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Abstract—Most current-generation P2P content distribution originally proposed in information theory [1], [2], [3], dn
protocols use fine-granularity blocks to distribute content to all  has been more recently used to improve the resilience to peer
the peers in a decentralized fashion. Such protocols often suffer 4y namics in P2P content distribution protocols [4], leadin
from a significant degree of imbalance in block distributions, such . . ..
that certain blocks become rare or even unavailable, adversely to shqrter dOW“'Oad'”SJ t'm?S'_ Intuitively, one may observe
affecting content availability. It has been pointed out that that, since network coding distributes coded blocks ratfien
randomized network coding may improve block availability in  original blocks, and all coded blocks are equally innowativ
P2P networks, as coded blocks are equally innovative and useful and useful to any peer, the challenge of locating rare algin
to peers. However, the computational complexity of network blocks may indeed be addressed.

coding mandates that, in reality, network coding needs to be H twork di t i its b fit
performed within segments, each containing a subset of blocks. owever, network coding may not realizeé Its benefiis

In this paper, using both theoretical analysis and simulations, Without introducing significant computational compleagiat

we quantitatively evaluate how segment-based network coding peers. It has been shown in recent work [5] that, network
may improve resilience to peer dynamics and content availability. coding may not be computationally feasible if one is to
The objective of this paper is to explore the fundamental code more than a few hundred blocks, even with modern

tradeoff between the resilience gain of network coding and its N der t d di lexity. Cleb
inherent coding complexity. We introduce a differential equations processors: In oraer 1o reduce coding compiexity, u

approach to quantify the resilience gain of network coding as a a. [6] has proposed the concept gfoup network coding,
function of the number of blocks in a segment, as well as various which performs coding on the blocks within the sagreup

other tunable parameters. We conclude that a small number of qr segment, while each segment contains a prescribed (and
blocks in each segment is sufficient to realize the major benefits arguably small) number of blocks. Though group network
of network coding, with acceptable coding complexity. coding helps to reduce coding complexity, its negativeotfe
on the resilience to peer dynamics — the main advantage of
S using network coding in the first place in P2P networks — are
Peer-to-peer (P2P) content distribution has become ths; fully understood.
de facto standard in current-generation content distribution | ot s consider two extremes of P2P protocol design. The
protocols. The basic idea in P2P content distribution @@® st one does not use network coding at all, and the second
is to segment large volumes of data (usually hundreds @fes network coding across all existing blocks. If we caersid
megabytes or even gigabytes) into fine-granulabitcks, and {he number of blocks in each segment (referred to as the
then distribute these blocks in an efficient manner by |9tti'begment size) in group network coding, we may observe that
peers exchange them with one another. the first extreme corresponds to a segment size of one, with as
In reality, however, P2P protocols often suffer from seveygany segments as blocks, while the other extreme correspond
peer dynamicsif., arrivals and departures), as peers agg the case of grouping all blocks into the same segment.
inherently unreliable. As the fundamental philosophy cémpe |nyitively, the degree of resilience to peer dynamics that
to-peer protocols is to use resources on the peers {0 SiQEwork coding has to offer improves as we increase the
blocks of content, content dls_tr[butmn sessions may corti seqment size: but the coding complexity increases as well.
to proceed even when the original peers (sometimes referiedie vary the segment size when network coding is used, we
to asseeds) are no longer available. However, in these casege fundamentally moving from one extreme to another, and
blocks may become rare or even unavailable when peers arii¥8king our choice in the challenge osilience-complexity
and depart frequently with short lifetimes. Such significaiadeoff of network coding in P2P networks. It would be best
degrees of imbalance with res.pe.ct to blpck availability —z \ve may operate with an appropriate segment size to enjoy
henceforth referred to aslock variation — will adversely af- st of the resilience advantage of using network coding, bu
fect the availability of content, leading to longer dowrdo®y ith acceptable coding complexity.

times at each peer. Motivated by our curiosity on choosing the “sweet spot” in
As end hosts at the edge of the Internet possess abundggt resjlience-complexity tradeoff, we quantitativelyalate

computational resources with modern processors, it iSr@tune content availability with different segment sizesnggioth

to take advantage of the power aétwork coding in P2P  haqretical analysis and simulations. In our theoreticellg

applications, by allowing end hosts to not only forward angds e consider large-scale dynamic P2P systems, whehe eac

replicate, but to code as welNetwork coding has been peer is to have a random lifetime following an arbitrary yet
The completion of the research was made possible thanks tcCBafida’s gener?' d'smbu“on_- We operate a linear SySt?m of diffeed

support through its Bell University Laboratories R&D progra equations, and derived closed-form results with respetido

