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Abstract—Current-generation cloud computing is offered with
usage-based pricing, with no bandwidth capacity guarantees,
which is however unappealing to bandwidth-intensive applica-
tions such as video-on-demand (VoD). We consider a new type
of service where VoD providers, such as Netflix and Hulu,
make reservations for bandwidth guarantees from the cloud
at negotiable prices to support continuous media streaming.
We argue that it is beneficial to multiplex such bandwidth
reservations in the market using a profit-making broker while
controlling the performance risks. We ask the question—in such a
market, how much should each VoD provider pay for bandwidth
reservation? We prove that the market has a unique Nash
equilibrium where the bandwidth reservation price for a VoD
provider critically depends on its demand correlation to the
market. Real-world traces verify that our theory can significantly
lower the market price for cloud bandwidth reservation.

I. INTRODUCTION

Cloud computing is changing the way that user-oriented
multimedia applications such as video-on-demand (VoD) op-
erate their businesses. Traditionally, VoD providers invest in
commodity servers as business grows and acquire bandwidth
deals from Internet Service Providers (ISPs). Nowadays, they
can be freed from hardware maintenance and network admin-
istration by using computing and network resources in the
public cloud. One particular example is that Netflix, a major
VoD provider in North America, moved its streaming servers,
encoding software, search engines, and huge data stores to
Amazon Web Services (AWS) in 2010 [1].

Since video delivery has stringent rate requirements, a VoD
provider wants to make sure that sufficient server bandwidth
is provisioned to sustain continuous media delivery to end
users. Thanks to recent advances in datacenter engineering, it
is becoming technically feasible to offer bandwidth guarantees
for egress traffic from virtual machines (VMs) [2], [3]. We
believe that, when bandwidth-intensive applications (such as
VoD and video gaming) are on board to use services from
cloud providers (such as Amazon), there will be a market
between the application providers and cloud providers. The
commodities to be traded in such a market consist of band-
width reservations, so that the application performance can be
guaranteed.

The idea of reserving cloud bandwidth has posed several
new challenges to resource management and pricing in the
cloud. First of all, as demand varies dynamically, it is difficult
for a VoD provider to estimate how much bandwidth to
reserve at a certain point. Whereas under-provision causes

performance issues, the common practice of over-provision
incurs high service cost at the cloud and eventually leads
to higher prices for VoD providers. Second, current cloud
providers charge applications for bandwidth usage in a pay-
as-you-go model based on the number of bytes transferred [4],
which is however insufficient as a model to price bandwidth
guarantees. Such a pricing problem is further complicated
by the fact that cloud providers usually conduct resource
over-subscription: the demands of multiple applications may
be statistically multiplexed to save bandwidth reservation.
With multiplexing and resource sharing among applications,
it is even harder to fairly price bandwidth reservations for
individual applications.

To address the above challenges, we propose an economi-
cally viable cloud broker that sells bandwidth guarantees to
VoD providers individually under a certain pricing policy,
while jointly booking bandwidth for them from the clouds
to save reservation cost and maximize profit. With a reduced
service cost, VoD providers may also expect a lower price
for bandwidth reservation. Specifically, the broker operates in
the following process. First, it predicts the demand statistics
of VoD providers in the near future based on demand history
available from cloud monitoring services, e.g., Amazon Cloud-
Watch provides free resource monitoring to AWS customers at
a 5-minute frequency [5] as of 2011. Second, the broker mixes
demands of different VoD providers based on anti-correlation,
and directs the mixed demands to multiple cloud providers for
service. The broker repeats the above process periodically to
adapt to demand changes.

Our study is inspired by the question—what the broker
pricing policy should be and will be in such a broker-assisted
market? The broker pricing policy is crucial because it not
only determines the broker profit and bills for VoD providers,
but also affects the way that the broker accommodates and
directs demands, indirectly controlling resource allocation
among multiple clouds. We start with observing the conflicting
objectives of different entities in the market.

