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Abstract—In modern large-scale systems, fast distributed re-
source allocation and utility maximization are becoming in-
creasingly important. Traditional solutions to such problems
rely on primal/dual decomposition and gradient methods, whose
convergence is sensitive to the choice of the stepsize and may not
be sufficient to satisfy the requirement of large-scale real-time
applications. We propose a new iterative approach to distributed
resource allocation in coupled systems. Without complicating
message-passing, the new approach is robust to parameter choices
and expedites convergence by exploiting problem structures. We
theoretically analyze the asynchronous algorithm convergence
conditions, and empirically evaluate its benefits in a case of cloud
network resource reservation based on real-world data.

I. INTRODUCTION

Resource allocation in distributed systems is often modeled
as utility maximization problems, which are solved using
primal/dual decomposition and gradient/subgradient methods
[1]. Though these problems arise in diverse applications, two
general trends are visible.

First, due to the explosion in scale of modern systems, it is
increasingly important to develop fast and robust distributed
solutions to these problems that could meet the requirements of
large-scale real-time applications. Second, an increasing level
of coupling is observed in distributed systems. For example,
in a cost-effective resource allocation problem, each user,
when consuming a certain amount of resources, will enjoy a
corresponding utility, while all the users may together incur a
coupled cost at the resource provider due to multiplexing. The
goal is to maximize the utility of all participants, including
the resource provider, that is to maximize the sum of user
utilities minus the coupled provider cost. As another example,
when multiple users download movies from the same server,
each user has a utility as a function of the bytes it wishes
to download, but suffers from a delay penalty due to the
congestion incurred by all these downloads [2]. A further
example is DSL spectrum management of copper wires in a
cable binder, where a user’s utility is a function of the signal-
to-interference ratios that depend on the transmit powers of
other users [3].

In this paper, we propose a new distributed approach to
resource allocation problems with coupled objectives, with
a goal towards fast and robust convergence in large-scale
systems. Let us illustrate the basic idea of the new approach
with the simple example of maximizing the sum of user

utilities minus a coupled provider cost. The algorithm proceeds
in the following iterative steps: given all the resource allocation
requirements from users, the provider computes a price vector
as a weighted average of the marginal cost under current
resource requirements and the previous price; each user then
computes its resource requirement under the new price by
maximizing its surplus, that is, its utility minus the price.

The new approach distinguishes itself from traditional gra-
dient methods in three aspects. First, while the performance
of gradient methods is sensitive to stepsize selection, the pa-
rameter in our approach is a weight between 0 and 1, which is
easier to set and achieves robustness. Second, our approach can
be understood as a novel distributed version of the nonlinear
Jacobi algorithm [4], and only passes the gradient information
of certain utilities, e.g., the cost function, instead of all the
utilities. By exploiting the structural difference between utility
functions, our approach can achieve much faster convergence
in certain scenarios. Third, in certain engineering applications,
unlike gradient methods, our approach satisfies a contrac-
tion assumption [4], and thus converges even if executed
asynchronously among network elements, further increasing
convergence speed. While enjoying these advantages, the new
approach only feeds back gradient information, and has the
same economic interpretation as pricing.

We provide asynchronous convergence conditions of the
new approach and compare its convergence speed with that of
gradient methods both analytically and through experiments
based on real-world trace data. Furthermore, we show how to
generalize the basic idea above, with the aid of duality theory,
to solve a general class of problems with additive coupled
objective functions, which is referred to as consensus optimiza-
tion [5]. Consensus optimization is a general form for posing
and solving distributed optimization problems and has many
applications in statistical and machine learning. Therefore, the
proposed approach is also an efficient decentralized solution to
such machine learning problems that involve high-dimensional
data and a large number of training samples.

The roadmap of this paper is outlined as follows. Sec. II
formulates a basic resource allocation problem with cou-
pling and depicts a pricing framework to explain distributed
algorithms throughout the paper. In Sec. III, we describe
traditional methods and propose our new algorithm based
on pricing. In Sec. IV, we rigorously analyze the algorithm



convergence conditions, especially, in an asynchronous sense.
In Sec. V, through an example of quadratic programming,
we draw insights on the performance of different algorithms.
In Sec. VI, we generalize the basic algorithm to solve dis-
tributed optimization problems with general additive coupled
objectives. In Sec. VII, we demonstrate the benefits of the
new approach through a numerical case study of bandwidth
reservation in a cloud computing system based on real-world
traces. In Sec. VIII, we present related work. We conclude the
paper in Sec. IX.

II. PRICING IN A BASIC COUPLED SYSTEM

We consider a basic resource allocation problem of the form

max
x

n∑
i=1

Ui(xi)− C(x) (1)

s.t. xi ∈ [ai, bi], i = 1, . . . , n,

for some real numbers ai, bi, where x = (x1, . . . , xn)
represents resource allocation, each Ui is a strictly concave and
monotonically increasing utility function, and C(x) is a strictly
convex cost function that is monotonically increasing in each
xi. Assume C and Ui are twice continuously differentiable.
In Sec. VI, we will see that based on duality theory, problems
with general coupled objectives can be transformed into (1).

Problem (1) often arises in networking systems, where each
user i is associated with an utility Ui(xi) by using xi units of
some resource, while the users incur a total cost C(x) at the
resource provider, which may be coupled among xi’s in an
arbitrary way depending on the technology used. The goal of
the resource provider is to make resource allocation decision
x wisely, so that the social welfare

∑
i Ui(xi)−C(x) is max-

imized. Apparently, granting the maximum resources to users
will maximize the sum of their utilities, but will also incur a
high cost C(x). As a convex optimization problem, (1) has a
unique solution x∗ = (x∗1, . . . , x

∗
n). However, it is undesirable

to solve (1) in a centralized way using conventional algorithms
such as interior point methods [6], because the utility Ui is not
known to the resource provider or other users, and the cost
function C is unknown to the users.

