Pricing Cloud Bandwidth Reservations under Demand Uncertainty

Di Niu, Chen Feng, Baochun Li

Department of Electrical and Computer Engineering University of Toronto

Roadmap

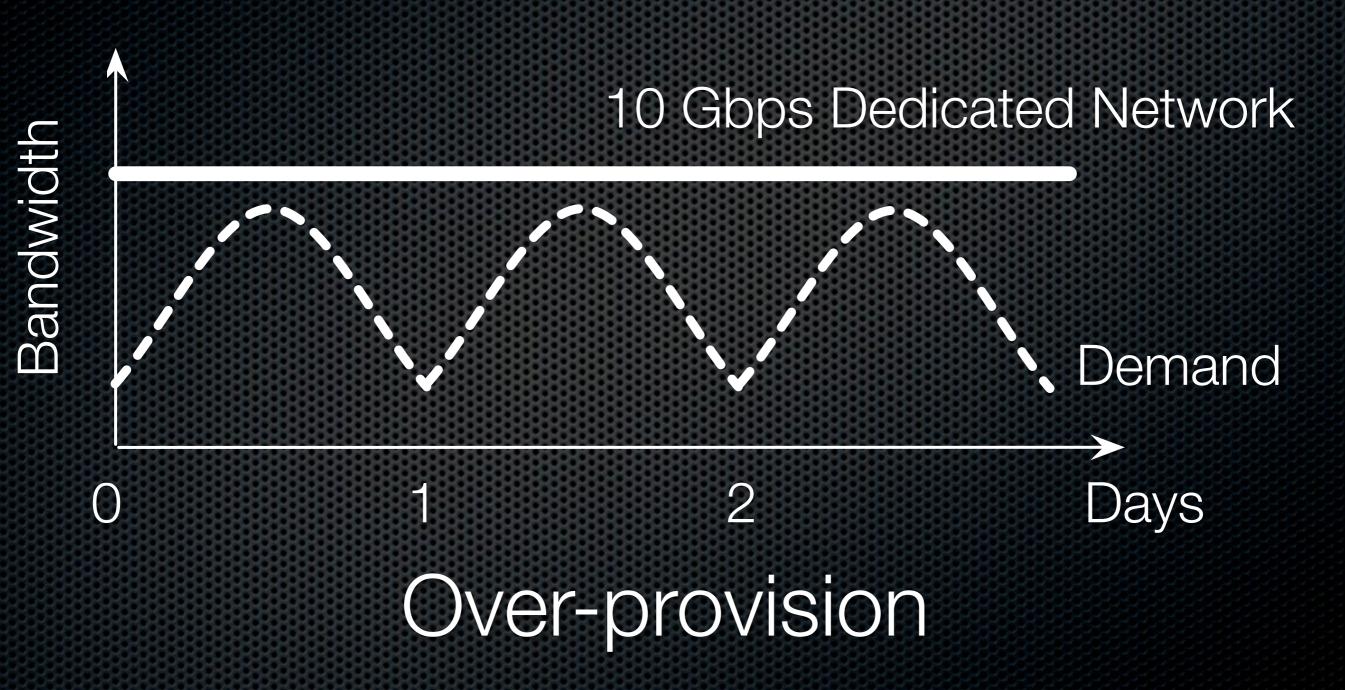
Part 1 A cloud bandwidth reservation model
 Part 2 Price such reservations

 Large-scale distributed optimization

 Part 3 Trace-driven simulations

Problem: No bandwidth guarantee Not good for Video-on-Demand, transaction processing web applications, etc.

Amazon Cluster Compute

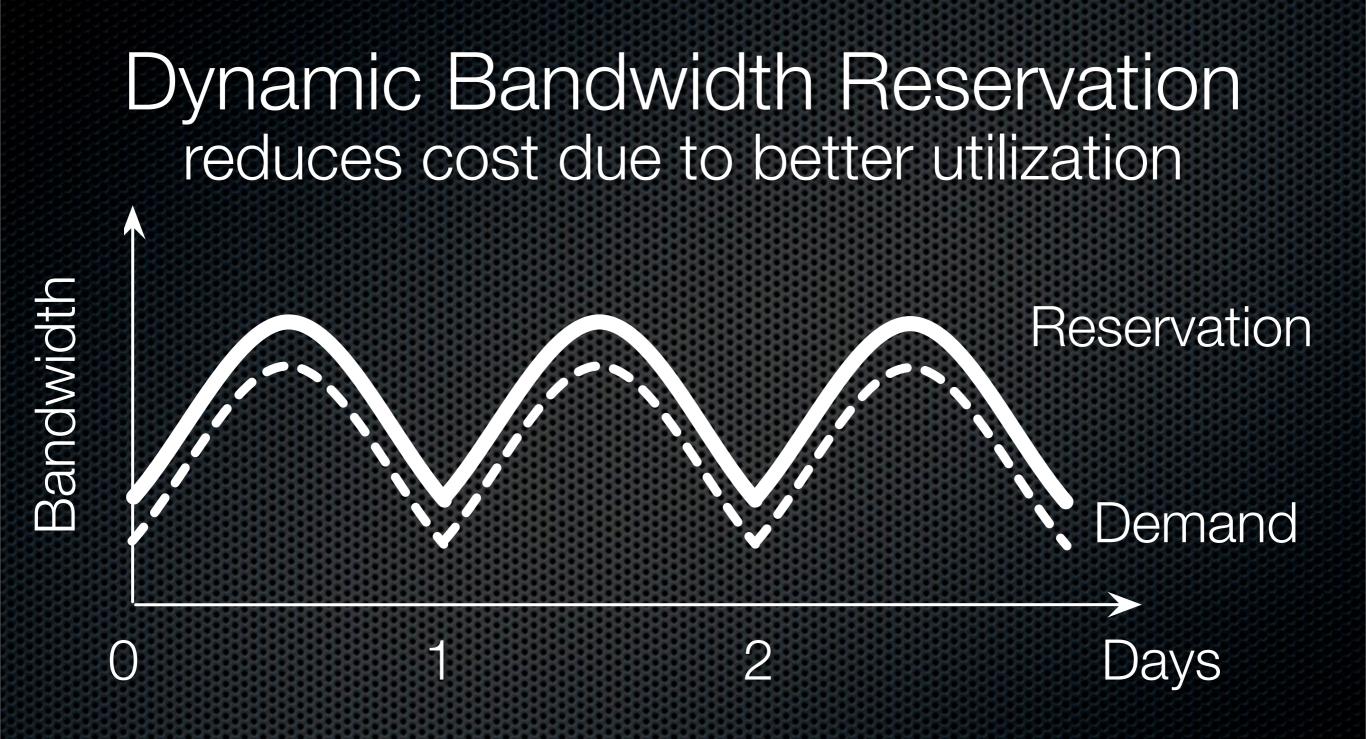


Good News: Bandwidth reservations are becoming feasible between a VM and the Internet

H. Ballani, et al.

Towards Predictable Datacenter Networks ACM SIGCOMM '11

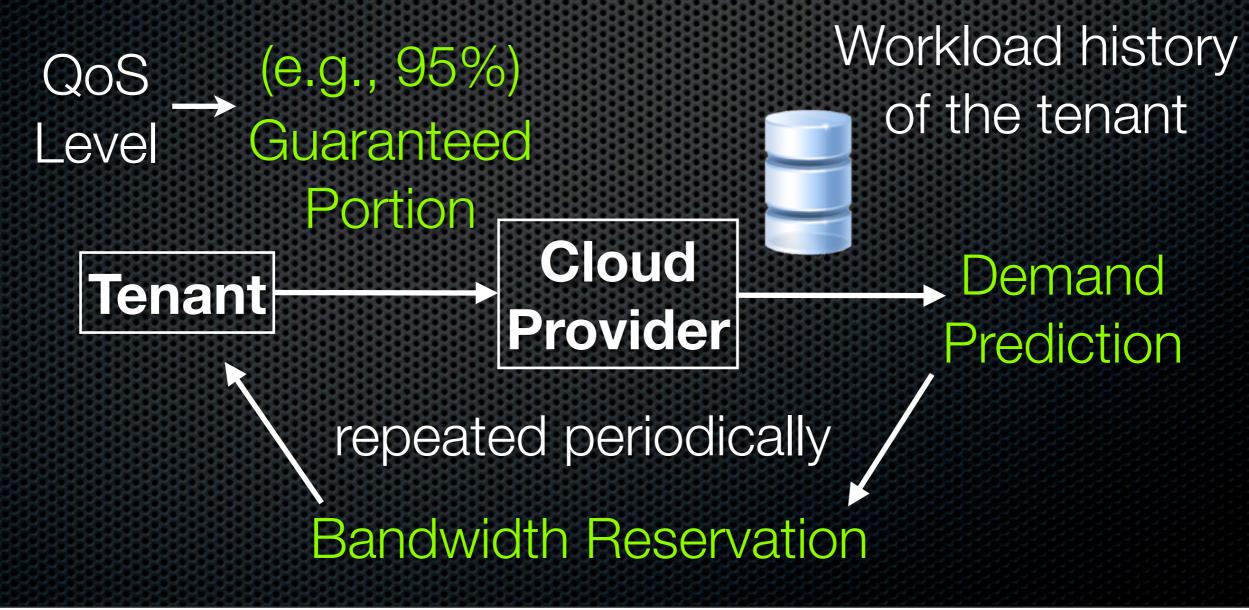
C. Guo, et al. SecondNet: a Data Center Network Virtualization Architecture with Bandwidth Guarantees ACM CoNEXT '10



Difficulty: tenants don't really know their demand!