The first potential conflict lies between the broker and
cloud providers. To enhance cloud resource efficiency, the load
direction should be such that demands are optimally mixed
with the minimum bandwidth resource reserved. However,
depending on the pricing policy, a selfish broker may direct
loads in a different way to maximize its profit, or even deny
demand if serving it does not bring profit. To resolve this con-
flict, our first contribution is to characterize the entire region



of good pricing policies under which a profit-driven broker
behaves exactly like an altruistic social planner that directs
loads for workload consolidation across multiple clouds. Good
pricing can subsequently be enforced in a controlled market
to promote market healthiness.

Another fundamental conflict lies between the broker profit
and the cost of VoD providers. As the broker saves service cost
through multiplexing, VoD providers may expect lower prices
for bandwidth reservation. What is the maximum discount a
VoD provider can enjoy? To answer this question, we study
a free market where each VoD provider can bargain with
the broker to negotiate the price it has to pay. However, a
VoD provider cannot pay too little since in that case the
broker will deny demand for profit concerns, hurting the VoD
provider’s utility. Using game theory, we prove that the free
market will converge to a unique Nash equilibrium, where the
equilibrium price for a VoD provider critically depends on its
demand expectation, burstiness as well as correlation to the
market. More interestingly, our study has discovered the risk
neutralizers that may earn bonus for having demand negatively
correlated to the market. We also point out the special meaning
of equilibrium pricing in the good pricing region derived for
the controlled market.

We have conducted online bandwidth reservation simula-
tions driven by the workload traces of more than 200 video
channels from an operational VoD system. The simulator in-
corporates demand prediction, resource reservation and pricing
as interdependent components. We find that with the help of
a broker, our theory can lower the market price for cloud
bandwidth reservations by around 50% on average, and save
cloud resource occupation by over 30%.

The remainder of this paper is organized as follows. We
describe our system model in Sec. II and outline main con-
tributions in Sec. III. We study bandwidth reservation pricing
in controlled and free markets in Sec. IV and V, respectively,
and present simulation results in Sec. VI. Sec. VII reviews
related work, and Sec. VIII concludes the paper.

II. SYSTEM MODEL

We study a market of multiple public cloud providers, VoD
providers as cloud tenants, and a broker. The broker sells
probabilistic bandwidth guarantees to tenants while reserving
the actual bandwidth from the clouds for the tenants. The
system operates on a short-term basis. At the beginning of
a short-term period, the broker analyzes each tenant’s demand
history, available from cloud monitoring services, to predict its
expected demand as well as demand variation in the following
period. Our previous work has shown that VoD demands are
highly predictable even at a fine granularity of 10-minute
intervals [6], [7]. While the broker sells guarantees to tenants
individually, it jointly reserves bandwidth from multiple clouds
for the mixed demand, exploiting statistical multiplexing to
save reservation cost. As the aggregate service cost is reduced,
the tenants may expect to pay a lower price. We start with
describing different entities in the market in more detail.
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Fig. 1. A system of 2 cloud providers and 2 VoD providers. Random variables
are labeled with “r.v.”

A. Cloud Providers, VoD Providers and the Broker

Cloud Providers. We assume there are S cloud providers,
each with an outgoing bandwidth capacity of Cs available
for reservation, s = 1, . . . , S. Let Csum :=

∑
s Cs be

the aggregate bandwidth capacity of all the cloud providers.
Throughout this paper, we assume that Csum is sufficiently
large to accommodate the total demand in the market. This
assumption is justified by the “illusion of infinite capacity”
[4] and the fact that the cost of high-end routers is dropping
more quickly than before.

VoD Providers. We assume that N VoD providers are
present as cloud tenants, hoping to receive bandwidth guaran-
tees. Throughout the paper, we will use the terms VoD provider
and tenant interchangeably. Bandwidth reservations need to
be varied dynamically and periodically as demand changes.
We consider one such reservation period. Suppose that in this
period, tenant i’s bandwidth demand (due to video requests
from VoD users) is a random variable Di with mean µi and
variance σ2

i .
Let µµµ = [µ1, . . . , µN ]T and σσσ = [σ1, . . . , σN ]T. Note that

demands of different tenants may be intercorrelated due to
the correlation between video genres, viewer preferences and
video release times. Denote ρij the correlation coefficient of
Di and Dj , with ρii ≡ 1. Let Σ = [σij ] be the N × N
symmetric demand covariance matrix, with σii = σ2

i and
σij = ρijσiσj for i 6= j.