I. INTRODUCTION



variations of block availability. We use simulations to mwolly since excessive concurrent uploading may negatively taffec
substantiate our theoretical conclusions, but also shelefiu throughput [14]. However, a peer may still frequently chang
insights into the problem in a wide range of scenarios. To tlits downstream peers, either because it intentionally dmes
best of our knowledge, such a resilience-complexity tréfdedo take advantage of idle capacities, or due to peer dynamics
introduced by network coding in P2P content distributios ha We now present a framework that allows us to analyze
never been studied with theoretical rigor in previous work. P2P content distribution with variable coding complextié

The remainder of this paper is organized as follows. liarge file of sizeF' bytes (usually on the order of hundreds of
Sec. Il, we present related work. In Sec. lll, we present odegabytes or several Gigabytes) is to be broadcast to every
system model, formulate the problem and outline the maamline peer. The content is segmented iGtsegments, each
theoretical results. In Sec. IV, we derive the differenéglia- of which are further broken inte: blocks, referred to as the
tions on which we obtain results regarding content avditgbi segment size. Thus, there areV/ = G - m different original
and block variations. In Sec. V, we present theoreticalltgsublocks in the content, each of size= F//M bytes. In group
regarding steady state block variation when data sourasstwork coding [6], random linear coding (RLC) is applied
are available and content availability in the absence o dab each segment of: blocks. Assume segmenthas original
sources. In Sec. VI, we carry out simulations to corroborabdocks B®) = [Bi, B, ..., B! ], then a coded block from
our theoretical results. We conclude the paper in Sec. VII. segment is a linear combination ofB:, B, ..., B! ] in the

Galois field GF?®). Coding operation is not limited to the

Il. RELATED WORK source: if a peer (including the source) Had < m) coded

The landmark papers on randomized network coding by Hxocks of segment [b%, b, . .., bi], when serving another peer
et al. [7] and Chouet al. [6] have claimed that randomizedp, it independently and randomly chooses a set of coding
network coding can be designed to be robust to randaroefficientsc), b, ..., c/] in the Galois field GF{®), and then

packet loss, delay, as well as any changes in network topolagncodes all its blocks from segmentand produces one coded
and capacity. Avalanche [4], [8] has further proposed thhtock x of & bytes:x = Zé:ﬁ? . b;

randomized network coding can be used for elastic contentA coded blockz is self-contained, in that the coding coeffi-
distribution. However, it has also been shown [5] that thaents used to encod®iginal blocksto x are embedded in the
coding complexity escalates when an increasing number lafader of the coded block. As soon as a peer has received a

blocks are used in network coding, and that even with modetotal of m coded blocks from segmentx = [z¢, 2%, ..., 2! ],
processors, coding more than a few hundred blocks may mdtich are linearly independent, it will be able to decode
be computationally feasible. segment; with coding coefficients embedded in each of the

In Wu [9], it has been argued that a key advantage of coded blocks. To decode segmentwe first need to
network coding is its inherent ability to adapt to networkompute the inverse of the x m coefficient matrixA; using
dynamics, both to ergodic changes such as random padgeiussian elimination, which requirg3(m?3) operations (or
loss and to non-ergodic changes such as link failures. &oetO(m?) operations per input block). To obtain the original
et al. [3] also discussed robust networking and analyzed théocksB, it then needs to multiphA; ~! andx, which takes
resilience of network coding to non-ergodic link failurésin  m? - £ multiplications of two bytes in GR), which runs in
et al. [10] theoretically analyzed the benefit of network codingme O(m?) (or O(m) operations per input block). It turns out
on a directed acyclic hypergraph with lossy links. Acedansthe latter cost dominates the overall decoding time, atthou
et al. [11] showed through analysis that with network codinghe first phase has a higher computational complexity ingerm
a peer downloading a file may randomly connect to fewerf m. This is because the cost of the latter phase also depends
other peers to retrieve the entire file. The relationshipvbeh on the block sizé:, which is usually on the order of Kilobytes.
block selection policies and the imbalance among differeNaturally, the overall decoding complexity increases as th
blocks has been discussed for P2P content distributiorowith segment sizen increases.
network coding in Faret al. [12]. In this paper, we focus on  Assume there ar& user peers and/, servers online, each
the resilience-complexity tradeoff of network coding, whke with an average upload capacijtyand a separate downlink of
number of blocks in a segment varies from one extreme to aufficiently large capacity, then a peer will upload at a w@fte
other. To our knowledge, this is a first attempt to quantied§i )\ = p/k blocks on average. With respect to reducing block
evaluate the resilience of network coding to block variagio variation in P2P networks, network coding and block balanc-
due to peer dynamics. ing schemes (e.g., the local rarest first policy in BitTotren
[13]) interact in complicated ways. It is therefore imphbsi
to assess the resilience of network coding without refexenc