A New Bandwidth Reservation Service

A tenant specifies a *percentage of its bandwidth demand* to be served with guaranteed performance; The remaining demand will be served with best effort



Tenant Demand Model

• Each tenant *i* has a random demand D_i • Assume D_i is Gaussian, with = mean $\mu_i = \mathbf{E}[D_i]$ • variance $\sigma_i^2 = \operatorname{var}[D_i]$ • covariance matrix $\Sigma = [\sigma_{ij}]$ Service Level Agreement: Outage w.p.

Roadmap

Part 1 A cloud bandwidth reservation model
 Part 2 Price such reservations
 Large-scale distributed optimization
 Part 3 Trace-driven simulations

Objectives

- Objective 1: Pricing the reservations
 A reservation fee on top of the usage fee
 Objective 2: Resource Allocation
 Price affects demand, which affects price in turn
 - Social Welfare Maximization

Tenant Utility (e.g., Netflix)

Tenant *i* can specify a guaranteed portion w_i Tenant *i*'s *expected* utility (revenue) $E[u_i(w_i, D_i)] = U_i(w_i, \mu_i, \sigma_i, ...)$ Concave, twice differentiable, increasing

Utility depends not only on demand, but also on the guaranteed portion!

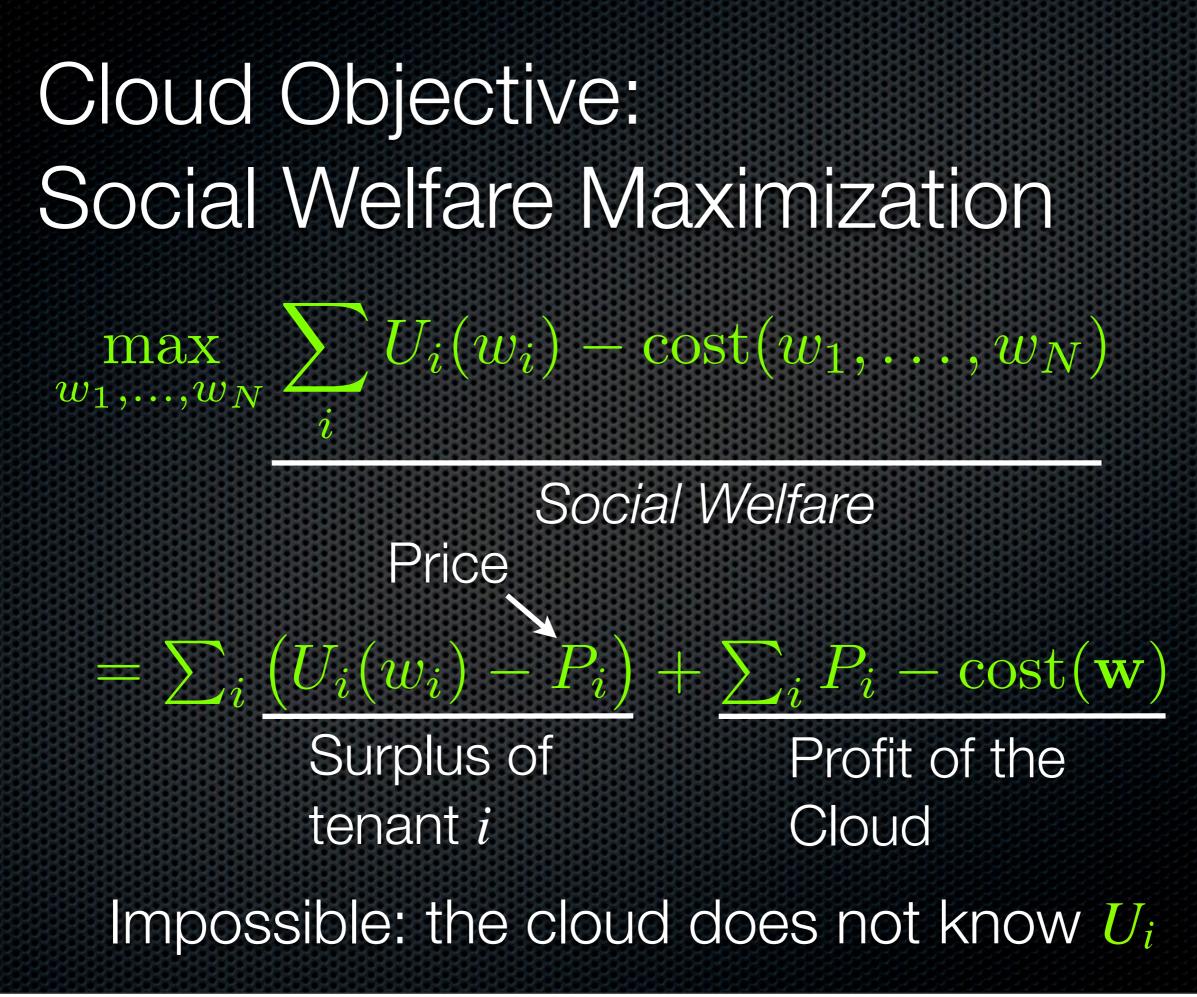
Bandwidth Reservation

• Given submitted guaranteed portions $\mathbf{w} = [w_1, \dots, w_N]^T$ the cloud will guarantee the demands $w_1 D_1, \dots, w_N D_N$

• It needs to reserve a total bandwidth capacity $K(\mathbf{w})$

Non-multiplexing: $\Pr(w_i D_i > R_i) < \epsilon, \ K = \sum_i R_i$ Multiplexing: $\Pr(\sum_i w_i D_i > K) < \epsilon$

Service cost $\operatorname{cost}(\mathbf{w}) = \operatorname{cost}(K(\mathbf{w})) \stackrel{\text{e.g.}}{=} \beta K(\mathbf{w})$



Pricing Function Pricing function $P_i(w_i)$ Price guaranteed portion, not absolute bandwidth! Example: Linear pricing $P_i(w_i) = k_i w_i$ Under $P_i(\cdot)$, tenant *i* will choose $\tilde{w}_i = rg\max U_i(w_i) - P_i(w_i)$ Surplus (Profit)

Pricing as a Distributed Solution

Determine pricing policy $\{P_i(\cdot)\}$ to $\max \sum_i U_i(\tilde{w}_i) - \operatorname{cost}(\tilde{w}_1, \dots, \tilde{w}_N)$ *Social Welfare* where $\tilde{w}_i = \arg \max_{w_i} U_i(w_i) - P_i(w_i)$ *Surplus*

