricing in sev-

eral aspects. First, consistency pricing updates the price vector
p = (p1, . . . , pn) based not only on the xi that maximizes
each user’s benefit, but also on another resource allocation
vector y = (y1, . . . , yn) that maximizes the “provider benefit”
pT y − C(y) [5], [10]. It is this subtle difference that enables
the proposed algorithm to converge faster under certain condi-
tions. In fact, our algorithm exploits the structural differences
between each Ui and C in terms of second-order properties
to achieve a “spiral” convergence effect instead of moving in
the direction of gradient descent. Second, while in consistency
pricing, we need to carefully choose the stepsize, our algorithm
only has an inertia parameter between 0 and 1 to weigh
between the old price from the last iteration and the new
price. This inertia parameter is easier to set and achieves
robustness. Third, our algorithm is a contraction mapping
under certain conditions and thus achieves convergence even if
local algorithms and pricing are carried out asynchronously for
each entity. While enjoying the advantages mentioned above,
the new approach is also a simple pricing-based solution, since
the message passing only involves first-order information. In
contrast, other distributed algorithms including Alternating Di-
rection Method of Multipliers (ADMM) [12] rely on second-
order terms that cannot be explained via pricing and thus have
to make further assumptions on the cooperativeness of each
selfish entity as well as its computational capacity.

Our technical contributions in this paper are manifold. First,
we provide theoretical asynchronous convergence conditions
of the proposed approach based on contraction mapping,

and explain why the contraction conditions can be satisfied
for many utility and cost functions in practical applications.
Second, we extend the proposed method to solve a more
general form of distributed optimization problems, referred
to as consensus optimization [12], with additive coupled
objective functions

∑
i Fi(x1, . . . , xn) as well as a certain

class of coupled constraints. Third, through a case study of
cloud bandwidth reservation based on real-world bandwidth
demand traces, we evaluate the benefits of the new approach
as compared to consistency pricing as well as ADMM and
gradient descent directly applied to the primal problem (the
latter two can not be interpreted as pricing and have to assume
cooperativeness of users), in terms of convergence iterations,
computational complexity, running time and the final achieved
objective value. We show that by better exploiting the inherent
problem structures, the proposed approach requires both fewer
iterations to converge and lower computational complexity at
each node in each iteration, while achieving better optimiza-
tion accuracy, as compared to other state-of-the-art distributed
algorithms.

The remainder of the paper is organized as follows. We
present related work in Sec. II. Sec. III describes the classical
sharing problem with an application example. In Sec. IV,
we propose our fixed-point-like algorithms for the sharing
problem in comparison to a few existing algorithms. In Sec. V,
we rigorously analyze algorithm convergence conditions in
an asynchronous sense. In Sec. VI, we extend the proposed
approach to solve problems with arbitrary coupling in the
objective function and a certain class of coupled constraints.
In Sec. VII, we evaluate the benefits of the new approach over
consistency pricing, gradient descent for the primal problem,
and ADMM, through a case study of cloud bandwidth reserva-
tion based on a large amount of real-world traces. We conclude
the paper in Sec. VIII.

II. RELATED WORK

Distributed resource allocation is often modeled as network
utility maximization (NUM) problems. A number of pri-
mal/dual decomposition methods have been proposed to solve
such problems in a distributed way, with surveys provided
in [4], [5]. However, most NUM problems considered in the
literature, including the original TCP congestion control work
by Kelly [1] and Low [2], and the cross-layer optimization
in wireless networks considered by Lin et al. [3], are only
concerned with uncoupled utilities, where the local variables
of one entity do not affect the utility functions of other
variables, which does not apply to systems with competition
or cooperation, where utilities are often coupled.

There is one existing distributed solution [5], [10] to NUM
with coupled objective functions, which seeks decomposition
from Lagrangian dual problems by introducing auxiliary vari-
ables and solves the dual problems using (sub)gradient meth-
ods. This approach has a simple economic interpretation of
consistency pricing [5], [10]. However, gradient methods may
require many iterations of message-passing between entities
before convergence, which incurs delay in a distributed setting,
as the participating entities increase. Furthermore, existing
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faster numerical convex problem solvers, e.g., Newton methods
[11], can hardly be applied in a distributed way, as they
involve a large amount of message-passing beyond first-oder
information, which is hard to implement and justify physically
in reality.

The nonlinear Jacobi algorithm [11] solves convex prob-
lems by optimizing the objective function for each variable
in parallel while holding other variables unchanged, and
converges under certain contraction conditions. However, it
cannot be applied to our problem, as no network element
has global information of all the utilities. However, Jacobi
algorithm turns out to be a limiting case of Algorithm 1
executed asynchronously. And Algorithm 1 is essentially a
distributed version of Jacobi algorithm. ADMM is a distributed
optimization solver that has been applied to both statistical
learning problems [13] and distributed networking systems
[14], [15]. However, ADMM uses augmented Lagrangian,
which is not a first-order term, and thus cannot be interpreted
naturally through pricing for selfish users.

Pricing in distributed systems has been approached with
distributed optimization and game theory [16], [17]. In many
network applications, a distributed solution through pricing
is required or desirable because it applies to selfish (benefit-
maximizing) users without requiring them to be cooperative.
Not only can the proposed algorithms be interpreted as simple
pricing-based distributed solutions, under certain conditions,
they can also achieve fast convergence within only a few
iterations.

III. THE CLASSICAL SHARING PROBLEM

We start with considering a classical resource allocation
problem called the sharing problem:

maximize
∑n
i=1Ui(xi)− C(x)

subject to xi ∈ [ai, bi], i = 1, . . . , n,
(1)

for some real numbers ai, bi, where x = (x1, . . . , xn)
represents resource allocation, each Ui is a concave and mono-
tonically increasing utility function, and C(x) is a convex cost
function that is monotonically increasing in each xi. Assume
C and Ui are twice continuously differentiable.

The sharing problem (1) often arises in networked systems,
where each user i is associated with an utility Ui(xi) by using
xi units of some resource, while C(x) can be understood as the
total cost at the resource provider or a common performance
penalty, which is coupled among all xi in an arbitrary way.
Note that the general case where not all users are coupled
in the same cost function will be discussed in Sec. VI. The
objective is to make resource allocation decision x such that
the social welfare

∑
i Ui(xi)−C(x) is maximized. Apparently,

granting the maximum resources to users will maximize the
sum of their utilities, but will also incur a high cost C(x).
As convex optimization, problem (1) has a unique solution
x∗ = (x∗1, . . . , x

∗
n).

It is undesirable to solve (1) in a centralized way using
conventional algorithms such as interior point methods or
Newton’s methods [18], because each Ui may not be known
to the resource provider or other users and the cost C may not

User i

Resource 

Provider

Update the prices 

xi(pi)

xi(pi) := arg max
xi∈[ai,bi]

Ui(xi) − pixi

User 1 User n

... ...

p1, . . . , pn

Surplus maximization

pi

p1

pn

xn(pn)

x1(p1) Surplus

maximization
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maximization

Fig. 1. A pricing interpretation of Algorithm 1 and consistency pricing.

be known to the users. However, due to the coupled objective
function, the primal problem cannot be decomposed easily.

A. Consistency Pricing and the Subgradient Method

We briefly review the existing distributed solution to the
sharing problem (1), called consistency pricing [10], based on
Lagrangian dual decomposition and subgradient methods. By
introducing an auxiliary variable y, problem (1) is equivalent
to

maximize
∑n
i=1Ui(xi)− C(y)

subject to x = y, xi ∈ [ai, bi], i = 1, . . . , n.
(2)

The Lagrangian for problem (2) is

L(x, y, p) =
∑n
i=1Ui(xi)− C(y) + pT(y − x)

and the dual function is

q(p) =
∑n
i=1 sup

xi∈[ai,bi]
{Ui(xi)− pixi}+ sup

y
{pTy − C(y)},

where p is the Lagrange multiplier or dual variable. The dual
problem of problem (2) is

minimize q(p), (3)

with p ∈ Rn. Since problem (2) is convex, the duality
gap is zero: if p∗ solves the dual problem, then x∗i =
arg maxxi∈[ai,bi] Ui(xi)− p∗i xi solves the original problem.