Distributed solutions to problem (1) are feasible via pricing.
The basic idea is that the provider should charge each user i
a price pixi for using resource xi, where the unit price pi
can be heterogeneous among users. Given a price vector p =
(p1, . . . , pn), problem (1) is equivalent to

max
x∈∏i[ai,bi]

n∑
i=1

(
Ui(xi)− pixi

)
+
(
pTx− C(x)

)
, (2)

where Ui(xi)−pixi is the surplus of user i for using resource
xi, and pTx− C(x) is the profit of the provider.

A pricing-based iterative solution to problem (2) can be
interpreted as follows. The provider sets the price vector p,
under which each user will maximize its surplus and choose
to use resource

xi(pi) := arg max
xi∈[ai,bi]

Ui(xi)− pixi, ∀i. (3)

User i

Resource 
Provider

Price update 

xi(pi)
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xi∈[ai,bi]

Ui(xi) − pixi
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... ...
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xn(pn)

x1(p1)

Fig. 1. The iterative process of price updating. The price update for each
user i can be performed asynchronously.

Based on all the returned xi, the provider aims to up-
date the price vector p iteratively, such that x(p) =
(x1(p1), . . . , xn(pn)) produced by the surplus-maximizing
users will eventually converge to the optimal resource allo-
cation x∗.

Such a process is illustrated in Fig. 1. Note that the returned
x1, ..., xn can be used in the updates of all pi. However, the
price updating does not have to be synchronous for all the
users. In other words, there could be heterogeneous message-
passing delays between the provider and different users, and
it is allowed that pi and xi for a particular user i have been
updated for any number of iterations, before pj (j 6= i) for
other users are updated.

We assume each network element can only use its local
information and the available feedback. Specifically, we make
the following locality assumptions on price updates:

Assumption 1: When the resource provider sets the price,
the price update for each user i is a function of the cur-
rent price p and all the returned user resource requirements
x1(p1), . . . , xn(pn) given by (3). Furthermore, the provider
has full knowledge of the cost function C but no knowledge
of any user’s utility function Ui.

The price update rule can be rewritten as a function

pi := Ti(p), (4)

with T = (T1, . . . , Tn). The above locality assumptions on
the structure of T enforce price updating under the minimum
message-passing overhead. Clearly, when message-passing is
limited to only prices p and resource allocations x(p), any
algorithm that requires information beyond gradients, e.g.,
Newton methods, can hardly be decentralized.

III. ALGORITHMS

Our main objective is to design an effective price updating
rule T , so that x(p(t)) can converge to the optimal resource
allocation x∗ within a small number of iterations. Before
presenting our new algorithm, let us review an existing popular
method, based on Lagrangian dual decomposition and the
gradient algorithm. We will also point out the connection
between our new algorithm and the nonlinear Jacobi algorithm.



A. Dual Decomposition and Gradient Methods

We now briefly describe Lagrangian dual decomposition and
interpret it as a price updating algorithm introduced in Sec. II.
Problem (1) is equivalent to

max
x,y

∑n
i=1Ui(xi)− C(y) (5)

s.t. x = y, xi ∈ [ai, bi], i = 1, . . . , n.

It is easy to check that the Lagrangian dual problem of (5) is

min
p
q(p) =

n∑
i=1

max
xi∈[ai,bi]

{Ui(xi)− pixi}+ max
y
{pTy − C(y)}.

Since problem (5) is convex, the duality gap is zero: if p∗

solves the dual problem, then x∗i = arg maxxi∈[ai,bi] Ui(xi)−
p∗i xi solves the original problem.

Thus, we only need to solve the dual problem. It is known
[1], [4], [6] that the gradient of q(p) is

∇q(p) = y(p)− x(p), (6)

where y(p) = (y1(p), . . . , yn(p)) is given by

y(p) = arg max
y

pTy − C(y), (7)

and x(p) = (x1(p1), . . . , xn(pn)) is defined as follows:

xi(pi) = arg max
xi∈[ai,bi]

Ui(xi)− pixi. (8)

Applying a gradient algorithm to the dual problem yields the
following price updating rule:

pi := Ti(p) = pi − γ
(
yi(p)− xi(pi)

)
, (9)

where γ is a sufficiently small positive stepsize.
Obviously, (9) can be interpreted as the following price

updating procedure: given a price vector p set by the resource
provider, each user returns xi(pi) to the provider by maximiz-
ing its own surplus. The provider then computes y(p) locally
by maximizing pTy − C(y) and updates p according to (9).
Apparently, the price update here only makes use of the current
price p, the returned x(p), and the local cost function C at the
provider, complying with the locality assumptions on price
updating.

B. The New Algorithm

We propose a new type of algorithms for solving problem
(1), which satisfies the locality assumptions on T in Sec. II.

Algorithm 1: Assume the resource provider updates the
price p. The price update rule is, for all i,

pi := Ti(p) = (1− γ)pi + γ∇iC
(
x1(p1), . . . , xn(pn)

)
, (10)

where γ ∈ (0, 1] is a relaxation parameter, and

xi(pi) := arg max
xi∈[ai,bi]

Ui(xi)− pixi (11)

is the resource requirement collected from each user i under
the current price p.

Instead of relying on dual decomposition, Algorithm 1
actually observes the optimality conditions of (1). For ease
of explanation, let us ignore the constraint xi ∈ [ai, bi] for
now. By first-order conditions, if x∗ solves (1), we have

U ′i(x
∗
i ) = ∇iC(x∗), ∀i. (12)

Let us consider Algorithm 1 when γ = 1. Assume the iteration
(10) has a fixed point p∗. Then at p∗, we have

U ′i
(
xi(p

∗
i )
)

= p∗i = ∇iC
(
x1(p∗1), . . . , xn(p∗n)

)
, ∀i, (13)

where the first equality is due to the first-order condition of
(11). Thus, (x1(p∗1), . . . , xn(p∗n)) satisfies the conditions (12)
and is an optimal solution x∗, as our problem is convex.