We define ε as the risk factor. To satisfy its demand Di with
a high probability 1− ε, tenant i needs to reserve bandwidth
Bi := fε(Di), where fε(Di) denotes 1 − ε percentile of the
distribution of Di, so that Pr(Di > Bi) = ε.

The Broker jointly books bandwidth for the tenants from
multiple clouds based on demand estimates {µi}, {σ2

i }. The
broker aims to mix demand based on anti-correlation to save
bandwidth reservation. As shown in Fig. 1, such a decision
essentially relates to a load direction matrix W = [wsi]S×N ,
where wsi represents the portion of tenant i’s demand Di

directed to and served by cloud provider s, with 0 ≤ wsi ≤ 1.
On the cloud side, given [wsi], the bandwidth load imposed

on cloud provider s is a random variable Ls =
∑

i wsiDi.
Similar to Bi := fε(Di), we define

As := fε(Ls), As ≤ Cs, (1)



as the bandwidth that the broker needs to reserve from cloud
provider s to satisfy load Ls with a high probability 1 − ε.
Clearly, the reserved bandwidth As must not exceed the
capacity of cloud s, i.e., As ≤ Cs, or equivalently,

Pr(Ls > Cs) ≤ ε, ∀s. (2)

On the tenant side, given [wsi], the total guaranteed portion
of Di served by all the clouds is

wi =
∑

s wsi ≤ 1. (3)

The broker takes demand estimates µµµ, Σ and calculates a
load direction matrix W∗ = [w∗

si] to achieve a certain goal
(e.g., optimal workload consolidation, or maximum broker
profit), subject to cloud capacity constraints {Cs}. The output
W∗ corresponds to a way that N inter-correlated random
demands D1, . . . , DN are packed into S clouds. Let w∗

i =∑
s w∗

si. Note that depending on its objective, the broker does
not always generate a guaranteed portion of w∗

i = 100% for
each tenant.

B. Pricing the Bandwidth Reservation

The broker charges tenant i a fee of Pi(wi) for accommo-
dating wi portion of its demand Di according to some pricing
strategy Pi(·). Without loss of generality, we assume each
cloud provider charges a fee of $1 for every unit bandwidth
reserved in each short-term period. Hence, the broker needs
to pay $1 ·

∑
s As to the cloud providers for booking a total

amount of
∑

s As bandwidth. Therefore, under a given W,
the broker profit is

R(W) =
∑

i Pi(wi)−
∑

s As. (4)

We formally define the pricing strategy and policy as follows:

Definition 1: A bandwidth pricing strategy Pi(·) relative
to tenant i is a concave function Pi(wi) of wi ∈ [0, 1], with
Pi(0) = 0. The collection of bandwidth pricing strategies
{Pi(·) : i = 1, . . . , N} forms a pricing policy.

These assumptions on Pi(·) are close to real-life situations:
Pi(·) is concave because wholesale is cheaper than retail, i.e.,
the more a user buys some goods, the lower the unit price
P (wi)/wi; Pi(0) = 0 because a user receiving no service pays
nothing. In our model, {Pi(·)} can be authoritatively enforced
in a controlled market, or negotiated between the tenants and
broker in a free market.

III. AN OUTLINE OF CONTRIBUTIONS

In our proposed market, different entities have different
objectives. From the standpoint of cloud resource utilization,
it is best to serve all the demands with the minimum amount
of resource. In contrast, the broker wishes to turn a profit,
while tenants favor a lower bandwidth reservation price. Our
study is inspired by coordinating the conflicts between these
objectives.

First of all, a basic goal of the cloud is to enhance resource
efficiency, or to consolidate the workload. When the aggregate
capacity is sufficient, this means to serve all the given demands

{Di} by reserving as little bandwidth resource
∑

s As as pos-
sible from the cloud. When multiple cloud providers coexist,
a social planner can determine the load direction W∗ that
minimizes the aggregate bandwidth reservation by solving a
workload consolidation problem:

min
W

∑
s As (5)

s.t. As ≤ Cs, ∀s, (6)
wi = 1, ∀i. (7)

Note that different W can result into different
∑

s As be-
cause Di’s may be intercorrelated and mixing anti-correlated
demands can consolidate the workload.