Thus, we only need to solve the dual problem (3). It is
known [4], [11], [18] that the subgradient of q(p) is

∇q(p) = y(p)− x(p), (4)

where y(p) = (y1(p), . . . , yn(p)) is given by

y(p) = arg max
y

pTy − C(y), (5)

and x(p) = (x1(p1), . . . , xn(pn)) is given by

xi(pi) = arg max
xi∈[ai,bi]

Ui(xi)− pixi, ∀i. (6)

Applying the subgradient algorithm to the dual problem (3)
yields the following dual variable update rule:

pi := pi − γ
(
yi(p)− xi(pi)

)
, (7)

where γ is a sufficiently small positive stepsize.
Obviously, iterations (7) can be interpreted as a pricing-

based distributed solution: given a price vector p set by the
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resource provider, each user returns the resource request xi(pi)
to the provider by maximizing its benefit Ui(xi) − pixi.
The provider then computes y(p) locally by maximizing
its own profit pTy − C(y) and updates price p according
to (7). The new pi will be passed back to each user i
to compute a new resource request xi(pi). Apparently, the
entire algorithm is decentralized in that the provider updates
the price vector only based on the current price p, all the
returned resource requests x1(p1), . . . , xn(pn), and the local
cost function C at the provider, while each user computes
its resource request xi(pi) only based on its local price pi
and its local utility function Ui. The decentralized workflow
of the consistency pricing approach is illustrated in Fig. 1.
The resource provider will update the prices p iteratively,
such that x(p) = (x1(p1), . . . , xn(pn)) produced by the
benefit-maximizing users will converge to the optimal resource
allocation x∗.

B. Cloud Bandwidth Reservation as an Application

A typical application of problem (1) is a large-scale real-
time cloud network reservation problem described in [19].
Suppose that n video providers, which have random bandwidth
demands D1, . . . , Dn from their end users, rely on a cloud
provider to run their services (e.g., Netflix relies on Amazon
AWS). These video providers want to reserve the egress
network bandwidth from a datacenter or CDN edge servers
operated by a cloud provider to guarantee smooth delivery
their videos. The reservation of egress network bandwidth
from data centers and server clusters can be enabled by the
detailed engineering technology recently developed in [20]–
[22].

Since the bandwidth demand Di is random, it is not conve-
nient to decide how much absolute bandwidth to reserve for
each video provider. Thus, for each video provider i, the cloud
can guarantee xi portion of the bandwidth demand Di coming
from end-user requests in video channel i, while the rest of the
demand (1 − xi)Di will be served with best efforts. We call
xi the guaranteed portion of video provider i. The problem
is to decide all the guaranteed portions x = (x1, . . . , xn)
to maximize the expected social welfare, which is the total
utility gained in all the video channels minus the cost of
jointly reserving bandwidth for them at the cloud. Such a
social welfare can also be understood as the expected profit of
the cloud provider if the utility in each video channel directly
contributes to the revenue of the cloud provider.

If xi portion of its demand Di is guaranteed, video provider
i will have a utility ui(xi, Di), e.g., in the form of

ui(xi, Di) = wi1xiDi − wi2eBi(Di−xiDi),

which represents a linear utility gain from the guaranteed
demand xiDi and a utility (revenue) loss eBi(1−xi)Di for the
part of end-user requests (1−xi)Di that is not guaranteed for
service, where Bi is a video-channel-specific parameter. We
model each video channel’s utility gain as a linear function
of the guaranteed end-user requests xiDi, by assuming every
guaranteed unit bandwidth will generate a revenue of wi1 in
video channel i. On the other hand, we model the utility loss

due to the demand (1 − xi)Di not guaranteed as a convex
function wi2eBi(1−xi)Di of xi to model the exponentially
increasing reputation loss (thus revenue loss) in video channel
i as more of its end-user requests are not guaranteed for
service.

Then, the cloud provider exploits multiplexing and reserves
a total amount of absolute bandwidth K to satisfy all the
guaranteed demand x1D1, . . . , xnDn in all the channels with
high probability. Given a small service violation probability ε,
K should take the value such that the total guaranteed demand∑
i xiDi satisfies

Pr
(∑

ixiDi > K
)

= ε. (8)

Apparently, if the statistics of Di are known, K will be a
function of all chosen guaranteed portions x = (x1, . . . , xn).
The problem is to determine the guaranteed portions x =
(x1, . . . , xn) to maximize the expected social welfare (or cloud
profit if utility contributes to the revenue of the cloud), i.e.,

maximize
∑n
i=1E[ui(xi, Di)]− βK(x),

subject to xi ∈ [0, 1], i = 1, . . . , n,
(9)

where β is the cost of reserving a unit amount of bandwidth
in the cloud.

Suppose D1, . . . , Dn are Gaussian with predictable means
µ = (µ1, . . . , µn), standard deviations σ = (σ1, . . . , σn), and
covariance matrix Σ = [σij ]n×n. Then, by straightforward
deduction, we have

EDi [ui(xi, Di)] = wi1xiµi−wi2eBi(1−xi)µi+
1
2
B2

i (1−xi)
2σ2

i , (10)

which is a concave function of xi in general. Note that setting
wi2 = 0 will yield linear utilities. Under Gaussian demands,
the bandwidth reservation K that satisfies (8) is given by

K(x) = E
[∑

ixiDi

]
+ θ(ε)

√
Var

[∑
ixiDi

]

= µTx+ θ(ε)
√
xTΣx,

(11)

where θ(ε) = F−1(1 − ε) is a constant depending on ε, F
being the CDF of normal distribution N (0, 1) [19]. Clearly,
K(x) is a convex function of x in general, although setting Σ
to zero will yield a linear cost function. Therefore, problem
(9) is convex optimization that can be written in the form of
the sharing problem (1) and be solved using the consistency
pricing approach.

The guaranteed portions x = (x1, . . . , xn) should be cho-
sen according to both the utility expected from each video
channel and the difficulty of providing such a guarantee.
Each channel’s contribution to the aggregate multiplexed cost
for bandwidth guarantee is different. Intuitively speaking, it
is harder to provide guaranteed service in a highly volatile
channel since more cushion bandwidth needs to be reserved
to avoid random demand surges.

IV. A NEW CLASS OF DISTRIBUTED SOLUTIONS

In this section, we propose a new class of distributed
algorithms to solve the sharing problem (1), and discuss its
close relationships to fixed-point iterations and the traditional
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nonlinear Jacobi algorithm as well as its fundamental dif-
ferences from the gradient-descent-based consistency pricing
method. Let

∇iC(x1, . . . , xn) := ∂C(x1, . . . , xn)/∂xi

denote the partial derivative of the cost function C(x) with
respect to the component xi.

Let xi be the resource request of user i and pi be the
price charged for user i. We propose two simple pricing-based
algorithms to solve problem (1).

Algorithm 1 (Pricing): In iteration t, perform the following
updates:

pt+1
i := γ∇iC

(
xt1, . . . , x

t
n

)
+ (1− γ)pti, (12)

xti := arg max
xi∈[ai,bi]

Ui(xi)− ptixi, (13)

where γ ∈ (0, 1] is an inertia parameter. Every price pi is
updated by the resource provider, and each xi is updated by
each user. The update of the (pi, xi) pair can be carried out
for each user i asynchronously.

Algorithm 2 (Bidding): In iteration t, perform the follow-
ing updates:

pt+1
i := γU ′i

(
xti
)

+ (1− γ)pti, (14)

xt := arg max
x∈∏i[ai,bi]

(pt)Tx− C(x), (15)

where γ ∈ (0, 1] is an inertia parameter, the price pi is
updated by each user in a distributed fashion and the resource
allocation x is updated by the resource provider. The update
of the (pi, xi(p)) pair can be carried out for each user i
asynchronously.

The following proposition shows that as long as Algorithm
1 (Algorithm 2) converges, it will solve problem (1).

Proposition 1. For any γ ∈ (0, 1], if Algorithm 1 converges
to a fixed point (p∗, x∗), then x∗ is the optimal solution to
problem (1). The same statement holds for Algorithm 2.

Proof: This turns out to be a special case of Proposition 6
for the vector versions of the algorithms.

The decentralized workflow of Algorithm 1 is the same
as that of consistency pricing, in that each user updates its
resource request xi based on the price pi set by the provider.
The key difference is that in our algorithm, the price pi is
updated by (12), while the price pi in consistency pricing is
updated by (7). On the other hand, Algorithms 2 follows a dif-
ferent workflow from Algorithm 1. Each user updates its price
(bid) pi. Under a price vector p, the resource provider will
determine the resource allocation x(p) = (x1(p), . . . , xn(p))
by maximizing its profit pTx − C(x). Then the provider
sends xi(p) back to each user i, which then updates pi based
on xi(p), and submits the new bid pi back to the resource
provider.