Modern P2P bulk content distribution systems (e.g., Bite block balancing schemes. However, in order to focus on
Torrent [13]) are organized as an application-layer oyedf the effect of network coding, we will use a gossiping protoco
peers, each with a number of neighbors. A peer is referrad the reference. Specifically, whenever a peer is to upload a
to as aserver if it owns a complete copy of the contentblock, it randomly chooses a downstream peer from all other
of interest, otherwise it remains asuser. Data exchanges peers. (This assumption can be relaxed to randomly choosing
may only occur between a peer and its neighbors. Normally,peer from its neighborhood, as long as the neighbors are
a peer only uploads to a small number (e.g., less than 5) ofutsiform samples of the entire network.) After that, block
neighbors at a time which are called its downstream peeugploading is performed in three steps: segment recorioifiat

I11. BACKGROUND, MODEL AND MAIN RESULTS



encoding, and transmission. First, the peer will compase it the usersp;(t) = n;(t)/G.

buffer with that of the downstream pegrto find out which > r;(¢): the number of segments which have at leddbcks
segments that it has are neededpbyAs a result, a difference in all the usersn;(t) = r;(t) — ri41(¢).

set of segments is formed. It then randomly chooses a segment s;(¢): the fraction of segments which have at least
in the difference set and encodes all the blocks from that blocks in all the users. We hawe(t) = r;(t)/G and
segment. Finally, it transmits the encoded blockto pi(t) = s;i(t) — si41(t).

To model peer dynamics, we fix the online peer number These notations, illustrated in Fig. 1, will be the main
while allowing peers to join and leave the network frequentlvariables of interest in our analysis with differential atjans.
Specifically, we assume that there are alwaysisers andVs  Another helpful way to view Fig. 1 is that the vertical axis
servers simultaneously online, even though user deparam@ represents the number of blocks each segment has in all the
joins occur constantly. Servers are always online. Each uggers, and the horizontal axis represents segments agrange
has a random lifetimd.. A user will leave the network whenin the decreasing order af It is not hard to see that as the
its lifetime has expired. In the meantime, a new user with gegment numbe@ — oo, p;(t) = n;(t)/G will approach the
random lifetimeL as well will join the network to replace the PMF of the variablel. These notations cover both non-coding
departed user. No peer will return after it leaves. A similaind coding cases as the segment sizearies. For simplicity,
model for churn can be found in [15]. As will be shown, bywve may omitt in the following context. From Fig. 1, we
modeling peer dynamics this way, the total number of blockgso get the following simple factst) the total number of
in the network will remain constant while the distributioh oblocks in users at time ¢ is Y(t) = 3.2, r;(¢), and 2) the
blocks from each segment could be changing in time. Thigerage number of blocks each segment has in users at time ¢
enables us to focus on studying the block variation. In fet, is Y2 s;(t) = Y (¢)/G, which equals to the area under the
assumption on a fixed number of online peers can be relaxgt in Fig. 1(b).
to accommodate slow changes®fand lV, in time. As long  The state of the system could be represented by the vector
as such changes itV(t) and N,(t) take place at a much S(t) = (so(t),s1(t),...) or P(t) = (po(t),p1(t),...). If we
slower rate than the average upload rate of a peer, the @alyseS(t) to denote the system’s states for instance, at any given
will hold the same except thaV and N, are considered astimet, the future state of the system is solely decidedsty),
functions oft in the results. At a given observation timg, in that both block increase and block loss of each segment

we also define a peerage A as the time tillt, since it joined. depend merely on the current valuessgft), s;(t), .. ., given

In our analysis, the peer age will be an important parametge memoryless property of the gossiping protocol and of

(note its difference from the lifetimé). the exponential block upload time. Therefore, vect)

represents a density dependent family of jump Markov pro-

}g P (a) cesses [16], with the number of segmeatsbeing the total
gg g 3 [y population size andsy, s1,...) being densities. Apparently,
ki 2 "2*’]__,,,_,[ once we obtain the expressions f6¢t), we can obtain all
=) 0 P P o '120*;771, the block statistics at any time However, since such Markov
(Segments: abcdefghijki..) processes are too complicated to handle technically, wie wil
5 ; introduce in the next section a system of differential eigunest
e = 2 Slens ®) which asymptotically approximate the corresponding Marko
E §2 > LmL processes described above with an arbitrarily small error.
8 zg | . . P e Pow—» To evaluate degrees of imbalance with respect to block
@ 0 S3 2 S1 so=1 §;

availability of different segments, we define an important
parameter calletlock variation as:

