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Cloud Tenants

WWW
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Problem: No bandwidth guarantee
Not good for Video-on-Demand, transaction 
processing web applications, etc.
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Over-provision
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H. Ballani, et al.

Towards Predictable Datacenter Networks 
ACM SIGCOMM ‘11

C. Guo, et al.
SecondNet: a Data Center Network Virtualization 
Architecture with Bandwidth Guarantees
ACM CoNEXT ‘10

Good News: 
Bandwidth reservations are becoming 
feasible between a VM and the Internet 
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Reservation
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reduces cost due to better utilization
Dynamic Bandwidth Reservation

Difficulty: tenants don’t really know their demand!
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A New Bandwidth Reservation Service
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A tenant specifies a percentage of its bandwidth 
demand to be served with guaranteed performance;
The remaining demand will be served with best effort

Bandwidth Reservation 

Tenant Cloud 
Provider

Demand
Prediction

Workload history 
of the tenantGuaranteed

Portion

(e.g., 95%)QoS
Level

repeated periodically

Wednesday, August 8, 2012



Tenant Demand Model

Each tenant i has a random demand Di 

Assume Di is Gaussian, with

mean μi = E[Di]

variance σi2 = var[Di]

covariance matrix Σ = [σij]

Service Level Agreement: Outage w.p.  
8
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Objective 1: Pricing the reservations

A reservation fee on top of the usage fee

Objective 2: Resource Allocation

Price affects demand, which affects price 
in turn

Social Welfare Maximization

10

Objectives
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Tenant i can specify a guaranteed portion wi
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Tenant i’s expected utility (revenue)

E[ui(wi, Di)] = Ui(wi, µi,σi, . . .)

Concave, twice differentiable, increasing 

Utility depends not only on demand, but also

on the guaranteed portion!

Tenant Utility (e.g., Netflix)
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Bandwidth Reservation
Given submitted guaranteed portions

12

the cloud will guarantee the demands

Non-multiplexing: Pr(wiDi > Ri) < �, K =
�

i Ri

Pr(
�

i wiDi > K) < �Multiplexing:

Service cost cost(w) = cost(K(w)) = βK(w)
e.g.

It needs to reserve a total bandwidth capacity

w = [w1, . . . , wN ]T

w1D1, . . . , wNDN

K(w)
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Cloud Objective: 
Social Welfare Maximization

Social Welfare

13
Impossible: the cloud does not know Ui

max
w1,...,wN

�

i

Ui(wi)− cost(w1, . . . , wN )

Surplus of 
tenant i

Profit of the 
Cloud 

=
�

i

�
Ui(wi)− Pi

�
+
�

i Pi − cost(w)

Price
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Surplus (Profit)

Pricing function Pi(wi)

w̃i = argmax
wi

Ui(wi)− Pi(wi)

Under Pi(⋅), tenant i will choose

Price guaranteed portion, 

not absolute bandwidth!

Pi(wi) = kiwiExample: Linear pricing

Pricing Function
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Pricing as a Distributed Solution

Challenge: 
    Cost not decomposable for multiplexing

Surplus

w̃i = argmax
wi

Ui(wi)− Pi(wi)where

Social Welfare

Determine pricing policy            to{Pi(·)}
max

�
i Ui(w̃i)− cost(w̃1, . . . , w̃N )

15
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A Simple Case: Non-Multiplexing

Determine pricing policy            to

w̃i = argmax
wi

Ui(wi)− Pi(wi)

{Pi(·)}

where

max
{Pi(·)}

�

i

�
Ui(w̃i)− costi(w̃i)

�

Pi(wi) = costi(wi)

max
{Pi(·)}

�

i

Ui(w̃i)− cost(w̃1, . . . , w̃N )