Both algorithms mentioned above have synchronous and
asynchronous versions, depending on whether updates of pi
and xi(p) are performed for all users i synchronously or
asynchronously. For example, in an asynchronous Algorithm

1, pi and xi(pi) can be updated for an user i for any finite
number of iterations, before other xj(pj) for j 6= i are updated.

The proposed algorithms preserve the following benefits of
consistency pricing:

First, the proposed algorithms incur the minimum message-
passing overhead and preserve the simple pricing interpreta-
tion. Only the prices p and resource allocations x are passed
between users and the resource provider. Apparently, any
algorithm that relies on more than first-order information,
e.g., Newton methods, ADMM, [12], will incur much more
message overhead when implemented in a distributed way and
can not be interpreted through pricing.

Second, in the proposed algorithms, each network element
only utilizes its local information and the available feedback to
update variables. In particular, the provider has full knowledge
of the cost function C but no knowledge of any Ui, while each
user i has full knowledge of its own utility function Ui, but
no knowledge of C or any Uj for j 6= i.

Third, the proposed algorithms make the minimum assump-
tion on the cooperativeness of network elements. In Algorithm
1, once the resource provider sets a price vector p, each
user just needs to maximize its utility minus the cost of
using resources, which is a natural action of selfish users. In
Algorithm 2, if we can control each user to update pi using
(14), it is natural that the provider will maximize its profit.
This property is in contrast to more complicated distributed
solutions like ADMM [12], which requires each network
element to perform more complicated variable updates than
merely maximizing profit or benefit.

However, the proposed algorithms are fundamentally dif-
ferent from consistency pricing which is based on traditional
gradient descent. In the following, we explain the difference of
proposed algorithms from gradient descent, and interpret them
via fixed-point iterations as well as a novel decentralization of
the non-linear Jacobi algorithm.

A. Interpretation via Fixed-Point Iterations

Let us first show why Algorithms 1 and 2 have an interpre-
tation of fixed-point iterations. For ease of explanation, let us
ignore the constraint xi ∈ [ai, bi] and set the inertia parameter
γ = 1. We show that Algorithms 1 and 2 actually observe the
optimality conditions of problem (1).

By first-order conditions, if x∗ solves problem (1), we have

U ′i(x
∗
i ) = ∇iC(x∗), ∀i. (16)

Let us consider Algorithm 1. Suppose the iterations (12), (13)
have a fixed point (p∗, x∗). Then at this point, we have

U ′i(x
∗
i ) = p∗i = ∇iC(x∗1, . . . , x

∗
n), ∀i, (17)

where the first equality is due to the first-order condition of
(13) and the second equality is due to (12). Thus, x∗ satisfies
the conditions (16) and is an optimal solution, since problem
(1) is convex. Therefore, when γ = 1, Algorithm 1 is a fixed-
point iteration performed on (17) from right to left that aims to
converge to x∗. Similarly, Algorithm 2 is a fixed-point iteration
performed on (17) in the reverse direction of Algorithm 1.
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B. Differences from Traditional Gradient Descent

Although our approach can also be interpreted as pricing,
the fundamental difference between the subgradient method in
consistency pricing and our approach lies in the price updating
rule. In subgradient method (7), the price vector p is updated
in the direction of steepest descent of the dual function q(p)
for a small step according to the gradient y(p)x(p), i.e., pi :=
pi − γ(yi(p)− xi(pi)), where xi(pi) and yi(p) maximize the
user benefit in (6) and provider profit in (5), respectively. In
contrast, in Algorithm 1 (when γ = 1), p := ∇C(x1, . . . , xn),
i.e., in each iteration, the price vector is directly set to the
gradient of the cost function C. Similarly, in Algorithm 2, the
price pi is updated directly by U ′i(xi), the gradient of each
utility function Ui.

This difference will impact the performance in three aspects.
First, we will show that the new algorithms can better exploit
the structural gap between each Ui and C to achieve faster con-
vergence than always following the steepest descent direction.
Second, in Algorithm 1 or 2, benefit (profit) maximization is
performed at either users or the provider, but not both, whereas
in subgradient method (7), such maximization is performed at
both users and the provider to obtain x(p) and y(p). Thus,
our algorithms can greatly reduce computational complexity
when n is large. For example, Algorithm 1 does not require
the provider to maximize its profit pTy−C(y), the complexity
of which escalates as n increases, and thus can scale up to a
large n. Third, we will also show that it is easier to choose
γ in the new algorithms, since unlike the subgradient method,
γ here is an inertia parameter between 0 and 1 instead of a
small stepsize.

We will compare our approach with consistency pricing and
gradient descent in terms convergence condition and speed.

C. Nonlinear Jacobi Algorithm as a Limiting Case

In the following, we show that the nonlinear Jacobi al-
gorithm [11] is a limiting case of the asynchronous version
of Algorithm 1, while Algorithm 1 can be understood as a
novel decentralization of the nonlinear Jacobi algorithm. The
nonlinear Jacobi algorithm iteratively optimizes the objective
function with respect to each variable xi (in a parallel fashion)
while keeping the rest of the variables xj (j 6= i) fixed. For-
mally, for problem (1), the algorithm performs the following
update for all i in parallel:

xi := arg max
xi∈[ai,bi]

Ui(xi)−C(x1, . . . , xn) +
∑
j 6=iUj(xj). (18)

Apparently, this approach is not a gradient descent algorithm.
Nevertheless, it is worth noting that the above nonlinear Jacobi
algorithm cannot be applied to problem (1) as a distributed
solution, because the resource provider does not know any
user utility Ui, and the users do not know the cost function
C. Neither can the nonlinear Jacobi algorithm be interpreted
through pricing.

However, the nonlinear Jacobi algorithm is a limiting case
of Algorithm 1 executed asynchronously. If for each user
i, we perform (12) and (13) of Algorithm 1 for an infinite
number of iterations before updating the other variables xj

(for all j 6= i) in equation (12), then the xi obtained this
way is the same as the one given by (18), and thus Algorithm
1 becomes the nonlinear Jacobi algorithm. In other words,
the proposed Algorithm 1, with a convenient interpretation
through pricing, is essentially a novel distributed version of
the nonlinear Jacobi algorithm in the limiting case. However,
Algorithm 1 is more general than and not the same as the
nonlinear Jacobi algorithm if we update all xi together and
asynchronously.

V. ASYNCHRONOUS CONVERGENCE ANALYSIS

We analyze the convergence of the proposed algorithms, and
in particular, aim to find sufficient conditions under which
an algorithm is a contraction mapping [11]. Although more
general convergence conditions may be found for an algorithm
when executed synchronously, contraction mapping can ensure
its convergence even if executed completely asynchronously
[11]. Note that an asynchronous algorithm is much better
than its synchronous counterpart, since in reality, the latencies
of message-passing between network elements are usually
heterogeneous. On the other hand, however, the proposed
conditions are stronger than necessary for the corresponding
algorithms to converge in reality, since they serve only as
sufficient conditions for asynchronous convergence.

As some preliminaries, we first briefly describe contraction
mapping and its properties. Many iterative algorithms can be
written as

xt+1 := T (xt), t = 0, 1, . . . , (19)

where xt ∈ X ⊂ Rn, and T : X 7→ X is a mapping from X
into itself. The mapping T is called a contraction if

‖T (x)− T (y)‖ ≤ α‖x− y‖, ∀x, y ∈ X, (20)

where ‖ · ‖ is some norm, and the constant α ∈ [0, 1) is
called the modulus of T . Furthermore, the mapping T is
called a pseudo-contraction if T has a fixed point x∗ ∈ X
(x∗ = T (x∗)) and ‖T (x) − x∗‖ ≤ α‖x − x∗‖, ∀x ∈ X.
The following theorem provided and proved in [11] establishes
the geometric convergence of both contractions and pseudo-
contractions:

Theorem 2. (Geometric Convergence [11]) Suppose that X ⊂
Rn and the mapping T : X 7→ X is a contraction or a pseudo-
contraction with a fixed point x∗ ∈ X . Suppose the modulus
of T is α ∈ [0, 1). Then, T has a unique fixed point x∗ and
the sequence {xt} generated by xt+1 := T

(
xt
)

satisfies

‖xt − x∗‖ ≤ αt‖x0 − x∗‖, ∀t ≥ 0, (21)

for every choice of the initial vector x0 ∈ X . In particular,
{xt} converges to x∗ geometrically.