The following proposition shows that as long as Algorithm
1 converges, it will solve the optimization problem (1).

Proposition 1: Suppose that Algorithm 1 has a fixed point
p∗ and an associated x∗. Then, x∗ solves (1).

Proof: Please refer to Appendix A for the proof.
In Algorithm 1, surplus maximization is performed only at

users, whereas in gradient methods (9), such maximizations
must be performed at both users and the provider to obtain
x(p) and y(p). First, this greatly reduces the computational
complexity when n is large. In particular, Algorithm 1 can
scale to a very large n without having to solve convex
optimization at the provider side. More importantly, we will
see that the new algorithm can better exploit the structures
of Ui and C to achieve a faster convergence rate. We will
also see that it is easier to choose the parameter γ in the new
algorithm, as it does not have to be very small.

C. Relationship to the Nonlinear Jacobi Algorithm

All the algorithms above have synchronous and asyn-
chronous versions, depending on whether updates of pi and
xi(p) are performed for all users i synchronously or asyn-
chronously. For example, in an asynchronous Algorithm 1, pi
and xi(pi) can be updated for an user i for any finite number
of iterations, before other xj(pj) for j 6= i are updated.

In the following, we show that the nonlinear Jacobi al-
gorithm [4] is a limiting case of the asynchronous version
of Algorithm 1, while Algorithm 1 can be understood as a
novel decentralization of the nonlinear Jacobi algorithm. The
nonlinear Jacobi algorithm consists of iteratively optimizing
in a parallel fashion with respect to each variable xi while
keeping the rest of the variables xj (j 6= i) fixed. Formally,
for problem (1), it is defined as

xi := arg max
xi∈[ai,bi]

Ui(xi)− C(x1, . . . , xi, . . . , xn) +
∑
j 6=i

Uj(xj).

(14)
And the above update is to be conducted for all i in parallel.
Note that the above nonlinear Jacobi algorithm cannot be
applied to our problem, because the resource provider does
not know any user utility Ui, and the users do not know the
cost function C. Neither can the nonlinear Jacobi algorithm
be interpreted as a pricing-based algorithm.



However, the nonlinear Jacobi algorithm is a limiting case
of Algorithm 1 executed asynchronously. If for each user i, we
perform (10) and (11) of Algorithm 1 for an infinite number of
iterations before updating the other variables xj (for all j 6= i)
in equation (10) for this user, then the xi obtained this way
is the same as the one given by (14), and thus Algorithm 1
becomes the nonlinear Jacobi algorithm. In other words, the
Algorithm 1 proposed here, with a convenient interpretation
as pricing, is essentially a novel distributed version of the
nonlinear Jacobi algorithm.

IV. CONVERGENCE CONDITIONS

We analyze the convergence of the algorithms above, and
in particular, aim to find sufficient conditions under which a
certain algorithm is a contraction mapping [4]. Although more
general convergence conditions may be found for an algorithm
when executed synchronously, contraction mapping can ensure
its convergence even if executed completely asynchronously
[4]. Note that an asynchronous algorithm is much better than
its synchronous counterpart, since message-passing between
network elements usually incurs heterogeneous delays in re-
ality. Based on the derived conditions, we will compare the
algorithm robustness to the choice of γ and their convergence
speeds in Sec. V, using a simple example of quadratic pro-
gramming.

A. Contraction Mapping

As some preliminaries, let us introduce contraction mapping
and its properties. Many iterative algorithms can be written as

x(t+ 1) := T (x(t)), t = 0, 1, . . . , (15)

where x(t) ∈ X ⊂ <n, and T : X 7→ X is a mapping from
X into itself. The mapping T is called a contraction if

‖T (x)− T (y)‖ ≤ α‖x− y‖, ∀x, y ∈ X, (16)

where ‖ · ‖ is some norm, and the constant α ∈ [0, 1) is called
the modulus of T . Furthermore, the mapping T is called a
pseudo-contraction if T has a fixed point x∗ ∈ X (such that
x∗ = T (x∗)) and

‖T (x)− x∗‖ ≤ α‖x− x∗‖, ∀x ∈ X. (17)

The following theorem establishes the geometric conver-
gence of both contractions and pseudo-contractions:

Theorem 1: (Geometric Convergence) Suppose that X ⊂
<n and the mapping T : X 7→ X is a contraction, or a pseudo-
contraction with a fixed point x∗ ∈ X . Suppose the modulus
of T is α ∈ [0, 1). Then, T has a unique fixed point x∗ and the
sequence {x(t)} generated by x(t+ 1) := T

(
x(t)

)
satisfies

‖x(t)− x∗‖ ≤ αt‖x(0)− x∗‖, ∀t ≥ 0, (18)

for every choice of the initial vector x(0) ∈ X . In particular,
{x(t)} converges to x∗ geometrically.

To simplify notations, we may use ci(x) to stand for
∇iC(x) and ui(xi) for U ′i(xi). We denote ∂xjxi

C(x) =
∇jci(x) the second order partial derivatives of C.