Challenge: Cost not decomposable for multiplexing

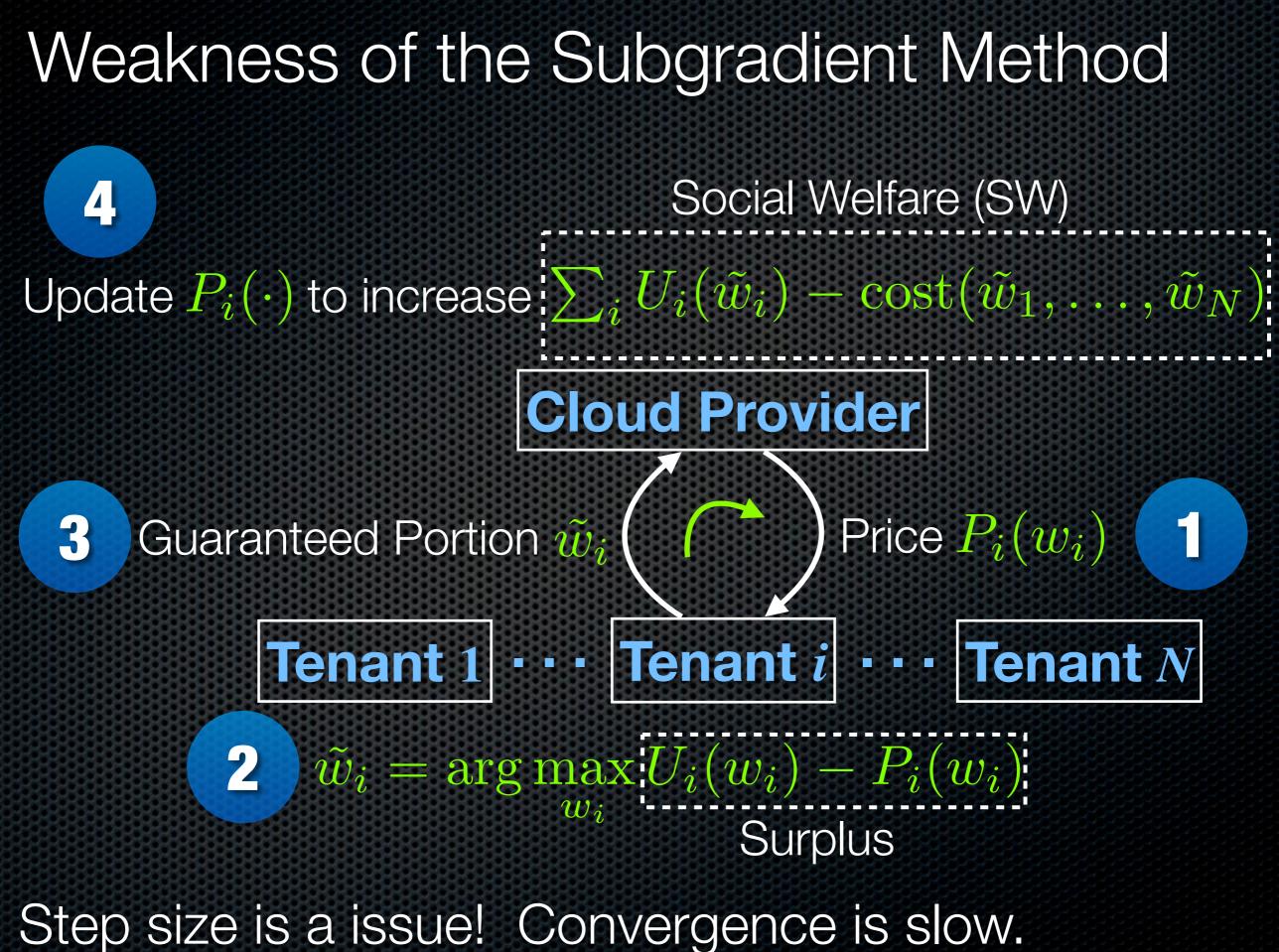
A Simple Case: Non-Multiplexing • Determine pricing policy $\{P_i(\cdot)\}$ to $\max_{\{P_i(\cdot)\}} \sum_{i} (U_i(\tilde{a}\tilde{v})) - ccost(\tilde{a}\tilde{v}_i)), \tilde{w}_N)$ where $\tilde{w}_i = rg \max U_i(w_i) - P_i(w_i)$ $P_i(w_i) = \operatorname{cost}_i(w_i)$ Since $\Pr(w_i D_i > R_i) = \epsilon$, for Gaussian D_i $\operatorname{cost}_i(w_i) \sim R_i = (\mu_i + \theta(\epsilon)\sigma_i)w_i$ Mean

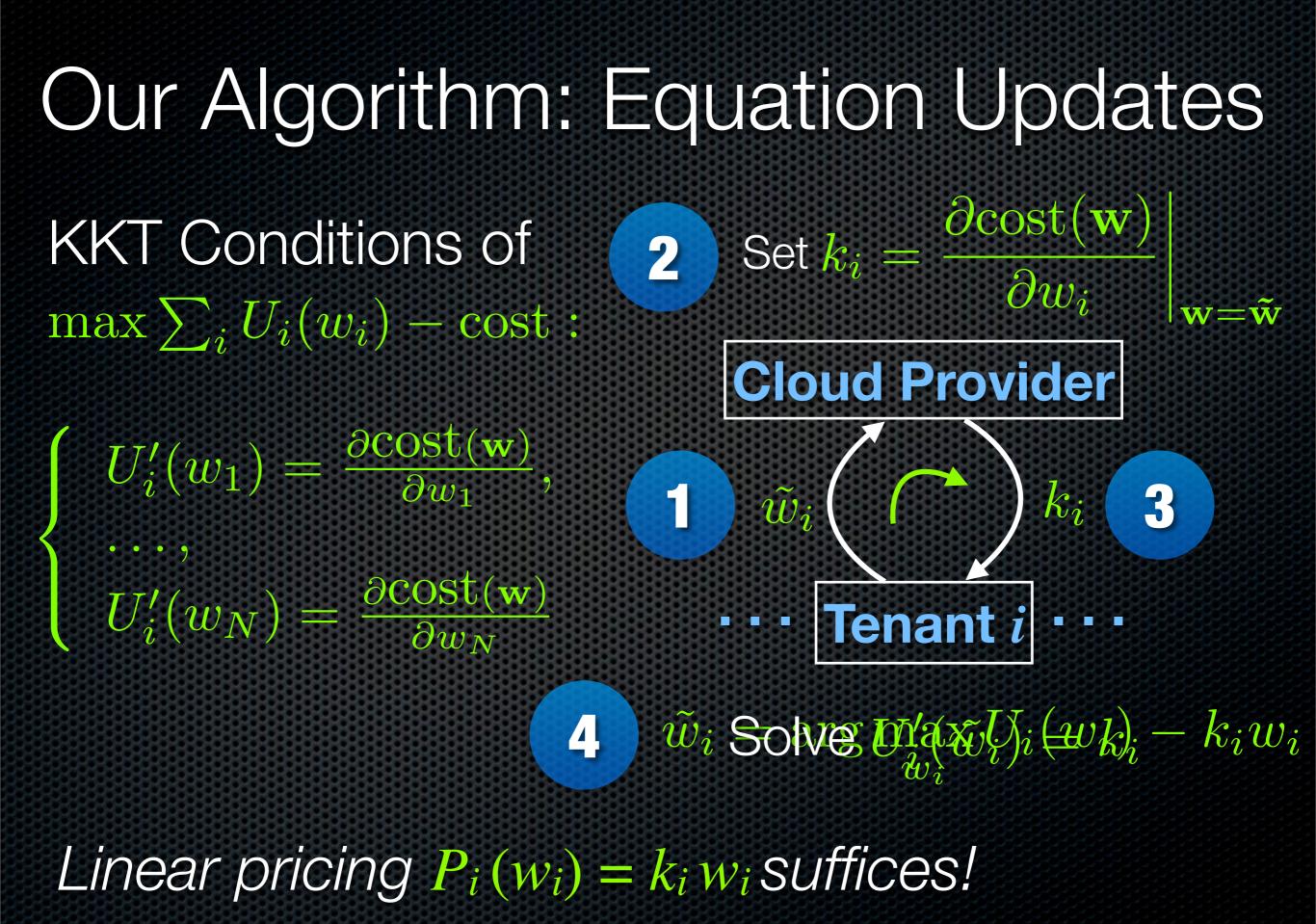
The General Case: Lagrange Dual Decomposition

M. Chiang, S. Low, A. Calderbank, J. Doyle. Layering as optimization decomposition: A mathematical theory of network architectures. **Proc. of IEEE 2007**