42 = var(l) 3700 i%pi — (s i pi)” 1
Our main goal is to derive the steady-state distribution T B I (Y2 pi)? ’
of the number of blocks in each segment wh&nand M \hich is essentially the variance of the number of blockieac
approaches infinity. If we denote by a random variablthe segment has in users divided by the square of its meafl var
number of blocks each segment has in users with m&an ajone does not serve as a good indicator of block variation,
and variancer;, we are interested in deriving the distributionn that its effectiveness in assessing block imbalance may
for I. The derivation of this block distribution will allow us to pe hiased by the value of{E}. Thus, we adopt the above
evaluate important metrics such as block variation, doaahlo gefinition of block variation, which is inspired by the typlc
time, content loss rate and content lifetime. To charagterifzirness measure in resource allocation [17]. Block vmiat
the distribution of I, we therefore introduce a system otﬁ has the nice property that its value always lies between
important notations that represent the system's stateceSim and oo, and that it is0 for the balanced block distribution
servers always have complete copies of the content, we @f§en each segment has the same number of blocks in the
only interested in knowing the block statistics in users:  network. As we will show through simulations, download time
> n;(t): the number of segments which havblocks in all is directly related to block variation, which is a good iretiar
the users)" ;" n;(t) = G for anyt. of the availability of different segments. As a major thewa
> p;(t): the fraction of segments which ha¥élocks in all contribution of this paper, we have derived a surprisingly

(Segments: abcdefghijkl..)

Fig. 1. An illustration for the notationg; (t), s;(t), n;(t) andr;(t).




Y (£)

v A in probability, i.e., for anye > 0,

concise yet powerful formula which sheds many insights intarge, then

network coding’s behaviour in face of churn: Y(t)
Theorem: For largeN, M, in steady state network, the block/{l (N + N,) —M| > €} = 0,M — oo, N = aM, N, = asM.
variation +# is inversely proportional ton, the number of 3)

locks withi f ing: .
blocks within a segment for coding Proof. Please refer to our technical report [21]. O

) r From Lemma 2, we know that, for a large segment number
1= m, @) @G, the average number of blocks each segment has in users is
# Y1 si(t) =Y (t)/G = (N + Ns)AA/G = (a + a)mAA.

where is the average age of a user in a steady state network/Ve Now give the system of ODEs that characterize the block
that will be determined by Lemma 1. distributions of different segmentsinder the condition that

As the segment size increases, the block variation is su]lf){-dH o0, N Hf.oo.é ]\%hﬂ (;O N/M;tﬂfa’ INS/% = O‘s(’j
dued. An intuition behind the benefit of network coding ignd m remains finité, thoughc, 1S often far less than an

that without network codingr = 1), departing peers may can also be Othe block distributions are characterized by

take away important blocks that have already become rareﬂiW following system of ODEs:

the network, while with pure network codingn(= M), all — ds; T . C 1 Cp VP> 1
the blocks are equally useful and thus there is no variatfon é - G Py + ot o (t—1)pic1—i-p; Vi>
block availability at all. As segment size grows, the total so=1 (4)

number of distinct segments is reduced. Hence, intuitjaig

may observe that different segments are distributed in @maor, Let us explgm the reasoning beh!nd these ODEs. We con-
balanced way in face of churn. sider a small time interval¢ and decide the expected change

of r; in At, denoted byAr;. We denote by (r;) the expected
increase inr; due to the upload from users, b (r;) the
IV. CHARACTERIZING SYSTEM STATES WITH expected increase in due to the upload from servers, and by
DIFFERENTIAL EQUATIONS D(r;) the expected decreasendue to block losses caused
by peer departures. We haver; = I,(r;) + I(r;) — D(r;).

In this section, we formulate a set of differential equagion \we first determind,(r;). Since the time to upload a block
to characterize the network’s states by asymptotically@pp is exponentially distributed, the expected number of bicitie
imating the underlying Markov processes. The correctnéssqervers have uploaded 1, \At. Now we wish to know how
this approach was proved by Kurtz [18]. As an application, fhany of theseV,\At blocks contribute to the increase ip
was then successfully applied into the solution to a Mark@%om Fig. 1, we see that; increases by one if and only if
queuing model in load balancing problems by Mitzenmachgrsegment withi — 1 blocks increases a block. We choose
[16], [19]. With proper simplifications at several pointsew N, M, At such that whenN, — co, M — oo, Ny/M —
are able to use this method to model the seemingly complgx and At — 0, the total number of blocks servers have
system of P2P content distribution with node churn. ThgploadedV,\At will also approach to infinity, but is less than
main results regarding content availability drawn from thghe segment numbe® = % (e.g., lettingAt = @(#N) can
differential equations are presented in the next section.  achieve this). With this requirement, each segment carreith

First, we will show the proposed network model has aincreasel block or not increase at all id\t. Since all the
equilibrium, in which the total number of blocks in thesegments are perfectly balanced in servers, each segnent ha
network stays constant. But before showing this in Lemmsm equal chance of being chosen, as all the blocks are largely
2, let us first cite a useful lemma proposed by [15] andeeded by most peers, which are highly dynamic. Thus, we
demonstrated again in [20]. obtain