Mean Std

costi(wi) ∼ Ri = (µi + θ(�)σi)wi

Pr(wiDi > Ri) = �Since , for Gaussian Di

Wednesday, August 8, 2012



The General Case:
Lagrange Dual Decomposition

M. Chiang, S. Low, A. Calderbank, J. Doyle.
Layering as optimization decomposition: A mathematical 
theory of network architectures. Proc. of IEEE 2007
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s.t. w = vmaxw,v
�

i Ui(wi)− cost(v)

L(w,v,k) =
�

i Ui(wi)− cost(v) + kT(v −w)

=
�

i(Ui(wi)− kiwi) + kTv − cost(v)

q(k) = supw,v L(w,v,k)Lagrange dual 

Dual problem mink q(k)

maxw
�

i Ui(wi)− cost(w)Original problem
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Lagrange multiplier  ki  as price: Pi (wi) := ki wi  

L(w,v,k) =
�

i Ui(wi)− cost(v) + kT(v −w)

=
�

i(Ui(wi)− kiwi) + kTv − cost(v)

q(k) = supw,v L(w,v,k)Lagrange dual 

Dual problem mink q(k)

q(k)

Subgradient Algorithm:

k = k+ step× (ṽ − w̃)
a subgradient of 

For dual minimization, update price:

w̃i = argmax
wi

Ui(wi)− kiwi

ṽ = argmax
v

kTv − cost(v)

decompose
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Weakness of the Subgradient Method

Social Welfare (SW)

Surplus

Tenant i

Cloud Provider

. . .. . .Tenant 1 Tenant N

Step size is a issue!  Convergence is slow.

2 w̃i = argmax
wi

Ui(wi)− Pi(wi)

Price 1Pi(wi)Guaranteed Portion3 w̃i

4
Update to increasePi(·)

�
i Ui(w̃i)− cost(w̃1, . . . , w̃N )
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Our Algorithm: Equation Updates

1 w̃i 3ki

Tenant i

Cloud Provider

. . .. . .
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4 w̃i = argmax
wi

Ui(wi)− kiwi

2 Set ki =
∂cost(w)

∂wi

����
w=w̃

U �
i(w̃i) = kiSolve






U �
i(w1) =

∂cost(w)
∂w1

,
. . . ,

U �
i(wN ) = ∂cost(w)

∂wN

KKT Conditions of
max

�
i Ui(wi)− cost :

Linear pricing Pi (wi) = ki wi suffices!
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Theorem 1 (Convergence)
Equation updates converge if for all i

for all

21

w w(0) = 1 w(1)between and

min
xi

��U ��
i (xi)

�� >
N�

j=1

����
∂2cost(w)

∂wi∂wj

����
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Convergence: A Single Tenant (1-D)

22

ki

O

U �
i(wi)

wi

∂cost

∂wi

Subgradient method
Equation Updates

w∗
i

k∗i

Not converging

ki =
∂cost

∂wi

U �
i(wi) = ki
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The Case of Multiplexing

23

Pr(
�

i wiDi > K) = �

K(w) = E
��

i wiDi

�
+ θ(�)

�
Var

��
i wiDi

�

= µµµTw + θ(�)
√
wTΣΣΣw

= µµµTw + θ(�)||ΣΣΣ1/2w||2

Covariance matrix:
symmetric, positive 
semi-definite

cost(w) = βK(w) is a cone centered at 0

Satisfies Theorem 1, algorithm converges.

and    is smallis not zerowif β
∂2cost(w)

∂wi∂wj
≈ 0
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Data Mining: VoD Demand Traces

200+ GB traces (binary) from UUSee Inc.

reports from online users every 10 
minutes

Aggregate into video channels
25
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Predict Expected Demand via Seasonal ARIMA

Time periods (1 period = 10 minutes)
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Time periods (1 period = 10 minutes)
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s
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Predict Demand Variation via GARCH
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Prediction Results

Each tenant i has a random demand Di  

in each “10 minutes”