B. Convergence of Algorithm 1 when γ = 1

We analyze the convergence of Algorithm 1 under different
choices of γ. First, suppose γ = 1. We rewrite Algorithm 1 in
another form amenable to analysis. Denote [xi]

+
i the projection

of xi ∈ < onto the interval [ai, bi], i.e.,

[xi]
+
i = arg minz∈[ai,bi]|z − xi|, i = 1, . . . , n. (19)

It is easy to check that (11) is equivalent to

xi(pi) := [arg maxxi
Ui(xi)− pixi]+i = [u−1i (pi)]

+
i (20)

Therefore, letting γ = 1 and substituting (10) into (20) yields

xi := Ti(x) = [u−1i (ci(x))]+i , i = 1, . . . , n, (21)

which is an equivalent iteration to Algorithm 1 when γ =
1. The following result gives a sufficient condition for the
convergence of Algorithm 1 with γ = 1.

Proposition 2: Suppose γ = 1. If, for all i, we have∑n
j=1|∂xjxiC(x)| < min

zi
|U ′′i (zi)|, ∀x ∈

∏
i[ai, bi], (22)

then T = (T1, . . . , Tn) given by (21) is a contraction and
the sequence {x(p(t))} generated by Algorithm 1 converges
geometrically to the optimal solution x∗ to (1), given any
initial price vector p(0).

Proof: Please refer to Appendix B for the proof.

C. Convergence of Algorithm 1 with Over-relaxation
Next, we consider the convergence condition when γ < 1,

which is much harder to analyze in general. In many scenarios,
the optimal solution x∗ is in the interior of the box

∏
i[ai, bi],

i.e., ai < x∗i < bi for all i. If the x(p(t)) generated by (10) and
(11) in each iteration t is always in the interior of

∏
i[ai, bi],

we can rewrite (11) as xi(pi) := u−1i (pi), and Algorithm 1 is
equivalent to the following iteration:

xi := Ti(x) = u−1i
(
(1− γ)ui(xi) + γci(x)

)
, ∀i. (23)

The following result gives a convergence condition of Algo-
rithm 1 when γ < 1.

Proposition 3: Suppose ai < x∗i < bi for all i. Set
xi(pi(0)) to be ai for all i, or bi for all i. If we have{

0 < γ ≤
(
1 +

∂xixi
C(x)

|U ′′
i (xi)|

)−1
,∑

j 6=i ∂xjxi
C(x) ≤ 0,

(24)

for all x between x(p(0)) and x∗, for all i, then T =
(T1, . . . , T2) given by (23) is a pseudo-contraction between
x(p(0)) and x∗, and the sequence {x(p(t))} generated by
Algorithm 1 converges to x∗ geometrically.

Proof: Please refer to Appendix B for the proof.
In many engineering problems, users may have a priori

knowledge of (ai, bi) that contains its optimal x∗i , which
justifies the assumption that x∗ resides in the interior of∏
i[ai, bi]. Furthermore, setting xi(pi(0)) to ai (or bi) is easy:

the resource provider only needs to set a very high (or very
low) pi(0) to push the user resource requirement xi(pi) to
its corresponding boundary value. Conditions (24) essentially
ensure that x(p(t)) increases (or decreases) from a (or b) to
x∗ monotonically.



D. Convergence of Gradient Methods for Dual Decomposition

There are many results on the convergence of gradient
algorithms. For example, for a sufficiently small constant
stepsize γ, the algorithm is guaranteed to converge to the
optimal value [6]. For comparison, here we derive a sufficient
condition under which the gradient algorithm applied to the
dual problem, i.e., iteration (9), is a contraction for the
unconstrained version of problem (1).

Proposition 4: Suppose that problem (1) has no con-
straints and that the Hessian matrix of C(x) is H(x) =
[∂xjxiC(x)]n×n. Denote the inverse of H(x) as P (x) =
[H(x)]−1 = [Pij(x)]n×n.

If we have the following conditions for all x and i:{
0 < γ ≤

(
Pii(x) + 1

|U ′′
i (xi)|

)−1
,∑

j 6=i|Pij(x)| < Pii(x) + 1
|U ′′

i (xi)| ,
(25)

then T = (T1, . . . , Tn) given by (9) is a contraction and the
sequence {x(p(t))} converges geometrically to x∗.

Proof: Please refer to Appendix B for the proof.
When the constraints ai ≤ xi ≤ bi are considered, the

contraction property is hard to analyze in general, since in
this case, fi(p) = yi(p)− [u−1i (pi)]

+
i involves projection and

is not continuously differentiable.
As a final note, when an update rule T is a contraction

or pseudo-contraction with respect to the maximum norm ‖ ·
‖∞, asynchronous convergence of the corresponding algorithm
can be established using Proposition 2.1 in [4] (pp. 431). In
other words, if the sufficient conditions in this section hold,
the corresponding algorithms also converge asynchronously.

V. QUADRATIC PROGRAMMING:
CONVERGENCE PERFORMANCE COMPARISONS

We compare the convergence conditions and speeds of dif-
ferent algorithms using an example of quadratic programming.
A quadratic cost C and utilities Ui simplify the conditions
derived in Sec. IV, allowing us to draw insights on the
algorithm convergence performance.

Suppose Ui(xi) = 1
2 (βix

2
i +ρixi+τi) and C(x) = 1

2x
TAx,

where βi < 0 for all i, and A = [aij ]n×n is an n × n pos-
itive semi-definite symmetric matrix. Then the unconstrained
version of problem (1) becomes

max
x

1

2

(∑n
i=1(βix

2
i + ρixi + τi)− xTAx

)
. (26)

It is easy to check that U ′′i (xi) = βi and ∂xjxiC(x) = aij ,
for all x. Furthermore, the Hessian matrix of C(x) is H(x) =
A, and the inverse of H(x) is P (x) = [Pij(x)]n×n = A−1. If
we denote A−1 as [a′ij ]n×n, then Pij(x) = a′ij , for all x.