Lemma 1. Let L denote a peer’s lifetime with meah and Ls(rs) = NsAAL - pi—y ®)

varianceo?. Given an observation time, let random variable Note that to simplify the analysis, we have implicitly assh
A denote a peersge at t,, with expectationZ[A] = A. If  that no linear dependency will occur when a peer is updating
N is fixed, then ag, — oo, the probability density function another with network coding. This assumption is reasonable
of Ais given by fa(z) = [1 — F(x)]/L. Moreover,E[A] =  pecause according to Lemma 2.1 in [22], a random linear
A= (L +0%)/2L. combination of all the blocks from the same segment at a peer
It is easy to check that if the peer lifetimk follows an p _is useful t_o_ another randomly_ chosen peer _in the network
with probability at leastl — 1/¢ if network coding is done

exponential distribution, the distribution of peer agewill . . .
be exactly the same as that bf In the following lemma, we in F,. And this argument is true regardless of whether peer
: is a server or a user. In this paper, the field sjzeas been

show that after the network has evolved for a sufficientlyglon d to be®
time, the total number of blocks in users will almost alwaygSsume 0 g .
; We then consider the value df(r;). Similarly, the total
remain constant. ) .
block increase of all the segments due to users’ upload is
Lemma 2. Let Y (¢) denote the total number of blocks inNAA¢. However, the increase in is no longerNAA¢t-p;_1,
users from all the segments at a given titfer ¢ sufficiently in that each segment does not enjoy an equal chance of being



chosen by the users. On the contrary, however, the moreslo¢k), we getp, = [B + 3(i — 1)] - pi—_1 /i, where B = aymAA,
a segment has in all the users, the more frequently it will le= —2—. Hence, the steady-state block distribution is given

atog
encoded and uploaded. Therefore, by, ,
(’L — 1)717;_1 « At(l — 1)717;_1 - = - B — ﬂ .
I(r;) = NAAt- — pi=py ||B+——), fori>1 )
(r) = Naat. S pitet o A SN () 0]1;[1 ;

whereY is the total number of blocks in users given byjnger some relatively mild conditions o and 3, we could

Lemma 2. In fact, the experimental results in Sec. VI hagrivep, in a simple closed form in the following theorem.
substantiated this observation.

Finally, we determineD(r;). First, we know that the total Theorem 1. (Steadg/—State Block Distribution) Let B =
loss of blocks inAt is (N, + N)AAt, because the total asm/;A andfg = 2. If gis a posm\{e rational number,
number of blocks remains unchanged by Lemma 2. SimilarBnd 5 € Z*" (Z** = {1,2,...}), then in the steady state,
T decreases by one if and On|y if a Segment wiitblocks the fraction of Segments with a total number ioblocks in
loses a block. And the more blocks a segment has in all tH&€rs is given by,

users, the more blocks it loses due to peer departures. Hence i+ B 1\ 5
we have p; = < i )51(1_ﬁ)ﬁ7 i=0,1,2,.... (10)
D(r;) = (Ns + N)AAt - ! ;:” — At% 1 (7) In particular, the fraction of empty segments (segmBent$|whi

have no block among users) is givenffy= (1 — 3) .
SubstitutingZ; (r;), I(r;), D(r;) into Ar; = Is(r;) + I(r;) —

D(r;), we get Remarks. In practice, the requirement that is a rational

) ) number is naturally satisfied, since both the server number
Ars = NAAEp:_ 1+ a At —71)m71 AL W (8) and the user number in the network are integers. Moredyer,

o+ A A is usually much larger thafi and thus substituting3 /5 with
Dividing by G - At on both sides, we get the system of lineathe integer nearest to it will hardly affect the outcomepgf
differential equations (4). Therefore, the value of, for nearly all valid 5 and B can

We have omitted the rigorous proof of the concentration bl approximated by using the neargsand B satisfying the
(4) around their underlying Markov processes, since suchcanditions set in Theorem 1. Recall that we uUséo denote
proof deviates from the thesis of this paper and can be dahe total number of blocks a segment has in users. Since the
in a standardized way [18], [16]. According to Mitzenmachdotal number of segment§ is large, the PMF ofl will be
[16], [19], one necessary condition for these differentiglia- asymptotically approximated by the valuesmf i.e., I =
tions to hold in theory is that the average number of block$ = ;. O
each segment has in useys;”, s;(t) remains finite at all Proof. Let C' = B/3— 1. We first provep, — ' (z-t_c> o, for

.tlmesz vyh|ch implies cases W|tho§evere churn. This COIl(ﬂItICZ) > 1, and then determing, from the fact thafy">°, 7; = 1.
is satisfied in our model, since_,”; s;(t) — (a + as)mAA =

. o . . A Let 3= L < 1, wherel,n € N. Because_' is a non-negative
in probability, which we require to remain finite. integer \;lve have

V. QUANTIFYING THE RESILIENCE OFNETWORK CODING _ ﬁ(l n B — ﬂ)
In this section, we operate on the system of ODEs (4) to b= PoFl n J
analyze the resilience of network coding in both the stea traiahtt 4 inducti finall ¢
state when servers are online, and the transient stage a Y straightiorward induction, we can finally get,
servers’ departure. _ Ly G+0) g <Z + C’) _