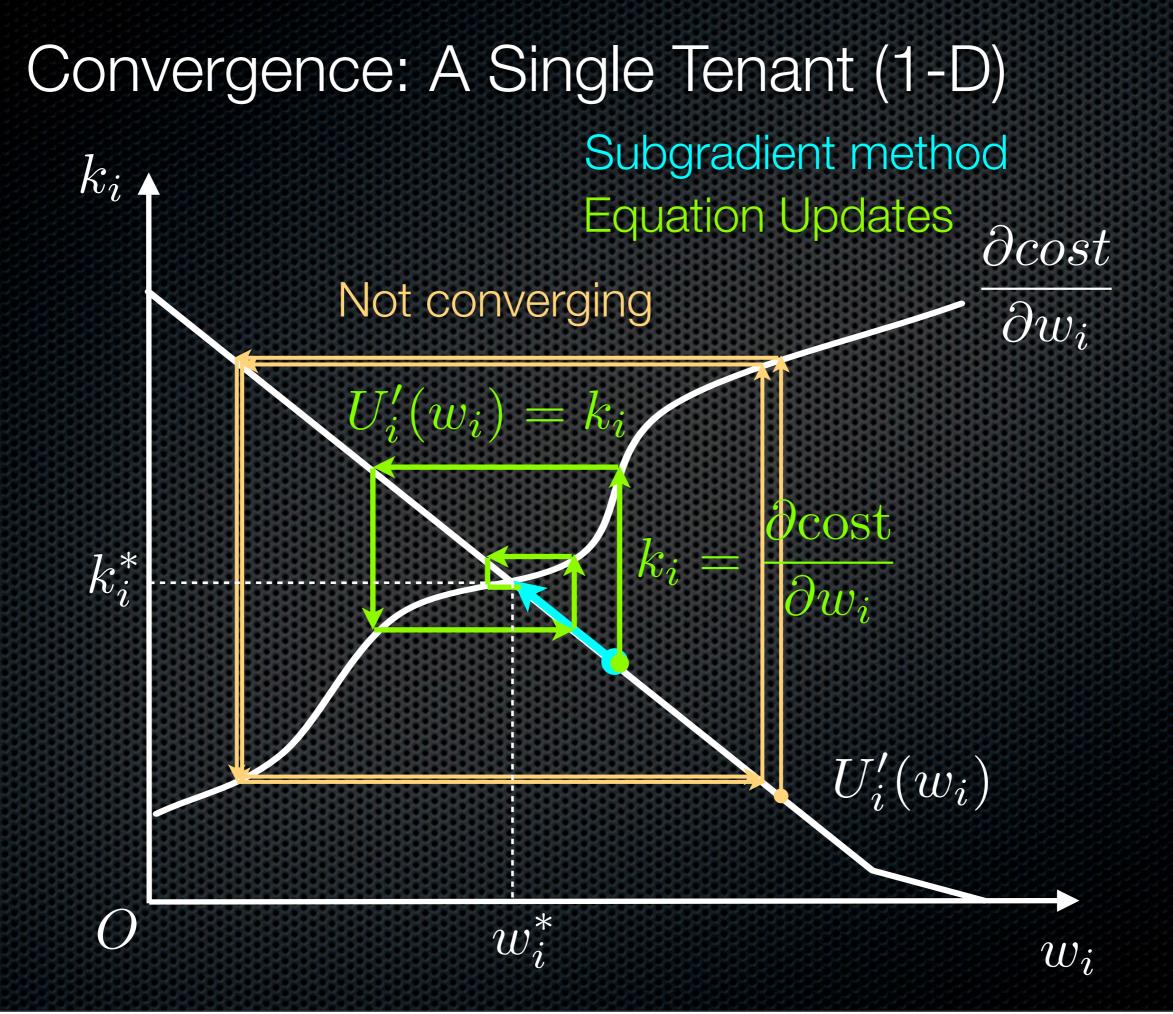
Original problem $\max_{\mathbf{w}} \sum_{i} U_i(w_i) - \operatorname{cost}(\mathbf{w})$ $\max_{\mathbf{w},\mathbf{v}} \sum_{i} U_i(w_i) - \operatorname{cost}(\mathbf{v}) \quad \text{s.t.} \quad \mathbf{w} = \mathbf{v}$ $L(\mathbf{w}, \mathbf{v}, \mathbf{k}) = \sum_{i} U_{i}(w_{i}) - \operatorname{cost}(\mathbf{v}) + \mathbf{k}^{\mathsf{T}}(\mathbf{v} - \mathbf{w})$ $=\sum_{i} (U_i(w_i) - k_i w_i) + \mathbf{k}^{\mathsf{T}} \mathbf{v} - \operatorname{cost}(\mathbf{v})$ Lagrange dual $q(\mathbf{k}) = \sup_{\mathbf{w},\mathbf{v}} L(\mathbf{w},\mathbf{v},\mathbf{k})$ Dual problem $\min_{\mathbf{k}} q(\mathbf{k})$

 $L(\mathbf{w}, \mathbf{v}, \mathbf{k}) = \sum_{i} U_i(w_i) - \operatorname{cost}(\mathbf{v}) + \mathbf{k}^{\mathsf{T}}(\mathbf{v} - \mathbf{w})$ $=\sum_{i} (U_i(w_i) - k_i w_i) + \mathbf{k}^{\mathsf{T}} \mathbf{v} - \operatorname{cost}(\mathbf{v})$ Lagrange dual $q(\mathbf{k}) = \sup_{\mathbf{w},\mathbf{v}} L(\mathbf{w},\mathbf{v},\mathbf{k})$ Dual problem $\min_{\mathbf{k}} q(\mathbf{k})$ Lagrange multiplier k_i as price: $P_i(w_i) := k_i w_i$ decompose $\tilde{w}_i = rg \max U_i(w_i) - k_i w_i$ $\tilde{\mathbf{v}} = \arg \max \mathbf{k}^{\mathsf{T}} \mathbf{v} - \operatorname{cost}(\mathbf{v})$ Subgradient Algorithm: For dual minimization, update price: $\mathbf{k} = \mathbf{k} + \operatorname{step} \times (\tilde{\mathbf{v}} - \tilde{\mathbf{w}})$ a subgradient of $q(\mathbf{k})$





Theorem 1 (Convergence) Equation updates converge if for all *i* $\min_{x_i} |U_i''(x_i)| > \sum_{j=1}^N \left| \frac{\partial^2 \operatorname{cost}(\mathbf{w})}{\partial w_i \partial w_j} \right|$ for all **w** between $\mathbf{w}^{(0)} = 1$ and $\mathbf{w}^{(1)}$



The Case of Multiplexing $\Pr(\sum_{i} w_i D_i > K) = \epsilon$ $K(\mathbf{w}) = \mathbf{E} \left[\sum_{i} w_{i} D_{i} \right] + \theta(\epsilon) \sqrt{\mathbf{Var} \left[\sum_{i} w_{i} D_{i} \right]}$ $= \mu^{\mathsf{T}} \mathbf{w} + \theta(\epsilon) \sqrt{\mathbf{w}^{\mathsf{T}} \Sigma \mathbf{w}} \rightarrow \text{Covariance matrix:}$ $= \boldsymbol{\mu}^{\mathsf{T}} \mathbf{w} + \boldsymbol{\theta}(\epsilon) ||\boldsymbol{\Sigma}^{1/2} \mathbf{w}||_2 \text{ semi-definite}$ symmetric, positive $cost(\mathbf{w}) = \beta K(\mathbf{w})$ is a cone centered at 0 $\frac{\partial^2 \operatorname{cost}(\mathbf{w})}{\partial w_i \partial w_j} \approx 0 \quad \text{if } \mathbf{w} \text{ is not zero and } \beta \text{ is small}$

Satisfies Theorem 1, algorithm converges.

Roadmap

Part 1 A cloud bandwidth reservation model
 Part 2 Price such reservations

 Large-scale distributed optimization

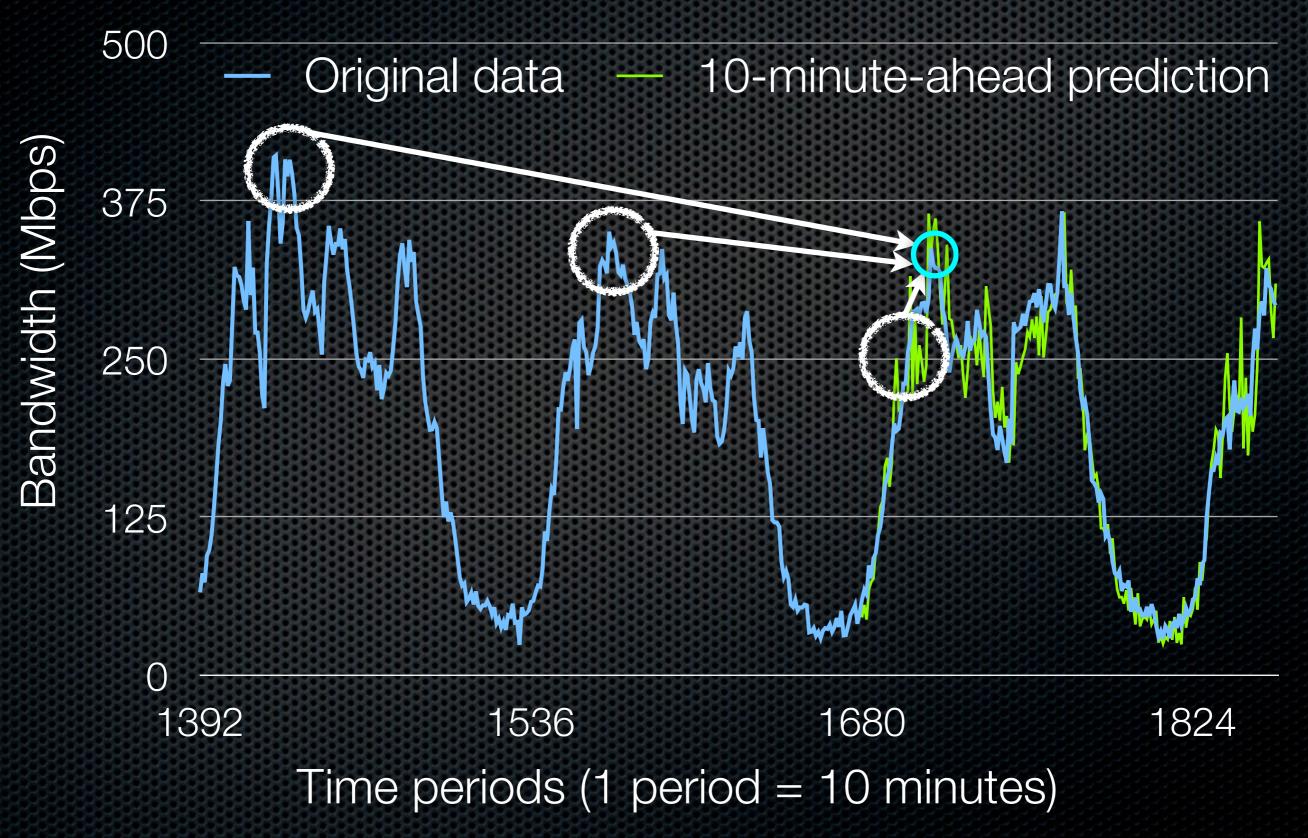
 Part 3 Trace-driven simulations

Data Mining: VoD Demand Traces

 200+ GB traces (binary) from UUSee Inc.
 reports from online users every 10 minutes