In reality, it is impractical to have a social planner perform
optimal workload consolidation (5) across multiple clouds,
which may not be cooperative to each other in the first place.
Can we use a mechanism inherent in the market to optimally
direct demands from tenants to different clouds? To achieve
this, we resort to a profit-driven broker. We simply let the
broker decide W∗ by maximizing its profit R(W) as follows:

max
W

R(W) =
∑

i Pi(wi)−
∑

s As (8)

s.t. As ≤ Cs, ∀s. (9)

We observe that such a broker always has some incentive to
operate, since its profit is non-negative for any pricing policy
{Pi(·)}, i.e., R(W∗) ≥ R(W)

∣∣
wsi=0,∀s,i

= 0.
However, a selfish broker has no obligation to accommodate

all the demands for service: it may output w∗
i < 1 for some

i. Neither will it necessarily optimize load direction for cloud
workload consolidation. In other words, there is a fundamental
conflict between workload consolidation across the clouds and
profit maximization at the broker, since (8) is not equivalent
to (5) in general. Such a conflict leads to the first question we
ask:

(Q1) Under what pricing policy {Pi(·)} a profit-driven broker
is also a social planner that optimizes workload con-
solidation across multiple clouds while accommodating
all demands for service, i.e., problems (8) and (5) are
equivalent?

An answer to this question enables us to enhance cloud
resource efficiency simply by enforcing a good pricing pol-
icy at an economically viable broker, instead of resorting
to impratical social planning across clouds. In Sec. IV, we
characterize the entire region of all such good pricing poli-
cies. Furthermore, with consolidated workload and a reduced
aggregate service cost

∑
s As, each tenant may indeed expect

to pay a lower price Pi(·) for bandwidth reservation.
Now we look at the reservation price each tenant has to pay.

First, a naive pricing policy {P 0
i (·)} is to charge $1 for every

unit bandwidth reserved for every tenant, where

P 0
i (wi) = fε(Diwi) · 1, with P 0

i (1) = fε(Di) = Bi, ∀i.

Since tenants wish to save money, the broker pricing policy
{Pi(·)} must satisfy Pi(wi) ≤ P 0

i (wi) for all wi ∈ [0, 1] and
for all i. Otherwise, tenants will reserve bandwidth from cloud



providers directly and have no incentive to use the broker.
What is the maximum and fair discount each tenant can enjoy?
The pricing region characterization in Sec. IV also answers
this question.

One may have noted that pricing policies found in (Q1) are
enforced in the market by a supervisory agency other than
the broker or VoD companies. However, in a free market,
a selfish tenant may bargain with the broker to negotiate a
reservation price. To closely model a free market, we assume
that each tenant i can submit to the broker any pricing strategy
Pi(·) it prefers and accepts the service fraction w∗

i returned
by the broker. Based on {Pi(·)} collected from all the tenants,
the broker determines load direction W∗ and thus the service
fraction w∗

i for each i by maximizing its own profit. We ask
the question:

(Q2) In a free market where each selfish tenant (VoD provider)
competes for service by submitting a pricing strategy
Pi(·), what will {Pi(·)} eventually look like?

The free market can be modeled through a game played
by all VoD providers as tenants, each with an independent
strategy Pi(·), which is the pricing scheme it submits. In a
system of sufficient capacity, we assume that a selfish tenant
always 1) expects to get fully served, and 2) tries to reduce the
reservation price it has to pay if condition 1) is met. To put
the above formally, under a set of submitted strategies {Pi(·)},
we define a utility function associated with each tenant i as

Ui[P1(·), . . . , PN (·)] =
{
−Pi(w∗

i ), if w∗
i = 1,

−∞, if w∗
i < 1,

(10)

where w∗
i is determined by the broker via solving (22).