=P i Po
A. Steady State Block Variation and Block Distribution ) e
We now determinep,. Let a; = 7,/5, = B:i("°), i =

K3

Assuming the. presence of servers, Igt us now determl&elﬂ’ ... Then we havel/p, = 5", a;. Hence, what we
the block variation and block distribution in steady staté . AR =
Eed to do is to determing_,”  a;. Because

networks. Our main findings are that the steady-state blog
variation is inversely proportional to the segment size for (i+C> B (C’—H'— 1) N <C’+i— 1) P
network coding, and that the steady-state block distrilouti i i i—1 ’ -
follows a form of negative binomial distribution, which can e can get,
be well approximated by a Gaussian distribution. The block, o ) o )
variation is a good indicator of the download time, which w&™ ;, — ™ 51 <(C D+ Z) +8 Y gt (C T 1) +ap
will show in the simulations. And the block distribution in;=] = L i—1
steady state not only offers an intuitive concept with re!quf we view a; as a function of C and let f(C) —
to the imbalance of block availability, but also serves as 4 (O) :L - ﬂi(i-‘rC) we can get the following
starting point for analyzing content availability in thesaince iteg’:io;] for £(C) =1 i
of servers. '

Let us denote the steady-state solutions to (4) by { 0=@B-DfCO)+f(C-1)+p, forC=>1

G = f(0) =322, 8 = 25

PosD1s - - - » Pg- BY setting<g: = 0 in the differential equations

i—1=0




By induction, it is not hard to get
F(O) =15~ —1,

Hence,

spot in the curve of resilience-complexity tradeoff, which
suffices to yield the major benefit of network coding.

e Network coding’s true benefit lies in its resilience to
block losses due to churn. When the average peer age
A is small, the system can combat peer churn simply by
increasing the segment size for network coding. On
the other hand, when peers all have long lifetimes, the
problem of rare blocks is not salient and the block distri-

C=012,....

F(C) +ag = (1= 8)~ Y

oo
D a
i=0

Because) . p; = Do oo = 1, we finally getp,
B

(1-p)7. 0 bution could be balanced enough even without network
Cumulative distribution function of | Co.dmg'. . " .
R} . . e It is quite counter-intuitive that the block siZzedoes not
) affect block variation at all. One might believe as block
size k is increased, the total number of blocks in the
content is reduced, and thus the imbalance among block
---m=1 distributions may be subdued. However, lasncreases,
—m=2 blocks will be disseminated at a slower rate given lim-
T ited bandwidth. Both effects counteract with each other,
—m=16 resulting in no change in block variation.
100, 200 300 400 500 600 e The content sizeF' and the number of online servers

I (The number of blocks each segment has among users) N, are also critical parameters that affect block avail-

ability. The lack of servers will adversely affect block
availability, not because servers hold more blocks than
users, but because the upload behaviour of servers are
fundamentally different from that of users, as we have
pointed out in Sec. IV.

Fig. 2. Block distribution in the steady state under difféareegment sizes
m (CDF of I).

We have plotted the Cumulative Distribution Function
(CDF) of I in Fig. 2 according to Theorem 1 under different
segment sizesn (number of usersV = 1000, number of
servers N, = 50, total number of blocks in the contentB, Content Availability in the Absence of Servers

M = 1000, upload rated = u/k = 4, average peer age |, roaiworld P2P systems, servers may all become absent
A= .4)' T_he st_eady—st_ate.block Q|str|but|on has a form cgometimes. In these cases, the content of interest suftemsa
negative pmpm@ distribution. It is npt hard to S.hOW th igh risk of becoming incomplete. Suppose that all the gsrve
such a c_hstnb_uthn can be asymptotically _approxmated tfé{ave the network at some point in steady state. In the absenc
a Gaussian distribution (Tefe_r to our technical report 121]o¢ servers, it can no longer be guaranteed that any segment
Apparently, as segment size increases, there will be fevVeralways remains decodable in the network. If the block number

; . ¥ certain segment falls below the segment sizethe content
becomes incomplete after server departures will be reduc | become incomplete henceforth. On the other hand, if

Another implication of Theorem 1 is that the block variation, . .ontent can be kept available for a sufficiently long time

wil t;? t;ult;duehd ast the fﬁgrglentk size tl_ncre_asTer;s. Vge nfﬁ'&rely by users, then it is possible for the system to evaiie i
quantitatively characterize the block variation in Theore. 5 q,y equilibrium again before the content turns incomplete

Theorem 2. (Steady-State Block Variation)Assume all the as some users may become servers later. Therefore, we ask

parameters satisfy the conditions set in Theorem 1. Letorandthe following questions: (1How long can the content be
variableI denote the total number of blocks a segment has kept available, merely by the unreliable users? and (2) How

all the users, with the meam; and variancer?. If we define
2
block variation asy? = Z%, then in the steady-state,
1= w2

1 F
asmAA N NsmuZ.
where A is the average age of a user given by Lemma 1.

(11)

Vi =

Proof. We can derive the mean and variance bffrom
Theorem 1 through straightforward manipulation [21]:

B B
=_——— ando?=——. (12)
M=175 SENCEIE
where B = ay;mMA, 8 = af‘a . ThUS,'y% = Zé = - 1z>\Z'
s 7 sm

much fraction of the content may still remain decodable at a
given time after the servers have departed? These metrics are
important in that they represent the network’s tolerancenéo
absence of servers with different segment sizefor network
coding.