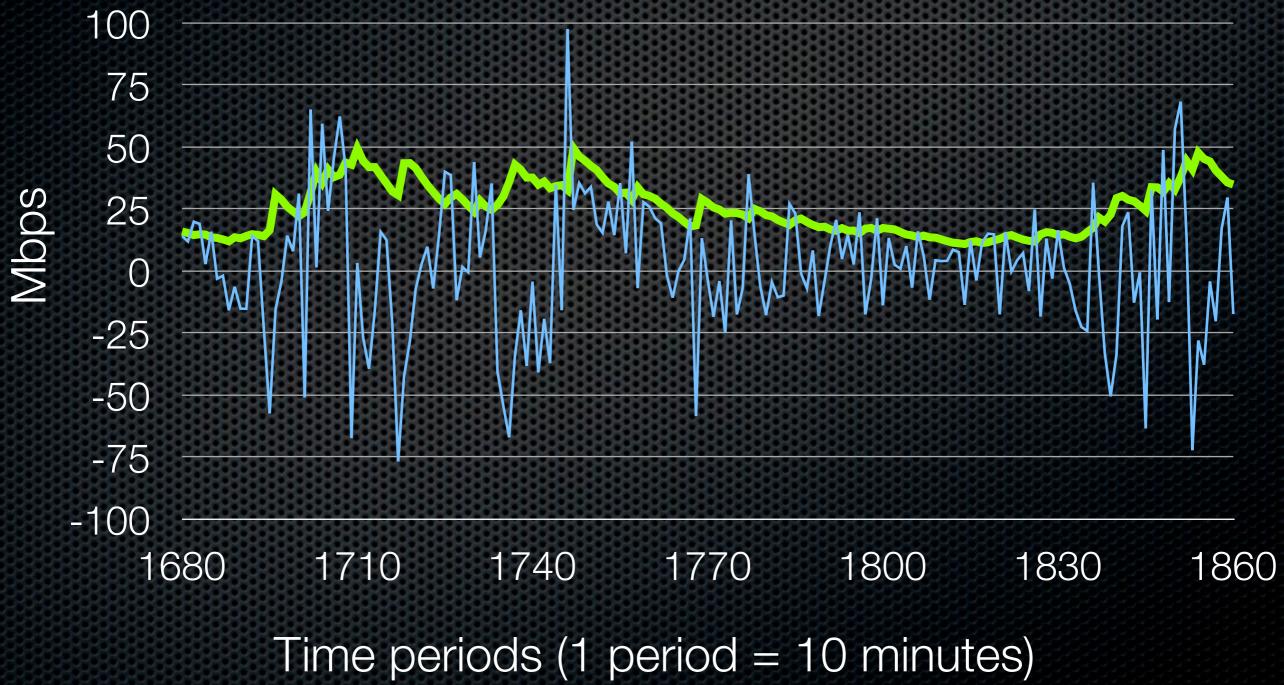
Aggregate into video channels

Predict Expected Demand via Seasonal ARIMA



Predict Demand Variation via GARCH

Departure from expected demand
 Predicted conditional error standard deviation



Prediction Results

Each tenant *i* has a random demand *D_i* in each "10 minutes"

• D_i is Gaussian, with

• mean $\mu_i = \mathbf{E}[D_i]$

• variance $\sigma_i^2 = var[D_i]$

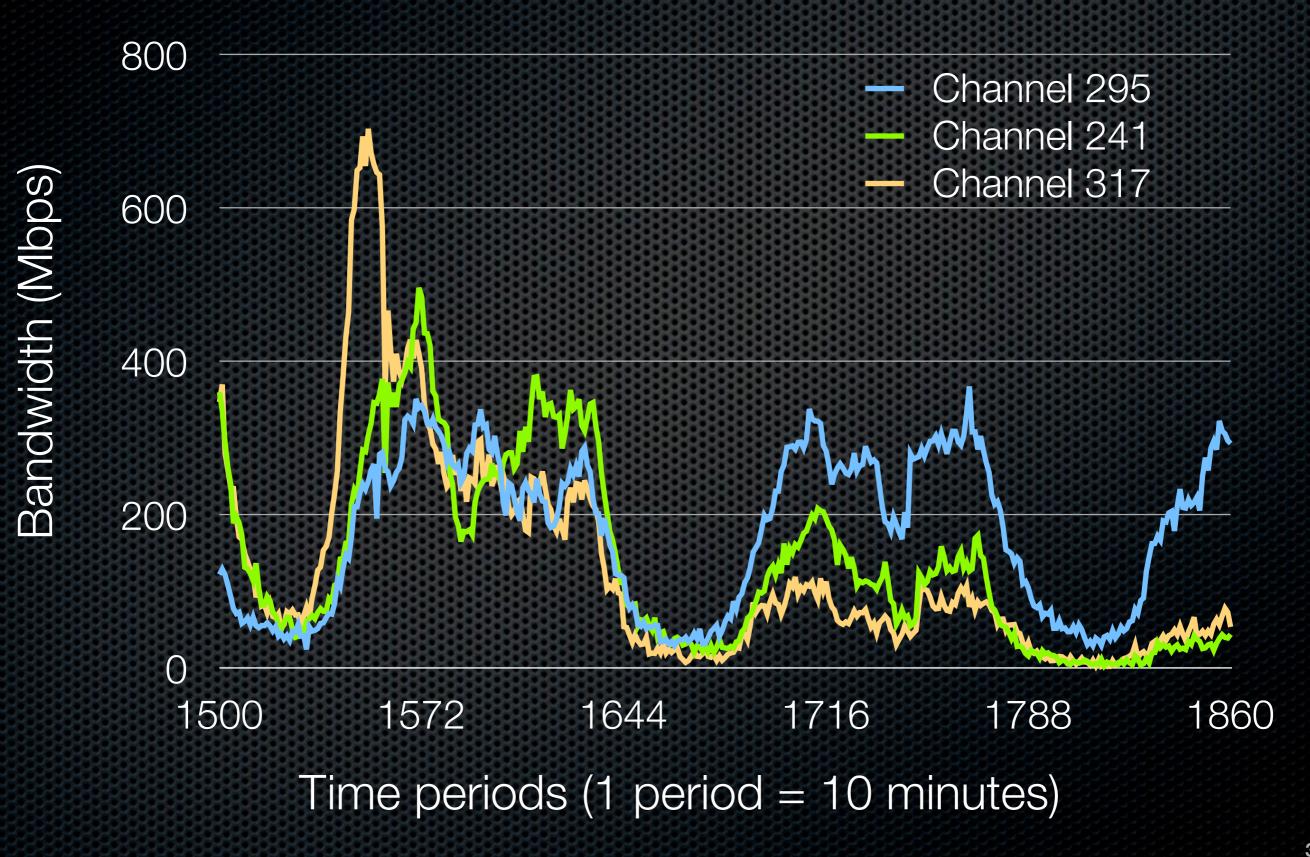
• covariance matrix $\Sigma = [\sigma_{ij}]$