When an update rule T is a contraction or pseudo-
contraction with respect to the maximum norm ‖ · ‖∞, asyn-
chronous convergence of the corresponding algorithm can be
established using Proposition 2.1 in [11] (pp. 431). In other
words, under the sufficient conditions to be provided in the
remainder of this section, the corresponding algorithms can
converge asynchronously.
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pi := ∇iC(x)

Solve U ′
i(xi) = pi

for xi

(a) Algorithm 1: Convergence
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(b) Algorithm 1: Divergence
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∂xi

pi := pi − γ∇q(p)

(c) Gradient Descent

Fig. 2. Illustration of the convergence behavior of Algorithm 1 and the subgradient algorithm (7) in a one dimensional case. “o” represents the starting point.

A. Contraction of Algorithm 1
To simplify notations, in the following context, we will use

ci(x) to stand for ∇iC(x) and ui(xi) for U ′i(xi). We denote
∂xjxi

C(x) = ∇jci(x) the second order partial derivatives of
C. To avoid cluttered notations, we may drop the superscript
t for iteration number.

We analyze the convergence of Algorithm 1 when γ = 1.
We rewrite Algorithm 1 in another form amenable to analysis.
Denote [xi]

+
i the projection of xi ∈ < onto the interval [ai, bi],

i.e.,
[xi]

+
i = arg min

z∈[ai,bi]
|z − xi|, i = 1, . . . , n. (22)

It is easy to check that (13) is equivalent to

xi(pi) :=
[

arg max
xi

Ui(xi)− pixi
]+
i

= [u−1i (pi)]
+
i (23)

Therefore, letting γ = 1 and substituting (12) into (23) yields

xi := Ti(x) = [u−1i (ci(x))]+i , i = 1, . . . , n, (24)

which is an equivalent iteration to Algorithm 1 when γ = 1.
The following result gives a sufficient (yet not necessary)

condition for the convergence of Algorithm 1 with γ = 1.

Proposition 3. Suppose γ = 1. If, for all i, we have
n∑

j=1

|∂xjxi
C(x)| < min

zi
|U ′′i (zi)|, ∀x ∈

∏

i

[ai, bi], (25)

then T = (T1, . . . , Tn) given by (24) is a contraction and the
sequence {xt} generated by Algorithm 1 converges geomet-
rically to the optimal solution x∗ to problem (1), given any
initial price vector p0.

Proof: For each i, define a function gi : [0, 1] 7→ < by

gi(t) = u−1i
(
ci(z(t))

)
= u−1i

(
ci(tx+ (1− t)y)

)
.

Note that gi is continuously differentiable. We have

|Ti(x)− Ti(y)|= |[u−1i (ci(x))]+i − [u−1i (ci(y))]+i |

≤ |gi(1)− gi(0)| =
∣∣∣∣
∫ 1

0

dgi(t)

dt
dt

∣∣∣∣

≤
∫ 1

0

∣∣∣∣
dgi(t)

dt

∣∣∣∣dt ≤ max
t∈[0,1]

∣∣∣∣
dgi(t)

dt

∣∣∣∣,

where the first inequality is because
∣∣[xi]+i −[yi]

+
i

∣∣ ≤ |xi−yi|
for all xi, yi ∈ <. Furthermore, the chain rule yields
∣∣∣∣
dgi(t)

dt

∣∣∣∣=
∣∣∑n

j=1∇ju−1i ◦ ci(tx+ (1− t)y) · (xj − yj)
∣∣

≤
∣∣(u−1i )′(ci(z(t)))

∣∣ ·∑n
j=1

∣∣∇jci(z(t))
∣∣ · |xj − yj |,

where the notation u−1i ◦ ci(x) is used to denote the function
u−1i (ci(x)). If condition (25) holds, we have
∑n
j=1|∇jci(x)|<min

zi
|u′i(zi)| ≤ |u′i

(
u−1i (ci(x))

)
|

= 1/|(u−1i )′(ci(x))|, ∀x ∈∏i[ai, bi].

Therefore, there exists a positive α < 1 such that
∣∣∣∣
dgi(t)

dt

∣∣∣∣ ≤ αmax
j
|xj − yj | = α‖x− y‖∞, ∀t ∈ [0, 1], ∀i.

Therefore, we have shown that

‖T (x)− T (y)‖∞ ≤ α‖x− y‖∞, ∀x, y ∈∏i[ai, bi],

and T is a contraction with modulus α with respect to the
maximum norm in

∏
i[ai, bi]. By Theorem 2, Algorithm 1

converges geometrically to x∗.
Proposition 3 implies that Algorithm 1 can converge when

|U ′′i (xi)| are large and |∂xjxi
C(x)| are small. Each |U ′′i (xi)|

is large when Ui is nonlinear with a relatively big curvature.
On the other hand, |∂xjxiC(x)| will be small, for example,
if the covariances Σ in the example (11) is small to yield a
near-linear cost. In fact, the cost function in (11) is a cone, and
thus its curvatures |∂xjxi

C(x)| are nearly zero if x is away
from 0.

Note that Proposition 3 provides a rather strong sufficient
condition for Algorithm 1 to be a contraction and thus to
achieve convergence even when each variable is updated asyn-
chronously in an arbitrary order. In reality, such conditions are
not necessary for Algorithm 1 to converge. The convergence
condition of Algorithm 1 when the inertia parameter γ < 1 is
much harder to analyze. In Sec. VII, we show that as long as
|∂xjxi

C(x)| are small relative to |U ′′i (xi)|, Algorithm 1 can
also converge for γ < 1.
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B. Contraction of Algorithm 2 and Consistency Pricing

The convergence of Algorithm 2 is much harder to analyze
in general when there are constraints ai ≤ xi ≤ bi, since
x(p) in (15) cannot be decoupled as projections onto intervals
[ai, bi]. As many engineering problems have solutions in the
interior of the feasible region, in the following, we give
sufficient convergence conditions of Algorithm 2 in the case
of unconstrained optimization for both γ = 1 and γ < 1. In
this case, Algorithm 2 is rewritten as

{
pi := Ti(p) = (1− γ)pi + γui

(
xi(p)

)
, ∀i,

x(p) := arg maxx p
Tx− C(x)

(26)

Proposition 4. Suppose that problem (1) has no con-
straints and that the Hessian matrix of C(x) is H(x) =
[∂xjxi

C(x)]n×n. Denote the inverse of H(x) as

P (x) = [H(x)]−1 = [∂xjxiC(x)]−1n×n = [Pij(x)]n×n.

If the following condition holds:
{
γ = 1,∑n
j=1 |Pij(x)| < |U ′′i (xi)|−1, ∀x, ∀i, (27)

or if the following condition holds:
{

0 < γ ≤ (1 + Pii(x) · |U ′′i (xi)|)−1,∑
j 6=i |Pij(x)| − Pii(x) < |U ′′i (xi)|−1, ∀x, ∀i, (28)

then T = (T1, . . . , Tn) given by (26) is a contraction and the
sequence {xt} generated by Algorithm 2 converges geometri-
cally to the optimal solution x∗ to problem (1).

Please refer to the appendix for the proof of the above
proposition. Unlike the convergence condition of Algorithm 1,
Proposition 4 essentially implies the contrary. That is, Algo-
rithm 2 can converge when |U ′′i (xi)| is small and |∂xjxiC(x)|
is big. To see this, we notice that both condition (27) (the
case of γ = 1) and condition (28) (the case of γ < 1)
require a large |U ′′i (xi)|−1, which implies a small |U ′′i (xi)|.
Furthermore, both (27) and (28) favour a small |Pij(x)| which
indicates a bigger |∂xjxiC(x)|, since P (x) is the inverse of
H(x) = [∂xjxiC(x)]n×n. The above conditions, for example,
can easily be satisfied when each utility Ui(xi) is a linear
function of xi with |U ′′i (xi)| = 0.

There are many results on the convergence of (sub)gradient
algorithms. For example, for a sufficiently small constant
stepsize γ, the algorithm is guaranteed to converge to the
optimal value [18]. For comparison, here we derive a suffi-
cient condition similar to (28), under which the subgradient
algorithm applied to the dual problem, i.e., the consistency
pricing algorithm (7), is a contraction for the unconstrained
version of problem (1).