First, it is worth noting that a necessary condition for the
system to be stable is that, # 0 (Vs # 0). An intuitive
explanation for this fact is that with servers availablegrev
if certain segments become unavailable among users, server
could still replenish blocks of these segments to the ndtwor
In contrast, without servers, i.e., when = 0 (N, = 0), a
segment becomes unavailable forever once its block number
reduces to less tham, with no possibility to be replenished
again. Actually, we have solved fgr, by letting 4% = 0 in

dt

We now discuss the important insights behind Theorem e case ofa, = 0, and foundp, = 0 for any finite i in
e The steady-state block variation is inversely proportionateady state. According to Fig. 1, this indicates an extreme
to the segment sizew. Therefore, there can be a sweetase that nearly all the segments will finally have zero ldpck



while only one segment will have an infinite number of blocksecond factor is the objective functidn— s,,(¢) that stands
in the network. Thus, the system can not hold stable in tlfier the content loss percentage at timeWe have plotted
absence of servers. the fraction of decodable content as a function of time
We assume that the servers leave the network altogetheafter server departures in Fig. 3 under different segmeeissi
the steady state and set time= 0 on the servers’ departure.(number of usersV = 1000, number of serversV, = 50,
We then solve the differential equations to derive parametd¢otal number of blocks in the conted/ = 1000, upload
of interest. Since servers leave in the steady state, wénobtate A = pu/k = 4, average peer agd = 5). It is clearly
initial conditions at timet = 0: shown that, as the segment size increases, not only does
i+ B 1\ . 5 the system lose less content right upon the servers’ departu
pi(0) =p; = ( i. )51(1 —B)%, i=0,1,2,...,  butthe content loss rate after the servers’ departure iscesti
(13) greatly as well. Besides, merely a small incrementimvould
—2_, jis a positive and rational result in a salient decrease in the content loss rate.
number andZ € Z*+. By Iétting N, = 0, ie., a, = 0, Finally, we numerically determine content lifetime in a
we obtain the differential equations for the system after t$imilar way. The content lifetime is defined as the perioairfro
servers’ departure: server departures to the incompleteness of the first segment
Assume that the segment sizerig and the total number of
A. dsi(t) = (i — Dpi_1(t) —ipi(t), fori>1 segments ig7 = M/m. If all the segments are still decodable
dt B upon server departures, then the content becomes incamplet
so(t) = 1. (4)  \when there is at least one segment which has less than

Hence, the problem of determining the content loss at a givelpcks in the network. Itis equivalent to saying that thetean
time has been converted to the problem of solving the systé@comes unavailable at the time when the fraction of segsnent

of ODEs (14) subject to the initial conditions (13). with less thanm blocks grows to greater thaf. Thus, the
content lifetime equals to the first hitting time of the fupat

where B = aymAA, g = —=2

The fraction of decodable content as a function of time 1—sm,(t) to é starting from the initial conditions set by (13).

5 mgT e The result has been plotted in Fig. 4, where the parameters ar
So9 set to the same value as in the previous figure. Similarly, an
% “w, increasing trend in content lifetime is observed as the segm
gos size increases.
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5 m=4 ey V1. EXPERIMENTAL RESULTS

c e . . . .

%0'6 _v_zf?G S | We have developed a simulating environment using C++
I 0. to experimentally evaluate the behaviour of dynamic P2P

OU'I

10 20 30 40 50
time t

networks. In most experiments, more than 2,000,000 peers ar
involved in total, with 6,000 peers being simultaneousliiran
at any given time.

Let us first briefly describe the settings of our simulator
(please refer to our technical report [21] for a complete

description). There exists a tracking server in the system,

Fig. 3. The fraction of decodable content at timafter server departures
under different segment sizes.