According to Proposition 2 and Proposition 3, Algorithm 1
will converge to x∗, if{

γ = 1,∑n
j=1|aij | < |βi|, ∀i,

(27)

or if {
0 < γ ≤ (1 + aii

|βi| )
−1,∑

j 6=i aij ≤ 0,
∀i. (28)

According to Proposition 4, the gradient algorithm applied
to the dual decomposition will converge to x∗, if{

0 < γ ≤ (a′ii + 1
|βi| )

−1,∑
j 6=i |a′ij | < a′ii + 1

|βi| ,
∀i. (29)

Let us now analyze the algorithm convergence speeds. Since
the convergence speed of a contraction is governed by its
modulus α, we derive α1(γ) and αD(γ) for Algorithm 1 and
dual decomposition, respectively, under different choices of
the parameter γ.

If γ = 1, from the proof of Proposition 2, we obtain

α1(1) = max
i

n∑
j=1

|aij |
|βi|

.

If γ < 1, for dual decomposition, we have

αD(γ) = max
i
|1− γ(

1

|βi|
+ a′ii)|+ γ

∑
j 6=i|a′ij |

≥max
i

∑
j 6=i|a′ij |

(a′ii + 1/|βi|)
, (30)

where the equality is achieved when a different γi is allowed
for each user i and γi = (a′ii+ 1/|βi|)−1. The right hand side
of the above inequality represents the best convergence speed
of dual decomposition with the gradient algorithm.

A. Discussions

Let us compare the convergence speeds of different algo-
rithms. Note that the smaller the modulus α is, the faster
the corresponding contraction converges. Algorithm 1 may
potentially achieve much faster convergence if |βi| is big
relative to |aij |, which is often the case in communication
and networking systems, where the service cost C is low
due to multiplexing or due to low unit cost for resources.
On the contrary, if |βi| is small relative to |aij |, the gradient
algorithm for the dual problem will converge faster. Therefore,
when gradient methods for dual decomposition fail to be a
contraction (and thus a very small stepsize γ must be chosen),
we may resort to Algorithm 1 to achieve fast and asynchronous
convergence.

Another obvious strength of the new algorithm is its ro-
bustness and simplicity in parameter selection. Under certain
circumstances (e.g., when

∑n
j=1|aij | < |βi|, ∀i), choosing

γ = 1 suffices to achieve fast convergence for the new
algorithm.

Even if γ < 1, it is also much easier to set γ in the
new algorithm than in dual decomposition with the gradient
algorithm. As has been analyzed, for dual decomposition to
achieve its best convergence speed (given it is a contraction), γ
should be set around (a′ii+1/|βi|)−1. This requires one to have
good estimates about the absolute values of a′ii, |βi|; otherwise,
γ usually needs to be set to a small value to guarantee
convergence, which, however, leads to slow convergence.

In contrast, for Algorithm 1 to achieve its best convergence
speed (given it is a pseudo-contraction), γ should be set to
around (1 + aii/|βi|)−1, which only depends on the relative



values of aii and |βi| and is thus easier to estimate. For
example, for Algorithm 1, to choose a γ < 1 that satisfies
condition (28) is easy: if aii ≤ |βi|, for all i, which is often
the case when the service cost is low, we can simply set γ to
0.5.

VI. HANDLING GENERAL COUPLED OBJECTIVES

The proposed algorithm does not only solve (1). We now
show how to use Algorithm 1 to approach a general form
of optimization problems with coupled objective functions,
referred to as consensus optimization [5]:

min
x

∑m
i=0Fi(x) (31)

s.t. x ∈ Pi, i = 0, 1, ...,m,

where Fi : <n 7→ < are strictly convex functions, and Pi
are bounded polyhedral subsets of <n. We assume at least F0

depends on all n coordinates of the vector x and P0 ⊂ Pi.
The consensus optimization problem (31) not only models

distributed resource allocation with arbitrary coupling among
utility functions, but also finds wide applications in machine
learning problems [5]. For example, in model fitting, the vector
x represents the set of parameters in a model and Fi represents
the loss function associated with the ith training sample. The
learning goal is to find the model parameters x that minimizes
the sum of loss functions for all training samples. Note that
(1) is a special case of (31) in that each Ui only depends on
the ith coordinate of x, while C plays the role of F0.

We show that based on duality theory, consensus optimiza-
tion (31) can be converted into an equivalent form of (1).
Introducing auxiliary variables xi ∈ <n, (31) is equivalent to

min
x
F0(x) +

∑m
i=1Fi(xi) (32)

s.t. x ∈ P0, xi = x, xi ∈ Pi, i = 1, ...,m.

It is easy to check that the dual problem of (32) is

max
p

q(p) = q0(
∑m
i=1pi) +

∑m
i=1qi(pi) (33)

where pi ∈ <n are the Lagrangian multipliers, and

q0(
∑m
i=1 pi) = min

x∈P0

{F0(x)− (
∑m
i=1 pi)

Tx}, (34)

qi(pi) = min
xi∈Pi

{Fi(xi) + pTi xi}. (35)

The dual function q(p) is continuously differentiable and

∂q(p)

∂pi
=
∂q0(p)

∂pi
+
∂qi(pi)

∂pi
= −x(p) + xi(pi), (36)

where x(p) and xi(pi) are the unique minimizing vectors
in (34) and (35), respectively. A traditional gradient method
would update p in the direction of its gradient ∇q(p).