Proposition 5. Suppose that problem (1) has no con-
straints. Recall that the Hessian matrix of C(x) is H(x) =
[∂xjxi

C(x)]n×n and the inverse of H(x) is P (x) =
[H(x)]−1 = [Pij(x)]n×n.

If we have the following condition for all x and i:
{

0 < γ ≤
(
Pii(x) + 1/|U ′′i (xi)|

)−1
,∑

j:j 6=i |Pij(x)| − Pii(x) < |U ′′i (xi)|−1,
(29)

then T = (T1, . . . , Tn) defined by consistency pricing (7) is a
contraction and the sequence {x(pt)} converges geometrically
to x∗.

Please refer to the appendix for the proof of the above
proposition. For consistency pricing to be a contraction, we
find that condition (29) is exactly the same as the convergence
condition (28) for Algorithm 2 when γ < 1, except for
the choice of γ. However, it is much easier to choose γ
in Algorithm 2. In condition (28) for Algorithm 2, we only
need to know the relative values of ∂xjxiC(x) and |U ′′i (xi)|
to estimate Pii(x) · |U ′′i (xi)|, since P (x) is the inverse of
H(x) = [∂xjxi

C(x)]n×n. In contrast, in condition (29) for
consistency pricing, we need knowledge of the absolute values
of Pii(x) + 1/|U ′′i (xi)| to estimate a valid range for γ.

C. Discussions

We now discuss the insights from the above analysis for
algorithm and parameter selection. Basically, whether we
should use Algorithm 1 or Algorithm 2 depends on the relative
curvatures of C and Ui: when |U ′′i | is large, Algorithm 1 may
converge; when |U ′′i | is small and |U ′′i |−1 is big, Algorithm 2
may converge.

We further illustrate the convergence condition and speed
of Algorithm 1 when γ = 1 in Fig. 2. For user i, starting from
an initial x0i , the initial price p0i is first set to p0i = ∇iC(x0).
Then user i maximizes its benefit Ui(xi) − p0ixi to get x1i ,
which is actually the solution to U ′i(xi) = p0i by the first-order
condition. Therefore, Algorithm 1 updates (xi, pi) in a “spiral”
fashion jumping between the two curves U ′i(xi) and ∇iC(x)
until their intersection is reached, where U ′i(x

∗
i ) = ∇iC(x∗).

Clearly, the convergence will depend on the slopes of U ′i and
∇iC. Algorithm 1 will converge when the gradient of ∇iC(x)
is small as compared to the derivative of U ′i , or equivalently,
when ∂xjxi

C(x) are small compared to U ′′i . The larger the
gaps, the faster the convergence. On the other hand, Fig. 2(b)
shows the opposite case when ∂xjxi

C(x) (the gradient of
∇iC(x)) is large compared to U ′′i (the derivative of U ′i ). In this
case, Algorithm 1 might diverge. However, since Algorithm 2
updates in the reverse direction of Algorithm 1, Algorithm 2
may converge instead.

The proposed algorithms essentially utilizes the curvature
differences between C and U to achieve the spiral conver-
gence, e.g., when |∂xjxi

C(x)| are small relative to |U ′′i (xi)|,
and vice versa. This fact will be exemplified in our case study
with real-world traces in Sec. VII. In contrast, the convergence
behavior of consistency pricing is illustrated in Fig. 2(c),
which actually uses the subgradient algorithm (essentially
gradient descent). Similar to Algorithm 1, each user i will
choose a benefit-maximizing xi in each iteration. However,
the difference is that the subgradient method will update price
pi by a small step in the direction of the steepest descent of the
dual function, i.e., ∇q(p). As a result, when yi(p) and xi(pi)
do not differ much, it may take a large number of iterations
before the algorithm converges.

Finally, γ is an inertia parameter that trades convergence
speed off for less stringent convergence conditions. From
Proposition 4, we can see that when γ < 1 in condition (28),
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the requirement on the structures of U and C is less strong
than that in condition (27). This is because we have

∑
j:j 6=i|Pij(x)| − Pii(x) ≤∑n

j=1|Pij(x)|,

and thus
∑n
j=1 |Pij(x)| < |U ′′i (xi)|−1 implies∑

j:j 6=i |Pij(x)| − Pii(x) < |U ′′i (xi)|−1, but not vice
versa. In other words, by allowing γ < 1, we can achieve
convergence on a wider range of U and C functions. This
fact will be substantiated in simulation for both Algorithm 1
and Algorithm 2.

VI. EXTENSION TO HANDLE COUPLED CONSTRAINTS

In this section, we extend the proposed algorithms to
approach more general utility maximization problems with
arbitrary coupling in the objective function and a certain class
of coupled constraints. A general form to pose distributed
optimization problems is through consensus optimization [12]:

minimize
∑m
i=0Fi(x1, . . . , xn)

subject to (x1, . . . , xn) ∈ Ci, i = 0, 1, ...,m,
(30)

where Fi : Rn 7→ R are strictly convex functions, and Ci
are convex subsets of Rn. We assume that each Fi may only
depend on a subset of x1, . . . , xn.

Such a problem naturally arises in networking systems,
where the utility of each user Fi depends on a subset
of all resource allocation decisions (x1, . . . , xn) and each
(x1, . . . , xn) ∈ Ci represents a convex constraint coupled
among x1, . . . , xn, e.g., x1 + . . . + xn ≤ B. Maximizing
the sum of concave utility functions in utility maximization
is equivalent to minimizing the sum of loss functions Fi in
consensus optimization (30). Note that problem (1) is a special
case of problem (30), where each Ui only depends on xi, while
−C plays the role of F0 and there is no coupled constraint.

Problem (30) not only models utility maximization prob-
lems with arbitrary coupling in the objective and constraints,
but also has wide applications in machine learning problems
[12]. For example, in model fitting, the vector x represents
the set of parameters in a model and Fi represents the loss
function associated with the ith training sample. The learning
goal is to find the model parameters x that minimizes the sum
of loss functions for all training samples.

A. The Vector Version of Fixed-Point Pricing

We first extend Algorithm 1 to the case that each variable is
a vector instead of a scalar. Suppose zi ∈ Rli for i = 1, . . . l,
and z = (z1, . . . , zl) ∈ R

∑l
i=1 li . Now the vector version of

the sharing problem (1) is

maximize
∑l
i=1Ui(zi)− C(z)

subject to zi ∈ Qi, i = 1, . . . , l,
(31)

where Qi ⊆ Rli is a convex set. Accordingly, we obtain
revised Algorithm 1 as follows:

Algorithm 1 (Vector-Version Pricing): In iteration t,
perform the following updates:

pt+1
i := (1− γ)pti + γ∇iC

(
zt1, . . . , z

t
l

)
, (32)

zti := arg max
zi∈Qi

Ui(zi)− (pti)
Tzi, (33)

where the prices pi ∈ Rli are updated by the resource provider,
and zi ∈ Rli is updated by each user i in a distributed fashion.

The vector version of Algorithm 2 can be derived in a
similar way, which we omit due to space constraint. Then
we have the following statement:
Proposition 6. For any γ ∈ (0, 1], if the vector version of
Algorithm 1 (or Algorithm 2) has a fixed point (p∗, z∗), then
z∗ is the optimal solution to problem (31).

Please refer to the appendix for the proof of the above
proposition. Note that convergence conditions similar to those
in Sec. V can be derived for the vector versions of the
algorithms. For example, in Proposition 3, ∂zjziC(z) and
∂ziziUi(zi) will all become matrices, as zi ∈ Rli are vectors.
Thus, the absolute values should be replaced by matrix norms
(e.g., Frobenius norm [11]) in the corresponding analysis.