Dimension Reduction via PCA

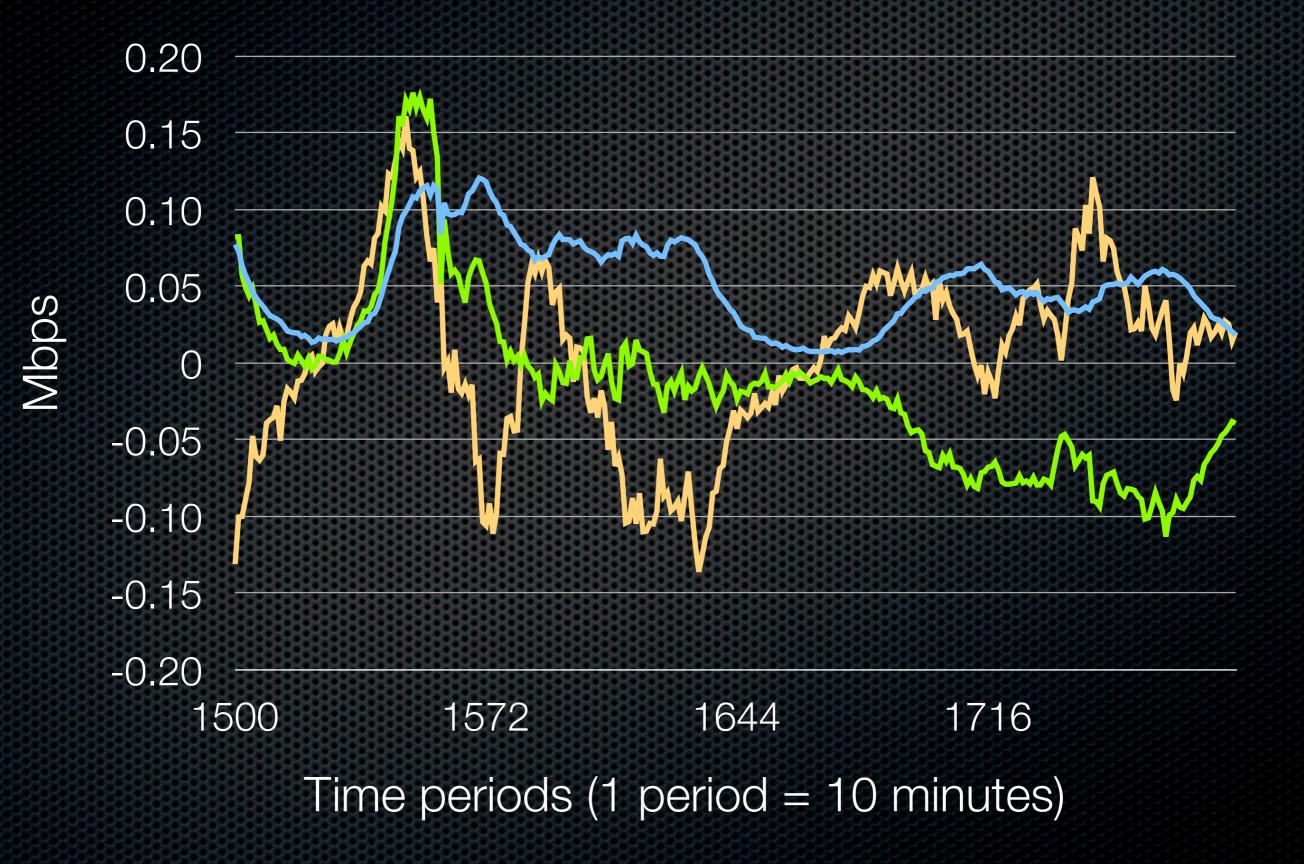
 A channel's demand = weighted sum of factors
 Find factors using Principal Component Analysis (PCA)