Di is Gaussian, with

mean μi = E[Di]

variance σi2 = var[Di]

covariance matrix Σ = [σij]
28

Wednesday, August 8, 2012



Dimension Reduction via PCA

A channel’s demand = 
                   weighted sum of factors

Find factors using Principal Component 
Analysis (PCA)

Predict factors first, then each channel

29
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Number of principal components

86%

88%

90%

92%

94%

96%

98%

100%

1 5 9 13 17 21 25 29 33 37 41 45

98%
8 components

Complexity Reduction:

452 channels 8 components

Data Variance Explained

32
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Pricing: Parameter Settings

33

αi = 1, Ai = 0.5,β = 0.5, � = 0.01

E[ui(wi)] = αiwiµi − eAi(1−wi)µi+ 1
2A

2
i (1−wi)

2σ2
i .

Utility of tenant i (conservative estimate)

Linear revenue Reputation loss for 
demand not guaranteed

ui

�
qi(wi), Di

�
= αiqi(wi)− eAi(Di−qi(wi)),

Usage of tenant i:
qi(wi) = wiDi w.h.p.
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Equation Updates
Subgradient MethodCDF

Convergence Iteration of the Last Tenant

Mean = 6 rounds

Mean = 158 rounds
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100 tenants (channels), 81 time periods (81 x 10 Minutes)
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Related Work

Primal/Dual Decomposition [Chiang et al. 07]

Contraction Mapping x := T(x)

D. P. Bertsekas, J. Tsitsiklis, "Parallel and 
distributed computation: numerical methods"

Game Theory [Kelly 97]

Each user submits a price (bid), expects a payoff 

Equilibrium may or may not be social optimal

Time Series Prediction

HMM [Silva 12], PCA [Gürsun 11], ARIMA [Niu 11]
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Conclusions

A cloud bandwidth reservation model 
based on guaranteed portions

Pricing for social welfare maximization

Future work: 

new decomposition and iterative 
methods for very large-scale distributed 
optimization 

more general convergence conditions
Wednesday, August 8, 2012



Thank you

Di  Niu

Department of Electrical and Computer Engineering
University of Toronto

http://iqua.ece.toronto.edu/~dniu
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Fig. 5. QQ plot of innovations for t =1562—1640 vs. normal distribution.

The reactive scheme represents provisioning for peak de-
mand in Fig. 1 in some way, with limited replication. It does
not leverage prediction or bandwidth reservation. We assume
in Reactive, the total cloud capacity allocated is always the
minimum capacity needed to meet the peak demand in the
system. The random scheme leverages prediction and makes
bandwidth reservation, but randomly directs workloads instead
of using anti-correlation to minimize bandwidth reservation.

C. Assumption Validation
First, we verify that Dit approximately follows Gaussian

distribution in each 10-minute period. For each channel i,
given conditional mean prediction µ̂it at time t, the innovation
is Zit := Dit − µ̂it. Fig. 5(a) shows the QQ plot of Zit for
a typical channel i = 121 from time period 1562 to 1640,
which indicates {Zit} sampled at 10-minute intervals is a
Gaussian process. Thus, it is reasonable to assume Dit follows
a Gaussian distribution within the 10 minutes following t,
with mean µ̂it. Fig. 5(b) shows the QQ plot of

∑

i Zit,
which indicates that the aggregated demand

∑

i Dit tends to
Gaussian even if Djt is not for some channel j. Since the load
Ls of each data center is aggregated from many videos, it is
reasonable to assume Ls is Gaussian.
Furthermore, it has been verified in [7] that the innovations

{Zit} forms a stationary uncorrelated series whereas {Z2
it} is

auto-correlated, justifying the validity of GARCH modeling
of innovations {Zit} in Sec. IV.