B. Solving Consensus Optimization (30)
We show that the dual problem of consensus optimization

(30) can be converted into an equivalent problem of the vector
sharing problem (31) and can be solved by the vector version
of Algorithm 1 for a specific class of coupled constraints.
Introducing auxiliary variables yi ∈ Rn, (30) is equivalent
to

minimize F0(x) +
∑m
i=1Fi(yi)

subject to x = (x1, . . . , xn) ∈ C0,
yi = x, yi ∈ Ci, i = 1, ...,m,

(34)

where Ci ⊆ Rn, i = 0, 1, . . . ,m. It is not hard to check that
the dual problem of (34) is

maximize q(λ) =
∑m
i=1qi(λi) + q0

(∑m
i=1λi

)

subject to λi ∈ Rn, i = 1, . . . ,m,
(35)

where λi ∈ Rn is the Lagrangian multiplier corresponding to
the constraint yi = x. Define λ := (λ1, . . . , λm) ∈ Rmn, and
concave functions q0 and qi are given by

q0(λ) = q0
(∑m

i=1λi
)

= min
x∈C0

{
F0(x)−

(∑m
i=1λi

)T
x
}
(36)

qi(λi) = min
yi∈Ci

{Fi(yi) + λTi yi}. (37)

The dual function q(λ) is continuously differentiable with

∂q(λ)

∂λi
=
∂qi(λi)

∂λi
+
∂q0(λ)

∂λi
= yi(λi)− x(λ), (38)

where x(λ) ∈ C0 and yi(λi) ∈ Ci are the unique minimizing
vectors in (36) and (37), respectively.

Now the dual problem (35) is exactly the vector version of
the sharing problem (31), with

Ui(λi) = qi(λi), i = 1, . . . ,m

C(λ) = C(λ1, . . . , λm) = −q0(
∑m
i=1λi),

subject to λi ∈ Qi = Rn, for i = 1, . . . ,m.
Therefore, we can apply the vector version of Algorithm 1

to the dual problem (35) with λ1, . . . , λm being the variables,
leading to the following alternating update rules for all i =
1, . . . ,m:

pi := (1− γ)pi−γ ·
∂q0(

∑m
i=1 λi)

∂λi
= (1− γ)pi + γx(λ) (39)

λi := argmax
λi

qi(λi)− pTi λi, (40)
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where λi ∈ Rn are decision variables, pi ∈ Rn are price
vectors. F0 plays the role of a “resource provider” and each
Fi represents a “user” node. On one hand, each “user” updates
its variable λi in a distributed fashion by solving (40), where
qi(λi) is given by (37) with ∂qi(λi)/∂λi = yi(λi) such that
the optimal λ∗i for (40) is found when yi(λ

∗
i ) = pi. On the

other hand, the “provider” will update all the prices p1, . . . , pm
via an intermediate variable x(λ) ∈ C0 computed by solving
the minimization in (36). Then the price vector pi ∈ Rn is
sent to user i again to compute a new λi.

It is worth noting that the condition to use the above updates
is that (40) must be well defined. Note that (40) is solving the
optimization

max
λi∈Rn

min
yi∈Ci

{Fi(yi) + λTi (yi − pi)},

which is exactly solving the dual problem of minFi(yi)
subject to yi ∈ Ci and yi = pi (where subgradient algorithms
can be used). For this problem to be feasible, we need pi ∈ Ci,
since otherwise minFi(yi) would be unbounded and the
update (40) would not be well defined. Since pi is a convex
combination of the previous pi and x(λ), and x(λ) ∈ C0,
we have pi ∈ C0. Therefore, a sufficient (yet not necessary)
condition for updates (39) and (40) to work is that C0 ⊆ Ci
for i = 1, . . . ,m.

This condition can easily be satisfied in a class of resource
sharing problems, where each user i has a decision variable xi
known to fall in some range Ci a priori, while the provider fur-
ther enforces some coupled constraint across different xi. For
example, in the following sharing problem with an additional
coupled constraint:

maximize
∑n
i=1Ui(xi)− C(x)

subject to xi ∈ [0, 1], i = 1, . . . , n,∑n
i=1xi ≤ B,

(41)

where B ∈ R, the variable range Ci = [0, 1] is often known a
priori by the provider C. Then when the provider imposes an
additional constraint of bounded sum in C0, we have C0 ⊂ Ci
for all i.

If C0 is the interior of each Ci, we can further simplify (40).
Recall that λi in (40) is the solution to yi(λi) = pi. In this
case, pi ∈ C0 is in the interior of Ci. By first-order conditions
of (37), the optimization in (40) at each user i can be replaced
by the following straightforward computation:

λi = −∇Fi
(
yi(λi)

)
= −∇Fi(pi).

VII. CLOUD BANDWIDTH SHARING: A CASE STUDY

We evaluate the algorithm performance on a typical large-
scale real-time cloud network reservation problem described
in Sec. III-B. In this case study, we show that contraction
assumptions for gradient algorithms often do not hold in
reality, which causes slow convergence and challenges for
stepsize selection. We also compare the proposed approach
with ADMM in terms of convergence and running time, the
latter being a powerful distributed optimization solver which
cannot be interpreted as pricing.

Recall from Sec. III-B that problem (9) is to decide the guar-
anteed portions x for all channels to maximize the expected so-
cial welfare

∑
i Ui(xi)−C(x), where Ui(xi) = E[ui(xi, Di)]

and C(x) = βK(x) are given by (10) and (11), respectively.
Problem (9) can be solved through pricing, i.e., each channel
i can be charged a price pixi to control the channel’s choice
of xi.

The demand statistics µ and Σ are calculated from real
traces collected from a commercial VoD system, called UUSee
[19]. The data used here contains the bandwidth demands (in
Mbps) of n = 468 video channels (each we suppose to be
a tenant of the cloud), measured every 10 minutes, over a
810-minute period during 2008 Olympics. Assume the means
µ and covariance matrix Σ of the channel demands remain
the same within each 10-minute period. We can estimate µ,
Σ for the upcoming 10 minutes based on historical demands
using the time-series forecasting techniques such as ARIMA
and GARCH presented in our previous work [19], [23]. Once
µ and Σ are obtained, we solve problem (9) for the optimal
guaranteed portions x in this period. After the 10-minute
period has past, the system proceeds to estimate µ, Σ for the
next 10 minutes and computes a new x by solving problem (9)
again. The problem (9) must be solved distributively with the
minimum message-passing, assuming that each channel does
not know other channels’ utilities or the multiplexed (coupled)
cost function K(x). Furthermore, problem (9) must be solved
in at most a few seconds in order not to delay the entire
resource allocation process performed every 10 minutes.

We set ε = 0.01, Bi = 0.5, β = 0.5 in the experiments,
and apply different algorithms for each of the 81 consecutive
10-minute periods.

A. Convergence Analysis and Algorithm Selection

From the discussions in Sec. V, we know that a basic rule to
follow when choosing between Algorithm 1 and 2 is to check
the relative largeness of |U ′′i | and |∂xjxiC|. The functions in
this case study is a good example to discuss the convergence
conditions and parameter selection for Algorithm 1 and 2.
Apparently, if wi2 = 0 in (10), we have a linear Ui with
|U ′′i | = 0. In this case, conditions in Proposition 4 are met,
while the condition in Proposition 3 is violated. Therefore, we
should use Algorithm 2. On the other hand, if the demand
covariances Σ is small, we will have a nearly linear cost
function from (11), with |∂xjxi

C| all close to 0. In this case,
the convergence condition in Proposition 3 will be met and
Algorithm 1 should be used.

However, we note that the cost (11) is a cone centered at
0, and thus has small |∂xjxiC(x)| values as long as x is away
from 0. Therefore, we fix µ and Σ to be those computed from
the real traces and thus fix the form of C, while considering
two versions of Ui: 1) concave utility with wi1 = wi2 = 1
in (10), and 2) linear utility with wi1 = 1 and wi2 = 0. We
run Algorithm 1 and 2 under these two cases (in the first 10-
minute period) and plot their convergence behavior in Fig. 3.
The algorithms will stop when ‖x(t)− x(t− 1)‖2 ≤ 10−30.

We observe that Algorithm 1 converges for concave utilities
while Algorithm 2 does not. On the contrary, Algorithm 2
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(b) Linear Ui (wi1 = 1, wi2 = 0)

Fig. 3. The evolution of ‖x(t) − x(t − 1)‖2 under both Algorithm 1 and
Algorithm 2 for different forms of Ui given by (10), while the form of the
cost function C is fixed to (11).

converges for linear utilities while Algorithm 1 does not. Such
observation corroborates the correctness and usefulness of our
analysis in Sec. V.

Furthermore, for both algorithms, convergence is faster
when we set γ = 1, provided that convergence can be achieved
when γ = 1. When we solve 81 optimization problems, one
for each 10-minute period, it will be clear that with an inertia
parameter γ < 1, although convergence may be slower, the
algorithm is more robust and permits a larger range of U and
C.