A utility function of the form (10) assumes that unlike
the case of scarce metal (e.g., gold), it is not profitable for
a VoD provider as a tenant to deliberately deny VoD user
requests (making w∗

i < 1) in exchange for a lower bandwidth
reservation cost. The reason is that in reality, popularity
matters more to a VoD provider than instantaneous profit
earned per video request from users. In a market of sufficient
supply, if a VoD provider is found sacrificing some of its user
requests to chase for cheaper bandwidth deals, it will lose
reputation and revenue in the long run.

Intuitively, a VoD provider as a tenant cannot submit too
low a Pi(·), since otherwise the broker will not serve Di

completely out of profit concerns. Ironically, even if Pi(·) is
high, Di may not get fully served either, depending on the
prices submitted by other tenants. In Sec. V, we present a key
finding of this paper:

Theorem 1: In a free market, {Pi(·)} will converge to a
unique Nash equilibrium {P ∗

i (·)}, where w∗
i = 1 and

P ∗
i (w∗

i ) = µi + θσiρiM , (11)

ρiM ∈ [−1, 1] being the correlation coefficient between Di

and
∑

i Di.
It turns out that {P ∗

i (·)} is also the lower border of the good
pricing region, which means that without intervention, the
free market competition will lead to cloud resource efficiency

maximization, where each tenant receives the maximum price
discount. In Sec. V and VI, we discuss the deeper connections
between demand statistics µi, σi, ρiM and bandwidth reserva-
tion pricing, as revealed in Theorem 1.

IV. PRICING REGION IN CONTROLLED MARKETS

We address question (Q1) in this section. We first try to
understand the structure of optimal load direction in the ideal
case of social planning, and then characterize the pricing poli-
cies under which a profit-driven broker will exactly behave like
a social planner and facilitate cloud workload consolidation.
Such a pricing region also depicts the maximum price discount
a tenant can enjoy from the broker.

Let us first introduce several frequently used notations. We
define

∑
i Di as the market demand with its standard deviation

denoted by σM . Denote σiM the covariance between Di and
the market demand

∑
i Di. Clearly, we have

σiM = E[(Di − µi)(
∑

j Dj −
∑

j µj)] =
∑N

j=1 σij , (12)

σM =
√

Var[
∑

i Di] =
√

1TΣ1 =
√∑

i,j σij . (13)

Further denote ρiM = σiM/σiσM ∈ [−1, 1] the correlation
coefficient between Di and the market demand

∑
i Di.

For convenience, let L = [L1, . . . , LS ]T, ws =
[ws1, . . . , wsN ]T, w = [w1, . . . , wN ], and w∗

s =
[w∗

s1, . . . , w
∗
sN ]. Clearly, we have w =

∑
s ws.

A. The Optimal Load Direction of a Social Planner

We first consider the ideal case that there is a social
planner that optimally directs load based on (5). For simplicity,
we assume each random demand Di is Gaussian-distributed,
which has been verified by real-world traces in [8] for large
Di. Recall that for a Gaussian random variable X , we have

fε(X) = E[X] + θ
√

Var[X], θ = F−1(1− ε), (14)

where F (·) is the CDF of normal distribution N (0, 1). For
example, when ε = 2%, we have θ = 2.05. Note that if each
Di is Gaussian-distributed, so is Ls =

∑
i wsiDi, and we have

E[Ls] = µ1ws1 + . . . + µNwsN = µµµTws,
Var[Ls] =

∑
i,j ρijσiσjwsiwsj = wT

s Σws.

It follows that

Bi = fε(Di) = µi + θσi,

As = fε(Ls) = µµµTws + θ
√

wT
s Σws.

Therefore, the cloud workload consolidation problem (5)
has the following form under Gaussian demands:

min
W

∑
s(µµµ

Tws + θ
√

wT
s Σws), (15)

s.t. µµµTws + θ
√

wT
s Σws ≤ Cs, ∀s, (16)

w =
∑

s ws = 1, (17)
0 � ws � 1, ∀s, (18)

where 1 = [1, . . . , 1]T and 0 = [0, . . . , 0]T are N -dimensional
column vectors. Constraint (16) is equivalent to As ≤ Cs and
thus to (2).