Content lifetime as a function of segment size

150p

——Average peer age = 3| ’
—o—Average peer age = 5
-=-Average peer age = 7

which helps maintain the neighborhood of a peer. Howevekr, al
other tasks, including downstream peer selection and data e

changes, are performed locally at peers. Each peer is cmthec
to at least 40 other peers (in accordance to BitTorrent)clvhi
form its neighborhood. We fix the number of online peers
while allowing peer churn: a peer will leave the network when
its assigned lifetime has expired and a new peer will join at
the same time. To join the session, a new peer should contact
the tracking server, which in response gives it 40 randomly
F_ig. 4. Con_tent lifetimes after server departures undeeutfit segment chosen online peers to connect to.
sizesm and different average peer age The simulator is run in time slots (rounds). In each time
When the segment size i®, it is not hard to figure out slot, a peer first randomly chooses 4 (as in BitTorrent) of
that the percentage of content loss at tiles the fraction its neighbors to serve in this slot. This process is called
of segments with fewer tham blocks in the network, which downstream peer selection. However, under such a scheme,
is 1 — s,,(t). Hence, as we vary the segment size two there may exist peers not chosen by any other peers in a
factors will intertwine to affect the content loss fractiothe round, whereas in the meantime other peers may have a large
first factor is the initial condition at = 0 which depends on number of upstream peers. To avoid such a load imbalance,
m; as the segment size increases, either less content willvbe require each peer to have at most 6 upstream peers. With
lost right upon server departures, or segments are digtdbuthis policy, most peers will have at least one upstream peer
in a more balanced way if the content is still complete. Tha each round. Afterwards, each peer will transmit datago it

100

a1
o

Content lifetime

2 4 6 8 10
Segment size m



downstream peers using group network coding as mentionedues as in the previous experiment. It clearly demoresrat
in Sec. Ill. The upload bandwidth of a peer is measured our main theoretical resulty? is inversely proportional to the
Kilobytes (KB) per round. segment sizen. However, we do not fully understand why
the simulation and the analysis are different from eachrothe

Convergence curves of block variation - o
‘ by a constant coefficient. This is probably because we have

25 T

— Segment sze m-1 ; ; opably becau
a0  egment sive m=2| | adopted a time-synchronized model in the simulation, wdeere
% :gggmg:ig in in the analysis we have not. To acquire a sense of how the
i 1 blocks of each segment are distributed in steady state, the
%10 . block distribution in the same experiment is plotted in Fg.
2 50 | which also substantiates the correctness of Theorem 1.
\ Average time to download the whole content
0 . ! = 2500 T T T T
50 100 150 200 250 —=— Average life of short-lived peers: 5 (rounds)
Time slots (I’OUI’ldS) —&— Average life of short-lived peers: 10 (rounds
2000 -9- Average life of short-lived peers: 20 (rounds) -

Fig. 5. The convergence of the block variation.
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Fig. 8. The average time for a long-lived peer to download tit@econtent
in steady state under different segment sizesThe average lifetime of short-
lived peers is shown in the figure.

Block variation in the steady state
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Fig. 6. Steady-state block variation as a function of segraizeim. Average 8
lifetime of user peerd. = 5 rounds. 8
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Fig. 9. The fraction of decodable content after server depes as time
—Segment size m=1 || passes.

Segment size m=2
---Segment size m=4 ||

0.4

02/ ~— Segment size m=8 We now link the average download time experienced at a
ok ‘ ‘ ——Segment size m=16 long-lived user peer with the block variation and segmerg si
0 200 400 600 800 1000 1200 H H
The number of blocks each segment has among downloaders m. The results are plotted in Fig. 8. Parameters are set such

that the number of online user peeks = 2000, the number
Fig. 7. Steady-_ste_lte CDF of the number of blocks each segmenathang of online server peersV, = 30, file size F = 256 MB.
users Average lifetime of user peets= 5 rounds. . . . .
Bandwidths and block size are the same as in the previous
First, it is clearly shown in Fig. 5 that the system doesxperiments. 1% of all the user peers are long-lived ones
have a steady state in which block distribution stays roughivhich will not leave until they finish downloading. The other
constant. Parameters are set such that the number of onfeers are short-lived ones which have lifetimes exponigntia
user peersV = 6000, number of online serverd/; = 100, distributed. It is clearly shown in Fig. 8 that as segmeng siz
file size ' = 768 MB, block sizek = 256 KB. Each user has increases, the average download time required to obtain the
a lifetime exponentially distributed with a mean ®frounds. entire content is reduced. And the relation between down-
To accommodate heterogeneity, we assume an equal nunibad time and segment size assumes a similar form (inverse
of peers with high upload bandwidth (2 MB/round), mediunproportion) to that between block variation and segmers. siz
upload bandwidth (512 KB/round), and low upload bandwidtiihe underlying reason is that as block variation is subdued,
(256 KB/round) connectivity. peers will not be hindered in obtaining those rare blocks.
Fig. 6 shows the block variatiof? in steady state. The ex- Besides, there is a sweet spot of segment size, beyond which
periment ran for 500 rounds. And after round 200, the systeitre download time can hardly be further reduced. Thus, the
stepped into the steady state. Parameters are set to the saseeof a small segment size, such as 10-20, suffices to optimiz
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We have discovered that the block variation is inversely pro

portional to the segment size. A similar relation between th

download time and segment size is also observed. Therefore,

small segment sizes — less than 20 in our simulations even

with high peer volatility — suffice to realize the major benefi

of network coding in terms of reducing download times and

enhancing content availability.