In a general setting, let us demonstrate how to check
convergence conditions and select algorithms. We illustrate
how to check condition (25) for Algorithm 1 in the first 10-
minute period. (Proposition 4 for Algorithm 2 can be checked
in a similar way.) From (11), we get

∂xjxi
C(x) = βθ(ε)

(
σij√
xTΣx

− xTΣT
i Σjx

(xTΣx)
3
2

)
,

where Σi is the ith row of the covariance matrix Σ, and σij
is the covariance between channels i and j. Similarly, it is
easy to derive U ′′i (xi) from (10) and verify that |U ′′i (xi)|
always reaches the minimum at xi = 1, i.e., minxi

|U ′′i (xi)| =
|U ′′i (1)|. Although we do not know which x maximizes∑n
j=1 |∂xjxi

C(x)|, we can use a sampling method. For each
i, we sample x uniformly at random between 0.8 and 1 for
100 times and plot the CDFs of |U ′′i (1)|/∑n

j=1 |∂xjxiC(x)|
and |U ′′i (1)|/maxx

∑n
j=1 |∂xjxi

C(x)| in Fig. 4, from
which we see that the inequality minxi |U ′′i (xi)| >
maxx

∑n
j=1 |∂xjxiC(x)| is satisfied for about 70% of all the

468 channels (users). Note that since the presented conditions
are sufficient (not necessary) conditions, the algorithm may
actually converge under much milder conditions. Now we
know that the inequality (25) is satisfied for most i and
|U ′′i (xi)| is much greater than

∑n
j=1 |∂xjxiC(x)| in most

cases, we may tentatively believe Algorithm 1 will converge
for the dataset. The trial run on this single time period asserts
that Algorithm 1 indeed converges while Algorithm 2 does
not.

In general, such a sampling method for algorithm selection
is described as follows. Sample the second-order derivatives
∂xjxi

C(x) and U ′′i (xi) over the feasible domain of x and
check whether minxi

|U ′′i (xi)| > maxx
∑n
j=1 |∂xjxi

C(x)| is
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Fig. 4. Sampling of minxi |U ′′i (xi)|/maxx
∑n
j=1 |∂xjxiC(x)| and

minxi |U ′′i (xi)|/
∑n
j=1 |∂xjxiC(x)| for all i = 1, . . . , 468. The max is

taken over all the randomly sampled x between 0.8 and 1. In this case,
minxi |U ′′i (xi)| = |U ′′i (1)|.

met (for Algorithm 1) or
∑
j 6=i |Pij(x)|−Pii(x) < |U ′′i (xi)|−1

is met (for Algorithm 2) for most i and x. If the inequality is
met for the majority of i and x, we can use the corresponding
algorithm. Moreover, since Algorithm 1 and 2 update prices
in opposite directions, when one algorithm does not converge,
the other one is likely to converge.

In the following, we always set wi1 = wi2 = 1, since a
concave utility is closer to reality. And in this case, we already
know that Algorithm 1 converges while Algorithm 2 does not.
Therefore, we will focus on the comparison of Algorithm 1
with existing algorithms.

B. Comparison to Consistency Pricing and Gradient Descent

We compare the performance of Algorithm 1 to consistency
pricing (gradient descent applied to the dual problem) as
well as the gradient descent directly applied to the primal
problem (9). However, note that unlike consistency pricing
and Algorithm 1 the latter approach cannot be interpreted
as pricing. Instead, the provider needs to collect all U ′i(xi)
in addition to xi in each round to compute the gradient of∑
i Ui(xi) − C(x) and thus has to assume that the video

channels will cooperate to pass this information.
The initial price p(1) is set to the optimal price vector β(µ+

θ(ε)σ) without multiplexing, which is easy to compute due
to no coupling [19]. Since the value of SW(x) is unknown
to the cloud, we let an algorithm stop at iteration t if either
‖x(t)−x(t−1)‖∞ < 10−2 or t = 100. Since Algorithm 1 is a
contraction, which even converges asynchronously, we adopt
an asynchronous stop criterion: if |xi(t)− xi(t− 1)| < 10−2,
then tenant i stops updating xi. In contrast, as consistency
pricing is not a contraction, we evaluate both synchronous and
asynchronous stop criteria. We do not assume heterogeneous
message-passing delays, which may further enlarge the benefit
of our asynchronous algorithm.

Fig. 5 plots the CDF of iterations needed to converge in all
81 experiments, one for each 10-minute period. Algorithm 1
always converges in 10 iterations, when γ = 0.5. If γ = 1, the
convergence rate can be further speeded up to 5 iterations on
average, although it does not converge in one single period.
This substantiates our theoretical analysis in Sec. V that an
inertia parameter γ < 1 can be used to increase the robustness
of the algorithm to ensure convergence for a wider range of
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Alg 1: γ = 1

Alg 1: γ = 0.5

Consistency Pricing (Dual Gradient): γ = 0.01

Consistency Pricing (Dual Gradient): γ = 0.02
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Primal Gradient Descent: γ = 1

Fig. 6. Final objective values SW(x∗) produced by different algorithms.

Ui and C (which vary across all 81 experiments), although it
may slightly slow down the convergence speed.

In general, gradient methods need much more iterations to
converge, Consistency pricing (dual gradient descent) faces
a dilemma in selecting the stepsize γ. Since algorithms will
stop when x is changing by less than 10−2, we cannot set
too small a γ, in which case, the algorithm will stop when
t = 2 due to too small a change in price p. Fig. 5 shows that
consistency pricing with all considered γ produce erroneous
outputs in many cases, as they stop at t = 2. Increasing γ
reduces errors, but will lead to even longer convergence time.
Fig. 5 suggests that unlike Algorithm 1, no constant stepsize
γ for consistency pricing can simultaneously achieve correct
outputs and fast convergence in all 81 experiments.

For the primal gradient descent, the stepsize is optimized to
γ = 1 to achieve the fastest convergence. We can see that the
primal gradient descent can not beat our algorithm in terms
of convergence iterations, even though it makes additional
assumption on user cooperativeness.

We further plot the final objectives SW(x∗) achieved by
different algorithms in Fig. 6. We can see that Algorithm 1
produces the same best final objective value as the primal
gradient descent. Consistency pricing with asynchronous stop
rules, although converging, may output wrong answers because
they are not contractions and in theory, should not be applied
with asynchronous stop rules. Consistency pricing with syn-
chronous stopping achieves slightly higher objective values if
not stopping at t = 2. But since they do not converge within
100 iterations, they are still inferior to Algorithm 1.

Let us zoom into the experiment for the first 10-minute
period. From Fig. 7, we see that Algorithm 1 has an increasing
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Alg 1: γ = 1
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Consistency Pricing: γ = 0.01
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Consistency Pricing Sync: γ = 0.01

Fig. 7. The evolution of ‖x(t)− x(t− 1)‖∞ in the first experiment.

convergence speed as t increases. In contrast, consistency pric-
ing performs well in the first two iterations, but its convergence
slows down as the gradient becomes smaller. It is confirmed
that consistency pricing is extremely sensitive to γ, the choice
of which is a challenge.

C. Comparison to ADMM

Recently, ADMM is gaining its popularity in tackling large-
scale distributed optimization problems. We now provide a
performance comparison to ADMM. Let

{
fi(xi) = −EDi

[ui(xi, Di)], i = 1, . . . , n,
f0(x) = βK(x).

(42)

Then, problem (9) is rewritten as minimize
∑n
i=1 fi(xi) +

f0(x), where xi ∈ [0, 1]. Further rewriting the above into
a general form consensus optimization [12], problem (9) is
equivalent to

minimize
∑n
i=0fi(yi)

subject to yi − z̃i = 0, i = 0, 1, . . . , n,
(43)

where y0 ∈ Rn, yi ∈ < for i = 1, . . . , n, and each z̃i is a linear
function of a global auxiliary variable z = (z1, . . . , zn) ∈ Rn
defined as z̃0 = (z1, . . . , zn), z̃i = zi, i = 1, . . . , n. According
to the ADMM approach for general consensus optimization
outlined in pp. 53-55 [12], the iterative updates based on
augmented Lagrangian are given by

yt+1
i := argmin

yi

(
fi(yi) + λti

T
yi + (ρ/2)‖yi − z̃ti‖22

)
,

zt+1 := argmin
z

(∑n
i=0(−λ

t
i
T
z̃i + (ρ/2)‖yt+1

i − z̃i‖22)
)
,

λt+1
i := λti + ρ(yt+1

i − z̃t+1
i ),

(44)

where (y1, λ1), . . . , (yn, λn) are updated at the n users,
respectively, and y0, λ0, z are updated at the provider. ρ > 0
is called the penalty parameter.