Alternatively, we can apply Algorithm 1 to the dual problem
(33) with p as the variable by setting Ui(pi) = qi(pi) and
C(p) = −q0(p), leading to the alternating iterations for all i:

x̃i := (1− γ)x̃i + γ∇iC(p) = (1− γ)x̃i + γx(p) (37)
pi := arg max

pi

qi(pi)− pTi x̃i, (38)

where x̃i is the price set for Fi. We can further simplify
the update (38) for pi. We assume P0 ⊂ Pi for all i. Since
x(p) ∈ P0, from (37), we have x̃i ∈ P0 ⊂ Pi. Clearly, pi
is the solution to the system of equations ∂qi(pi)

∂pi
− x̃i = 0,

or equivalently, xi(pi) − x̃i = 0. When xi(pi) = x̃i is in the
interior of Pi, from the first-order conditions of (35), we have

pi = −∂Fi(x̃i)
∂xi

. (39)

Therefore, Algorithm 1, when applied to consensus opti-
mization (31), is fully described by the iterations (37) and
(39), where pi are variables, x̃i are prices, F0 plays the
role of a “resource provider” and each Fi is a “user”. Each
“user” updates its variable pi in a distributed fashion based
on the price x̃i computed and sent by the “provider” until
convergence.

Note that P0 ⊂ Pi for all i is a condition to use Algorithm 1,
since otherwise, x̃i may reside outside of Pi and the gradient
of qi(pi)− pTi x̃i, which is xi(pi)− x̃i, cannot be zero. In this
case, (38) is not well defined. When P0 ⊂ Pi, we can apply
Algorithm 1 to the unconstrained dual problem (33), which is
equivalent to (31).

VII. CLOUD NETWORK RESERVATION:
TRACE-DRIVEN SIMULATIONS

We study a typical large-scale real-time cloud resource
reservation problem, first presented in [7]. In this study, we
show that contraction assumptions for gradient algorithms do
not often hold in reality, which causes slow convergence and
non-trivial challenges for stepsize selection.

Suppose that n video companies have random bandwidth
demands D1, . . . , Dn from end users. As the tenants of a cloud
provider, these video companies want to reserve the egress
network bandwidth to guarantee smooth video delivery to their
end users. We assume that the reservation of egress network
bandwidth from cloud data centers has already been enabled
by the detailed engineering techniques proposed in [8]–[10].

When guaranteeing xi portion of its demand Di, video
company i enjoys a utility Ui(xi, Di), e.g.,

Ui(xi, Di) = αixiDi − eBi(Di−xiDi), (40)

which represents a linear utility gain from usage xiDi and
a convex increasing utility loss eBi(1−xi)Di for the demand
(1−xi)Di from end users that are not guaranteed. The cloud
performs multiplexing to save bandwidth reservation cost:
given a service violation probability ε, it needs to reserve a
total bandwidth of K such that Pr(

∑
ixiDi > K) = ε. The

problem is to decide the guaranteed portions x = (x1, . . . , xn)
to maximize the expected social welfare, i.e.,

max
x

SW(x) =
∑n
i=1EDi

[Ui(xi, Di)]− βK(x), (41)

s.t. xi ∈ [0, 1], i = 1, . . . , n, (42)

where β is the cost of reserving a unit amount of bandwidth.
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Fig. 2. CDF of convergence iterations in all 81 10-minute periods.

Suppose D1, . . . , Dn are Gaussian with predictable means
µ = (µ1, . . . , µn), standard deviations σ = (σ1, . . . , σn), and
the covariance matrix Σ = [σij ]n×n. Then We have

E[Ui(xi, Di)] = αixiµi − eBi(1−xi)µi+
1
2B

2
i (1−xi)

2σ2
i , (43)

and under Gaussian demands, the bandwidth reservation K is

K(x) = µTx+ θ(ε)
√
xTΣx, (44)

where θ(ε) = F−1(1 − ε) is a constant, F being the CDF
of normal distribution N (0, 1) [7]. Now it is clear that (41)
is a convex problem and can be solved through pricing, i.e.,
the cloud can charge user i a price pixi to control the user
demand xi towards expected social welfare maximization.

Our study is based on a video demand dataset from a
real-world commercial VoD system [7]. Please refer to [7]
for the data description. The data used here contains the
bandwidth demands of n = 468 video channels (each we
suppose to be a tenant of the cloud), measured every 10
minutes, over a 810-minute period during 2008 Olympics.
Assume the demand statistics µ, Σ of tenants remain the same
within each 10-minute period. We can estimate µ, Σ for the
upcoming 10 minutes based on historical demands using the
time-series forecasting techniques presented in [7], [11]. Once
µ, Σ are obtained, we solve problem (41) for an optimal
allocation x in this period. After the 10-minute period has
past, the system proceeds to estimate µ, Σ for the next 10
minutes and computes a new x from (41). Since the cloud
does not know Ui and the tenants do not know K, (41) must
be solved distributively with the minimum message-passing.
Furthermore, (41) must be solved in at most a few seconds
in order not to delay the entire resource allocation process
performed every 10 minutes. We set ε = 0.01, αi = 1
Bi = 0.5, β = 0.5.

We apply different algorithms to (41) for the 81 consecutive
10-minute periods. To select algorithms, for the first period, we
find that the condition (24) is satisfied, and (22) is satisfied for
most but not all i. We may thus tentatively believe Algorithm
1 is contracting when γ = 0.5 and probably contracting
when γ = 1. However, condition (25) is not satisfied, as the
Hessian of K(x) is small due to multiplexing and its inverse
is big. Thus, the gradient method for dual decomposition is
not a contraction. As a benchmark algorithm, the gradient
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Fig. 3. Final objective values SW(x∗) produced by different algorithms.

method for the dual problem, although not contracting, can still
converge theoretically when stepsize γ is sufficiently small.

The initial price p(1) is set to the optimal price vector
β(µ+ θ(ε)σ) without multiplexing, which is easy to compute
due to no coupling in the cost function [7]. Since the value
of SW(x) is unknown to the cloud, we let an algorithm
stop at iteration t if either ‖x(t) − x(t − 1)‖∞ < 10−2 or
t = 100. Since Algorithm 1 is a contraction, which even
converges asynchronously, we adopt an asynchronous stop
criterion: if |xi(t) − xi(t − 1)| < 10−2, then tenant i stops
updating xi. In contrast, as the gradient method is not a
contraction, we evaluate both synchronous and asynchronous
stop criteria when it is used. Note that we do not assume
heterogeneous message-passing delays, which may otherwise
further strengthen the benefit of our asynchronous algorithm.