D. Predictive Auto-Scaling vs. Reactive Provisioning
We implement all of the five schemes discussed above, and

present their performance comparison in Table I for each of
the four time spans. Note that the channels in the table include
mature channels, virtual new and virtual small channels. The
number of videos in each virtual channel can vary over time.
As new videos are introduced, more channels are present in
later test periods. We evaluate the performance with regard to
QoS, bandwidth resource occupied, and replication cost.
Table I shows that Reactive generally has a more salient

QoS problem than all four predictive schemes in terms of
both the number of unsatisfied channels and request drop
rate, demonstrating the benefit of utilizing demand prediction.
Fig. 6 presents a more detailed comparison for a typical peak
period from time 702 to 780. Without surprise, Reactive has
many unfulfilled requests at the beginning. Since the videos

are randomly replicated to K = 2 data centers (shown in
Fig. 6(c) at t = 702) and requests are randomly directed,
it is likely that a channel does not acquire enough capacity
to meet its demand. As Reactive detects the QoS problem,
videos are replicated to more data centers to acquire more
capacity, with a gradually increasing replication degree over
time, as in Fig. 6(c). We can see that after 140 minutes, when
the replication degree reaches above 4, the QoS of Reactive
becomes relatively stable in Fig. 6(a). However, around time
763, Reactive suffers from salient QoS problems again, due
to a sudden ramp-up of demand. In contrast, the predictive
schemes foresee and prepare for demand changes, resulting in
much better QoS, even in the event of drastic demand increase.
The predictive schemes also achieve higher resource utiliza-

tion. Utilization of a predictive scheme is the ratio between
the actual used bandwidth and the total booked bandwidth
in all data centers. For Reactive the utilization is the actual
bandwidth demand divided by the peak demand. Although
Fig. 6(b) shows that Reactive achieves a high utilization for the
peak demand around time 763, its average utilization is merely
77.19% in the test period from 702 to 780. Predictive auto-
scaling enhances utilization to 85.67% with Per-DC Limited
Channels, to 89.99% with Per-DC Optimal, and to 92.9% with
the theoretical optimal solution. In addition, the prediction
and optimization in predictive methods are computationally
efficient, e.g., prediction and Per-DC Optimal finish in 2
minutes, well before the deadline of 10 minutes.

E. Theoretical Optimal vs. Replication-limited Heuristics
Now we focus on each of the four predictive schemes.

Among them, as shown in Table I, Optimal books the mini-
mum necessary bandwidth and achieves the highest bandwidth
utilization, yet with the highest replication overhead: a video
is replicated to every data center. The VoD provider thus needs
to pay a high storage fee to the cloud.
Per-DC Optimal can reduce the replication degree while

maintaining other performance metrics. By further impos-
ing a channel number constraint on each data center, Per-
DC Limited Channels strikes a balance between replication
overhead and bandwidth utilization. It aggressively reduces
the replication degree to a very small value of 2.4-2.6
copies/video, which is the smallest among all four schemes,
with an extremely low drop rate and an over-provisioning
ratio only slightly higher than Optimal and Per-DC Optimal.
Random achieves the lowest utilization, since it is blind to the
correlation information in workload selection and direction.
We further show a detailed comparison between the three

predictive heuristics from time 1562 to 1640 in Fig. 7. The
efficiency of predictive bandwidth booking can be evaluated
by the cushion bandwidth needed, which is the gap between
the booked bandwidth and actual required bandwidth. Fig. 7(a)
plots the cushion bandwidth. While being on the same QoS
level, random load direction results into a cushion bandwidth
up to 3 Gbps compared to a mean demand of 5.62 Gbps,
representing significant over-provisioning. Using Per-DC Op-
timal, the cushion bandwidth can be saved by 50% on average,

38
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Optimal Pricing 
when each tenant requires wi ≡ 1

Correlation to the 
market, in [-1, 1]

Expected
Demand

Demand
Standard Deviation

With multiplexing,

P ∗
i (1) = µi + θ(�)σiρiM
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P ∗
i (1) = µi + θ(�)σi

Without multiplexing,
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