Table I shows the convergence iterations, total execution
time and the achieved final expected social welfare under
Algorithm 1, ADMM, and consistency pricing for resource
allocation experiment in the first time period (period 1700).
The experiment is conducted on a single machine of 2.6 GHz
Intel Core i7 processor. We can see that Algorithm 1 converges
in 5-9 iterations, ADMM converges in 3-17 iterations and
consistency pricing converges in 27-52 iterations.

Although ADMM may take fewer iterations to converge
under a good choice of ρ, it incurs much longer execution
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TABLE I
PERFORMANCE COMPARISON OF OUR ALGORITHM, ADMM AND CONSISTENCY PRICING FOR RESOURCE ALLOCATION IN THE TIME PERIOD 1700.

Method Algorithm 1 ADMM Consistency Pricing

Parameter γ = 0.5 γ = 0.75 γ = 1 ρ = 0.5 ρ = 1 ρ = 10 ρ = 50 ρ = 100 γ = 0.01 γ = 0.02

Convergence Iterations 9 6 5 17 12 4 3 3 27 52
Total Execution Time (sec) 4.60 4.41 4.31 876.95 424.80 313.62 297.17 507.84 229.76 503.66

Final Expected Social Welfare 1378.9 1379.5 1379.5 1377.5 1378.3 1378.8 1378.7 1378.8 1344.1 1348.2

times, which are about 100× worse than Algorithm 1. The
reason is that in Algorithm 1, the only optimization is the
single-variable benefit maximization performed at each user.
In contrast, in each iteration of ADMM (44), not only each
user needs to perform a single-variable optimization over
yi ∈ <, the provider also has to update y0 ∈ Rn and
z ∈ Rn by solving a convex optimization with vector variables.
When n is as large as 468, it is mainly the optimization for
y0 ∈ Rn and z ∈ Rn that slows down the program. As
mentioned in Sec. VII-B, consistency pricing incurs relatively
long execution time as well because the provider also needs
to solve a 468-dimensional optimization problem. However, it
still takes shorter execution times than ADMM, because its
optimization steps do not involve squared norms as in (44).
Furthermore, Algorithm 1 achieves a higher final objective
value, i.e., the final expected social welfare, than both ADMM
and consistency pricing, with consistency pricing being the
worst. Thus, the proposed algorithm is also better in terms of
numerical accuracy.

VIII. CONCLUDING REMARKS

In this paper, we propose a fast fixed-point-like approach to
solve resource sharing problems which are often formulated
as utility maximization with a coupled objective function, and
analyze the asynchronous algorithm convergence conditions
through contraction mapping. In a case study of real-time
cloud network reservation, we show through trace-driven sim-
ulations that the proposed method can speed up convergence
by 5 times over the “consistency pricing” approach, which
is a traditional gradient method applied with Lagrangian dual
decomposition, while achieving better robustness to parameter
configurations. The new approach converges in a similar num-
ber of iterations comparable to ADMM while incurring much
lower computational complexity in the subproblem solved at
each individual node. We also extend the proposed approach to
solve a more general class of consensus optimization problems
with arbitrary coupling in the objective function as well as a
certain class of coupled constraints.

APPENDIX A
PROOFS

Proof of Proposition 4: For each i, define a function gi :
[0, 1] 7→ < by

gi(t) = (1−γ)(tpi+(1−t)qi)+γui
(
xi(tp+(1−t)q)

)
. (45)

Similarly, we have the following bound:

|Ti(p)− Ti(q)| = |gi(1)− gi(0)| ≤ max
t∈[0,1]

∣∣∣∣
dgi(t)

dt

∣∣∣∣,

Similar to the proof of Proposition 3, it suffices to bound
|dgi(t)/dt|. Let r = tp+ (1− t)q. We have
∣∣∣∣
dgi(t)

dt

∣∣∣∣=
∣∣∣∣(1− γ)(pi − qi) + γ

∑
j∇jui ◦ xi

(
r(t)

)
(pj − qj)

∣∣∣∣

=

∣∣∣∣
(
1− γ + γu′i(xi(r))∇ixi(r)

)
· (pi − qi)

+γu′i(xi(r)) ·
∑
j 6=i∇jxi(r)(pj − qj)

∣∣∣∣

≤max
j
|pj − qj | ·

(
|1− γ + γu′i(xi(r))∇ixi(r)|+

+γ|u′i(xi(r))| ·
∑
j 6=i|∇jxi(r)|

)
(46)

If the following condition holds:
{
γ = 1,∑n
j=1 |∇jxi(r)| < 1/|u′i(xi(r))|, ∀r, ∀i, (47)

or the following condition holds:
{

0 < γ ≤ (1 +∇ixi(r) · |u′i(xi(r))|)−1,∑
j 6=i |∇jxi(r)| < ∇ixi(r) + |u′i(xi(r))|−1,

∀r, ∀i,
(48)

then there exists a constant α ∈ (0, 1) such that
∣∣∣∣
dgi(t)

dt

∣∣∣∣ ≤ αmax
j
|pj − qj | = α‖p− q‖∞, ∀t ∈ [0, 1], ∀i,

or in other words, T is a contraction with modulus α.
We then derive ∇jxi(r) based on C(x). Applying the first-

order conditions to the definition of x(r) in (26), we have
ri − ci(x(r)) = 0, for all i. Thus, the chain rule yields

1 =
∂ci(x(r))

∂ri
=

n∑

l=1

∇lci(x(r)) · ∂xl(r)
∂ri

, ∀i,

0 =
∂ci(x(r))

∂rj
=

n∑

l=1

∇lci(x(r)) · ∂xl(r)
∂rj

, ∀i, j : i 6= j.

Therefore, we have

[∇jxi(r)]n×n = [∇jci(x(r))]−1n×n = [H(x(r))]−1,

or in other words, ∇jxi(r) = Pij(x(r)). Substituting ∇jxi(r)
into (47) and (48) leads to (27) and (28), respectively.

Proof of Proposition 5: We notice that Ti(p) in (7) can
be written in the form Ti(p) = pi − γfi(p), where fi(p) is
defined by fi(p) := yi(p)−xi(p), with fi being continuously
differentiable. By Proposition 1.11 of [11] (pp. 194), Ti(p) is
a contraction if

{
0 < γ ≤ 1/∇ifi(p),∑
j 6=i |∇jfi(p)| < ∇ifi(p),

∀p, ∀i, (49)
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Similar to Proposition 4, We can derive ∇jfi(p) from the
Hessian matrix of C(x) and U(x). In particular, we have

∇ifi(p) =∇iyi(p)−∇ixi(p) = Pii(x(p))−
(
U ′′i (xi(p))

)−1

∇jfi(p) =∇jyi(p)−∇jxi(p) = Pij(x(p)), ∀j 6= i.

Substituting the above into (49) and utilizing the fact
U ′′i (xi) < 0 will prove the proposition.

Proof of Proposition 6: We use the following lemma,
whose proof can be found in [11] (pp. 210, Proposition 3.1):
Lemma 7. Suppose F is convex on a convex set X . Then,
z ∈ X minimizes F over X , if and only if (y−z)T∇F (z) ≥ 0
for every y ∈ X .

Suppose Algorithm 1 has a fixed point p∗ = (p∗1, . . . , p
∗
n)

and an associated z∗. Then we have
{
p∗i = ∇iC(z∗), ∀i,
z∗i = arg maxzi∈Ci Ui(zi)− (p∗i )

Tzi, ∀i. (50)

Since z∗i maximizes Ui(zi)− (p∗i )
Tzi on Ci, by Lemma 7,

(yi − z∗i )T
(
∇Ui(z∗i )− p∗i

)
≤ 0, ∀yi ∈ Ci, ∀i.

Since p∗i = ∇iC(z∗), we have
∑

i

(yi − z∗i )T
(
∇Ui(z∗i )−∇iC(z∗)

)
≤ 0, ∀y ∈

∏

i

Ci,

which means z∗ solves (31) according to Lemma 7. In a
similar way, we can prove Proposition 6 for Algorithm 2.
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