Fig. 2 plots the CDF of convergence iterations needed in all
81 experiments, one for each 10-minute period. Algorithm 1
always converges in 10 iterations, when γ = 0.5. If γ = 1, the
convergence rate can be further speeded up to 5 iterations on
average, although it does not converge in one single period,
due to violation of the contraction assumption. In general,
gradient methods need much longer time to converge, and also
face a dilemma in selecting the stepsize γ. Since algorithms
will stop when x is changing by less than 10−2, we cannot
set too small a γ, in which case, the algorithm will stop when
t = 2 due to too small a change in p(t). Fig. 2 shows that
gradient methods with all considered γ produce erroneous
outputs in many cases, as they stop at t = 2. Increasing γ
reduces errors, but will lead to even longer convergence time.
Fig. 2 suggests that unlike Algorithm 1, no constant stepsize
γ for gradient methods can achieve correct outputs and fast
convergence at the same time for all 81 experiments.

A further check into Fig. 3 shows that the final objective
SW(x∗) produced by Algorithm 1 is also higher than those
of the gradient methods. Gradient methods with asynchronous
stop rules, although converged, may output wrong answers
because they are not contractions and in theory, should not be
applied with asynchronous stop rules. Gradient methods with
synchronous stopping achieve slightly higher objective values
if not stopping at t = 2. But since they do not converge within
100 iterations, they are still inferior to Algorithm 1.

Let us zoom into the first 10-minute period and see how
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Fig. 4. The evolution of ‖x(t)− x(t− 1)‖∞ in the first experiment.

convergence happens for this experiment. From Fig. 4, we
see that Algorithm 1 has an increasing convergence speed
as t increases. In contrast, gradient methods perform well in
the first two iterations, but its convergence slows down as
the gradient becomes smaller. It is confirmed that gradient
methods are extremely sensitive to γ, the choice of which is
a non-trivial technical challenge.

Finally, the analysis above does not take into account the
additional benefit of Algorithm 1 regarding the computational
complexity at each node. Both algorithms have the same
complexity at each user, which is a 1-dimensional surplus
maximization. However, in Algorithm 1, the provider only
needs to compute a cost gradient ∇C straightforwardly,
whereas in gradient methods, the provider needs to solve a
big 468-dimensional profit maximization problem for y(p).

VIII. RELATED WORK

Network resource allocation is often modeled as Network
Utility Maximization (NUM) problems [1], [3], [12]. A num-
ber of primal/dual decomposition methods have been proposed
to solve such problems in a distributed way. Most NUM prob-
lems in the literature are concerned with uncoupled utilities
where the local variables of one element do not affect the
utilities of other elements, which does not apply to systems
with competition or cooperation, where utilities are often
coupled.

Traditional distributed solutions to NUM with coupled ob-
jectives seek decomposition from Lagrangian dual problems
with auxiliary variables, which are then solved with gradi-
ent/subgradient methods. This approach has a simple economic
interpretation of consistency pricing [3], [13]. However, gra-
dient methods are sensitive to the choice of stepsizes, leading
to slow and unstable convergence. Furthermore, existing faster
numerical convex problem solvers, e.g., Newton methods [4],
can hardly be applied in a distributed way, as they involve a
large amount of message-passing beyond gradient information,
which is hard to implement and justify physically in reality.

The nonlinear Jacobi algorithm [4] solves convex problems
by optimizing the objective function for each variable in par-
allel while holding other variables unchanged, and converges
under certain contraction conditions. However, it cannot be
applied to our problem, as no network element has global
information of all the utilities. However, the Jacobi algorithm

is a limiting case of Algorithm 1 executed asynchronously. If
for each i, we perform (10) and (11) for an infinite number
of iterations before updating xj (j 6= i), then Algorithm
1 becomes the nonlinear Jacobi algorithm. In other words,
Algorithm 1 is essentially a distributed version of the Jacobi
algorithm. When Algorithm 1 is a contraction, it converges
asynchronously and thus its asynchronous limiting case, the
non-linear Jacobi algorithm, also converges.

Pricing in distributed systems has also been approached with
game theory [14], [15]. However, this paper is concerned with
achieving fast and robust convergence in large-scale systems,
while incentive issues are not our focus.

IX. CONCLUDING REMARKS

In this paper, we propose a new algorithm for large-scale
distributed resource allocation with coupled objectives, and
analyze the asynchronous algorithm convergence conditions.
Trace-driven simulations show that the proposed method can
speed up convergence by 5 times over gradient methods in a
real-time cloud network reservation problem with better ro-
bustness to parameter changes. It remains open to explore the
applicability of the new algorithm to problems with coupled
constraints.
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APPENDIX A
PROOFS OF SEC. III

Proof of Proposition 1: One approach is to show the fixed
point x∗ satisfies the KKT conditions of (1). Here, we present
a simpler proof based on the following lemma, the proof of
which can be found in [4] (pp. 210, Proposition 3.1):

Lemma 1: Suppose F is convex on a convex set X . Then,
x ∈ X minimizes F over X , if and only if (y−x)T∇F (x) ≥ 0
for every y ∈ X .

Suppose Algorithm 1 has a fixed point p∗ and an associated
x∗. Then we have{

p∗i = ∇iC(x∗), ∀i,
x∗i = arg maxxi∈[ai,bi] Ui(xi)− p∗i xi, ∀i. (45)

Since x∗i maximizes Ui(xi)− p∗i xi on [ai, bi], by Lemma 1,

(yi − x∗i )(U ′i(x∗i )− p∗i ) ≤ 0, ∀yi ∈ [ai, bi], ∀i.
Since p∗i = ∇iC(x∗), we have∑

i(yi−x∗i )(U ′i(x∗i )−∇iC(x∗)) ≤ 0, ∀y ∈∏i[ai, bi], (46)

which, by Lemma 1, means x∗ solves (1).