Predict factors first, then each channel

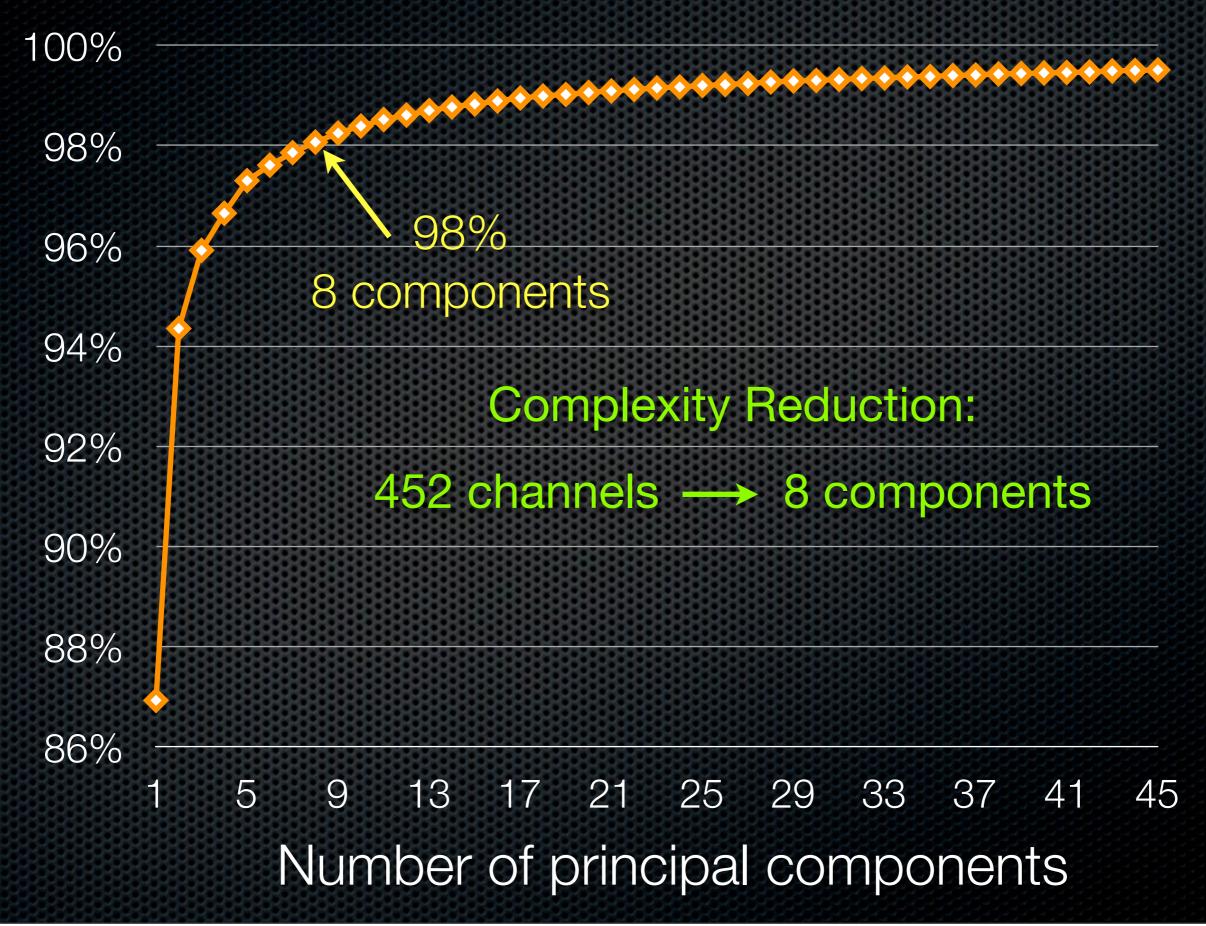
3 Biggest Channels of 452 Channels



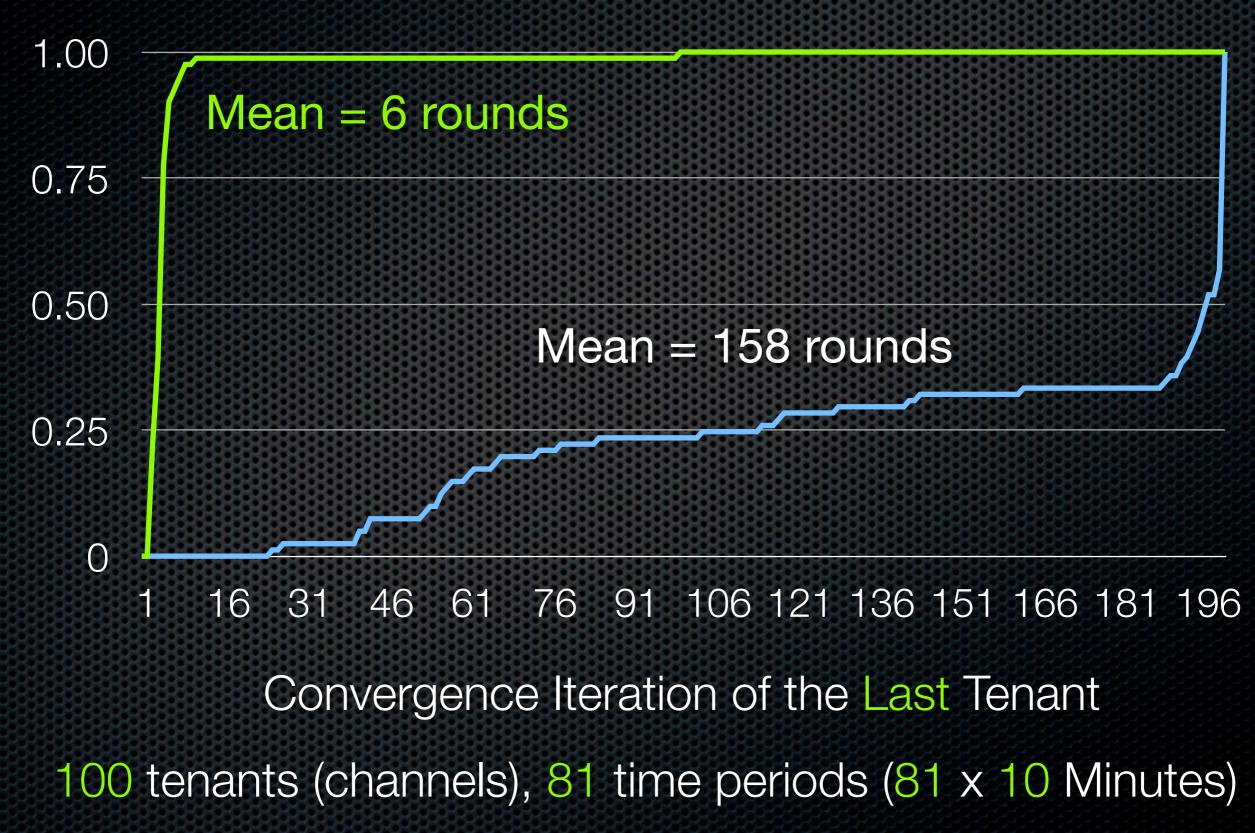
The First 3 Principal Components



Data Variance Explained



Pricing: Parameter Settings Usage of tenant *i*: $q_i(w_i) = w_i D_i$ w.h.p. Utility of tenant *i* (conservative estimate) $u_i(q_i(w_i), D_i) = \alpha_i q_i(w_i) - e^{A_i(D_i - q_i(w_i))}$ Linear revenue **Reputation loss for** demand not guaranteed $\mathbf{E}[u_i(w_i)] = \alpha_i w_i \mu_i - e^{A_i(1-w_i)\mu_i + \frac{1}{2}A_i^2(1-w_i)^2 \sigma_i^2}$ $\alpha_i = 1, A_i = 0.5, \beta = 0.5, \epsilon = 0.01$



Related Work

- Primal/Dual Decomposition [Chiang et al. 07]
- Contraction Mapping x := T(x)
 - D. P. Bertsekas, J. Tsitsiklis, "Parallel and distributed computation: numerical methods"
- Game Theory [Kelly 97]
 - Each user submits a price (bid), expects a payoff
 - Equilibrium may or may not be social optimal
- Time Series Prediction
 - HMM [Silva 12], PCA [Gürsun 11], ARIMA [Niu 11]

Conclusions

- A cloud bandwidth reservation model based on guaranteed portions
- Pricing for social welfare maximization
- Future work:
 - new decomposition and iterative methods for very large-scale distributed optimization