APPENDIX B
PROOFS OF SEC. IV

Proof of Proposition 2: For each i, define a function gi :
[0, 1] 7→ < by

gi(t) = u−1i
(
ci(z(t))

)
= u−1i

(
ci(tx+ (1− t)y)

)
. (47)

Note that gi is continuously differentiable. We have

|Ti(x)− Ti(y)|= |[u−1i (ci(x))]+i − [u−1i (ci(y))]+i |

≤ |gi(1)− gi(0)| =
∣∣∣∣ ∫ 1

0

dgi(t)

dt
dt

∣∣∣∣
≤
∫ 1

0

∣∣∣∣dgi(t)dt

∣∣∣∣dt ≤ max
t∈[0,1]

∣∣∣∣dgi(t)dt

∣∣∣∣,
where the first inequality is because |[xi]+i −[yi]

+
i | ≤ |xi−yi|

for all xi, yi ∈ <. Furthermore, the chain rule yields∣∣∣∣dgi(t)dt

∣∣∣∣= ∣∣∑n
j=1∇ju−1i ◦ ci(tx+ (1− t)y) · (xj − yj)

∣∣
≤
∣∣(u−1i )′(ci(z(t)))

∣∣ ·∑n
j=1

∣∣∇jci(z(t))∣∣ · |xj − yj |,
where the function u−1i ◦ ci(x) is equivalent to u−1i (ci(x)).

If condition (22) holds, we have for all x ∈∏i[ai, bi],∑n
j=1|∇jci(x)|<min

zi
|u′i(zi)| ≤ |u′i

(
u−1i (ci(x))

)
|

= 1/|(u−1i )′(ci(x))| (48)

Therefore, there exists a positive α < 1 such that∣∣∣∣dgi(t)dt

∣∣∣∣ ≤ αmax
j
|xj − yj | = α‖x− y‖∞, ∀t ∈ [0, 1], ∀i.

Therefore, we have shown that

‖T (x)− T (y)‖∞ ≤ α‖x− y‖∞, ∀x, y ∈∏i[ai, bi],

and T is a contraction with modulus α with respect to the
maximum norm in

∏
i[ai, bi]. By Theorem 1, Algorithm 1

converges geometrically to x∗.
Proof of Proposition 3: For each i, define a function gi :

[0, 1] 7→ < by

gi(t) = u−1i
(
(1− γ)ui(zi(t)) + γci(z(t))

)
, (49)

where z(t) = tx+ (1− t)x∗.
Now suppose x < x∗. Let us show that xi < Ti(x) ≤ x∗i

for all i. We have

Ti(x)− Ti(x∗) = gi(1)− gi(0) =

∫ 1

0

dgi(t)

dt
dt, (50)

where dgi(t)/dt is given by

dgi(t)

dt
= (u−1i )′

(
(1− γ)ui(zi(t)) + γci(z(t))

)
·
(
(1− γ)

u′i(zi(t))(xi − x∗i ) + γ
∑
j∇jci(z(t))(xj − x∗j )

)
=
(
u′i(Ti(z(t)))

)−1 · (((1− γ)u′i(zi(t)) + γ∇ici(z(t)))
(xi − x∗i ) + γ

∑
j 6=i∇jci(z(t))(xj − x∗j )

)
(51)

Because Ui is strictly concave, u′i(x) < 0 for all x. Hence,
under the condition (24), if x < x∗, we have Ti(x) ≤ x∗i for
all i, from which we immediately have

ui
(
Ti(x)

)
= (1−γ)ui(xi)+γci(x) ≥ ui(x∗i ) = ci(x

∗) > ci(x),

which leads to ui(xi) > ci(x) and thus

ui(xi) > (1− γ)ui(xi) + γci(x), ∀γ > 0. (52)

Applying u−1i (·) to both sides yields xi < Ti(x) for all i.
Therefore, there exists an α ∈ [0, 1), which depends on γ, ui,
ci and x∗, such that

|Ti(x)− x∗i | ≤ α|xi − x∗i |, ∀xi ∈ [ai, x
∗
i ], ∀i, (53)

or equivalently, ‖T (x) − x∗‖∞ ≤ α‖x − x∗‖∞, for all x
between a = (a1, . . . , an) and x∗. In other words, we have
shown that T is a pseudo-contraction in

∏
i[ai, x

∗
i ].

Similarly, if x > x∗, we can show that xi > Ti(x) ≥ x∗i
for all i, and T is a pseudo-contraction in

∏
i[x
∗
i , bi]. Thus,

Algorithm 1 converges geometrically.
Proof Sketch of Proposition 4: Note that Ti(p) in (9) can

be written in the form Ti(p) = pi − γfi(p), where fi(p) :=
yi(p) − xi(p), with fi being continuously differentiable. By
Proposition 1.11 of [4] (pp. 194), Ti(p) is a contraction if{

0 < γ ≤ 1/∇ifi(p), ∀p, ∀i,∑
j 6=i |∇jfi(p)| < ∇ifi(p), ∀p, ∀i. (54)

We can derive ∇jfi(p) from the Hessian matrix of C(x) and
U(x). In particular, we have

∇ifi(p) =∇iyi(p)−∇ixi(p) = Pii(x(p))−
(
U ′′i (xi(p))

)−1
∇jfi(p) =∇jyi(p)−∇jxi(p) = Pij(x(p)), ∀j 6= i.

Substituting the above into (54) and utilizing the fact
U ′′i (xi) < 0 will prove the proposition.