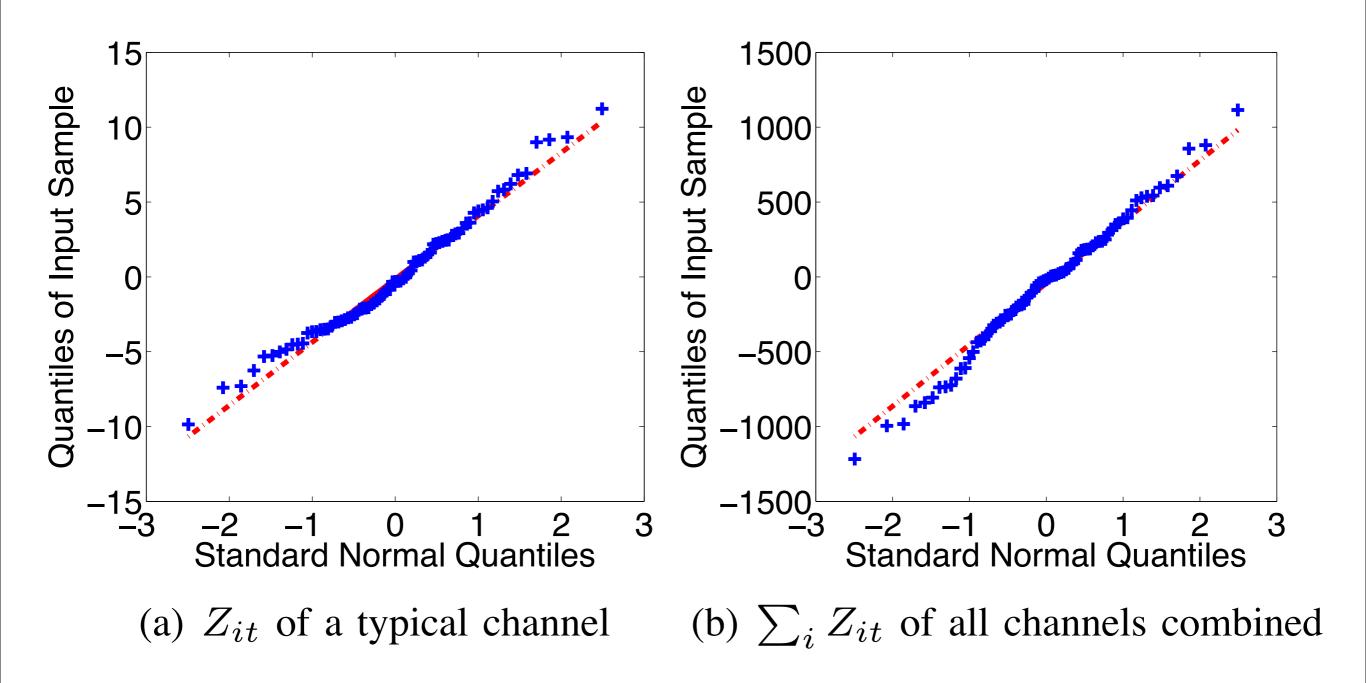
more general convergence conditions

Thank you

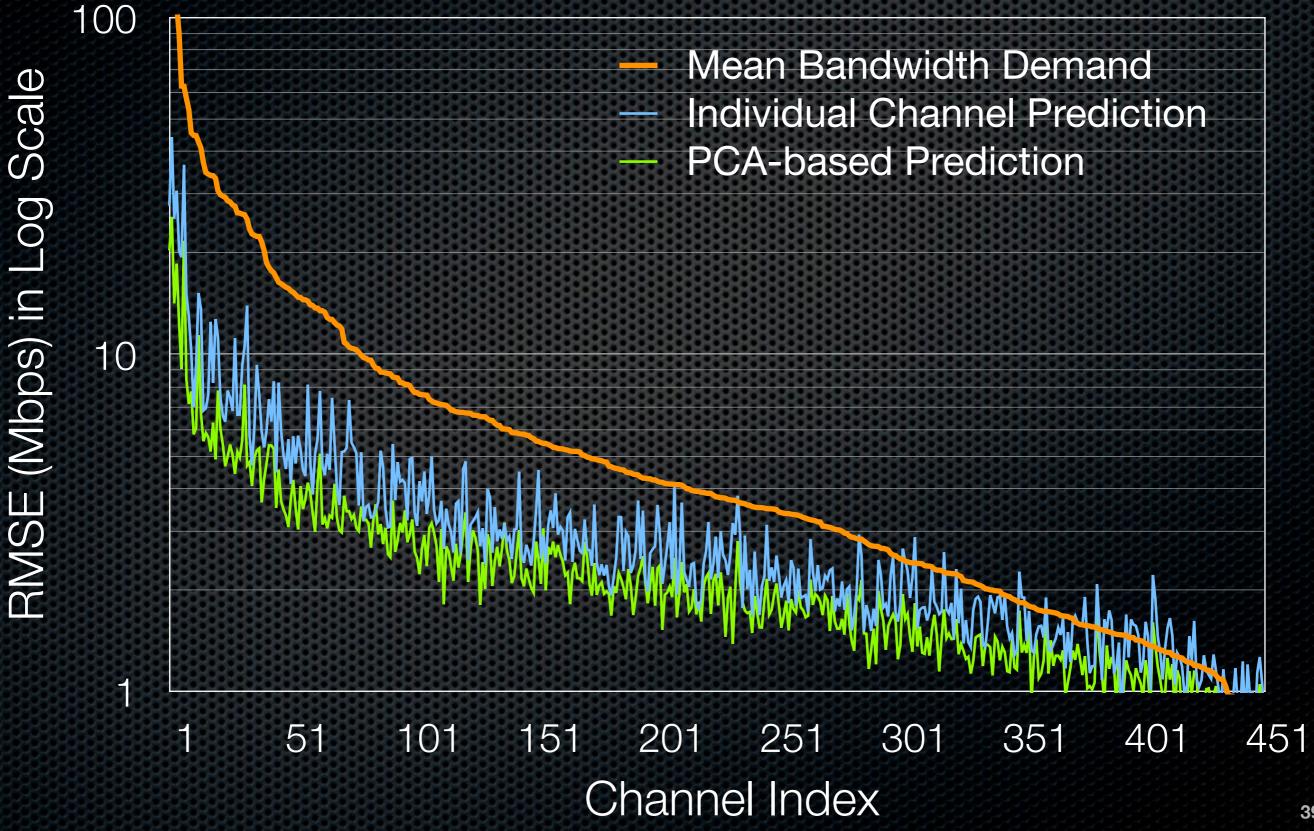
Di Niu

Department of Electrical and Computer Engineering University of Toronto

http://iqua.ece.toronto.edu/~dniu



Root mean squared errors (RMSEs) over 1.25 days

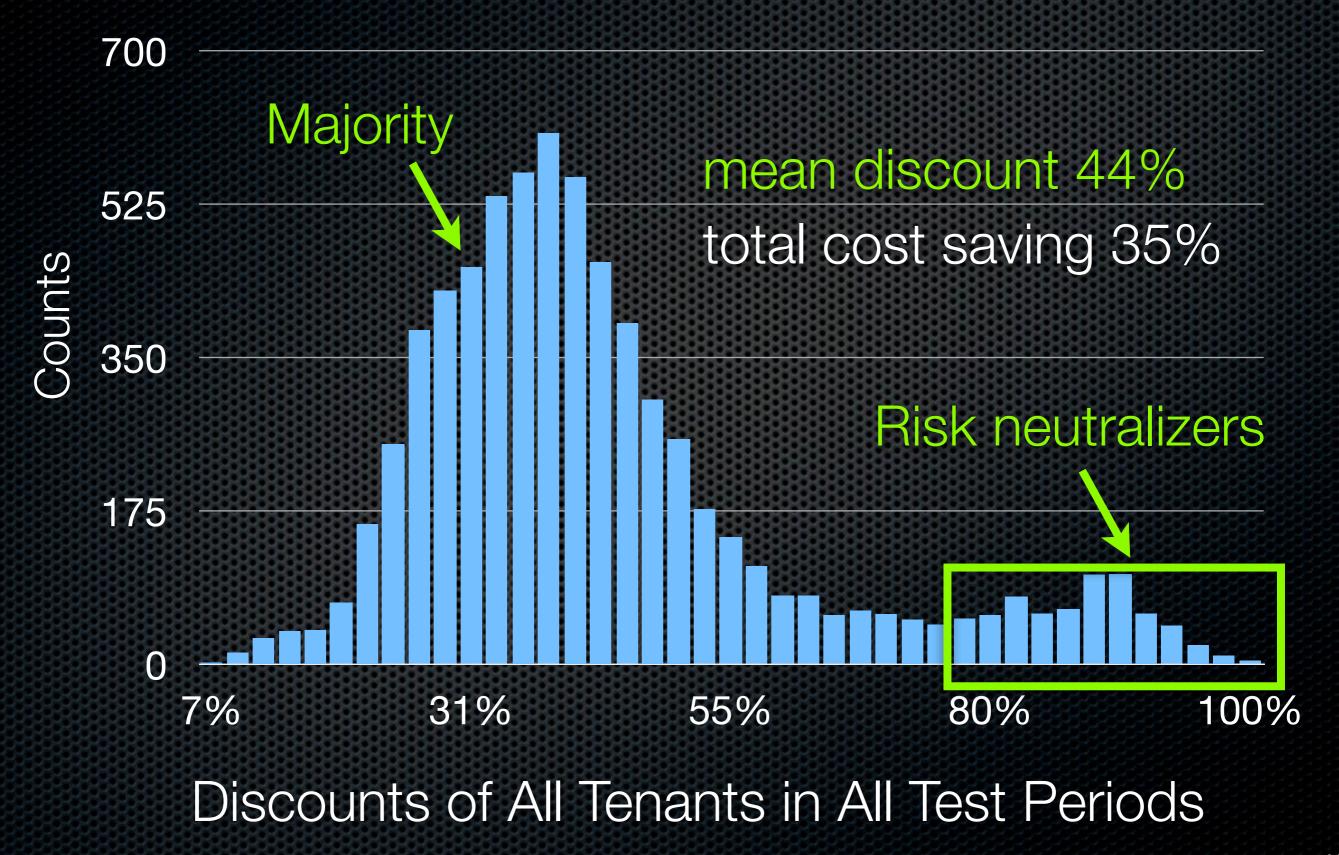


Optimal Pricing when each tenant requires $w_i = 1$

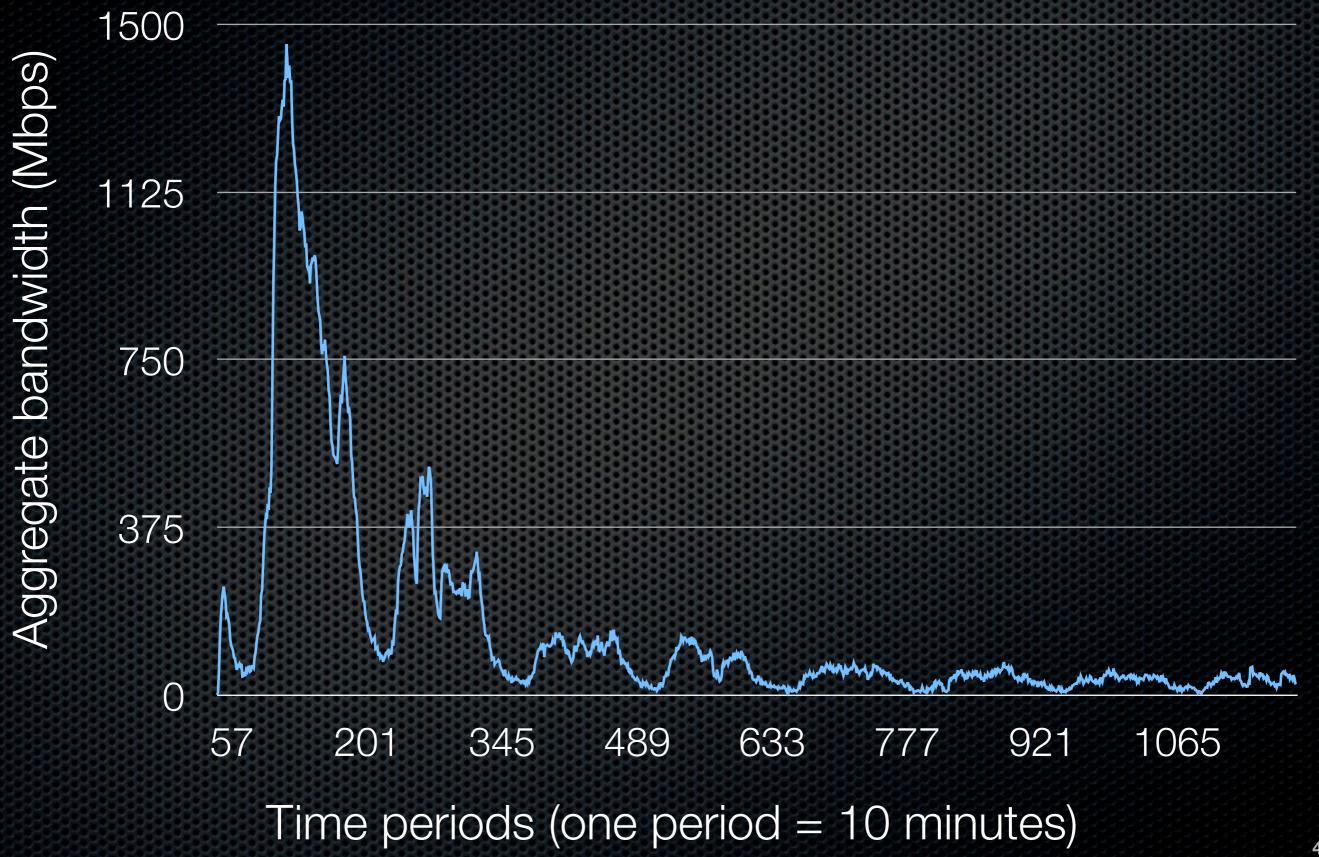
Without multiplexing, $P_i^*(1) = \mu_i + \theta(\epsilon)\sigma_i$

With multiplexing,Correlation to the
market, in [-1, 1] $P_i^*(1) = \mu_i + \theta(\epsilon)\sigma_i\rho_{iM}$ ExpectedDemandDemandStandard Deviation

Histogram of Price Discounts due to Multiplexing



Video Channel: F190E



Wednesday, August 8, 2012