Although problem (15) is convex optimization, it has cou-
pled objectives and constraints, and takes numerical solvers a
long time to converge for a large S. Our previous work [8]
has given nearly closed-form solutions to problem (15) in the
following theorem (please refer to [8] for the proof):

Theorem 2: When Csum ≥ µµµT1 + θ
√

1TΣ1, an optimal
solution [w∗

si] to (15) is given by

w∗
si = αs, ∀i, s = 1, . . . , S, (19)

where α1, . . . , αS can be any solution to∑
s

αs = 1, 0 ≤ αs ≤ min
{

1,
Cs

µµµT1 + θ
√

1TΣ1

}
, ∀s.

(20)
When Csum < µµµT1 + θ

√
1TΣ1, there is no feasible solution

that satisfies constraints (16) to (18).
Using Theorem 2, the broker can fast check if all demands

can be served, simply by comparing the total cloud capacity
Csum with total bandwidth required for all demands combined:

fε(
∑

i Di) = µµµT1 + θ
√

1TΣ1.

Hence, the assumption on sufficient capacity essentially means
that we have assumed ΣsCs ≥ µµµT1 + θ

√
1TΣ1. Theorem 2

implies that to optimally consolidate workload, the broker
should direct the same portions α1, . . . , αS of Di to cloud
provider 1, . . . , S for service, respectively, no matter which
tenant i it is. The set of αs can be found easily subject to the
linear constraints (20).

The maximum bandwidth saving of joint bandwidth book-
ing over individual booking for each tenant is

∆B(W∗) =
∑

i Bi −
∑

s As

=
∑

i(µi + θσi)−
∑

s(µµµ
Tw∗

s + θ
√

w∗T
s Σw∗

s)

= θ(σσσT1−
√

1TΣ1) = θ(
∑

i σi − σM ), (21)

which is θ times the gap between the sum of all demand
standard deviations and the standard deviation of all demands
combined. This confirms the belief that statistical multiplexing
saves resource reservation.

B. The Good Pricing Region for the Broker

However, social planning is not practical in the presence
of rivalry clouds. Instead, in reality, we may only resort to
a broker to optimally direct workloads. Recall that a selfish
broker determines W∗ by maximizing its own profit via (8).
Similarly, under Gaussian demands, we can translate (8) into
the following:

max
W

∑
i Pi(wi)−

∑
s(µµµ

Tws + θ
√

wT
s Σws), (22)

s.t. µµµTws + θ
√

wT
s Σws ≤ Cs, ∀s, (23)

w =
∑

s ws � 1, (24)
0 � ws � 1, ∀s. (25)

Note that a selfish broker not only has a different objective (22)
than (15), but also has a different constraint (24) than (17), in
that a profit-driven broker has no obligation to accommodate

all demands for service, if doing so does not bring more profit.
Instead, the broker decides the service fraction w∗

i ≥ 1 for
each tenant depending on the pricing policy {Pi(·)}. We aim
to find all good pricing policies such that the selfish broker
behaves like an altruistic social planner, i.e., problem (22) is
equivalent to (15).

The following theorem gives a necessary and sufficient
condition for a good pricing policy:

Theorem 3: Broker profit maximization (22) and cloud
workload consolidation (15) have a same optimal solution
(19), if and only if

P ′
i (1) ≥ µi + θ · σiM

σM
, ∀i, (26)

where σiM is the covariance between Di and
∑

i Di given
by (12) and σM is the standard deviation of

∑
i Di given by

(13). Furthermore, if P ′
i (1) < µi +θσiM/σM for some i, then

w∗ 6= 1.
Proof Sketch: We first show that if P ′

i (1) ≥ µi+θσiM/σM ,
∀i, (19) is also an optimal solution to (22).

The function f(ws) =
√

wT
s Σws is a convex cone. We

have f [(w1 + w2)/2] ≤ [f(w1) + f(w2)]/2. Applying this
inequality iteratively, we can prove∑

s

√
wT

s Σws ≥
√

(
∑

s wT
s )Σ(

∑
s ws) =

√
wTΣw. (27)

Using the bound (27), problem (22) can be relaxed to the
following concave problem:

max
w

Ru(w) =
∑

i Pi(wi)− (µµµTw + θ
√

wTΣw), (28)

s.t. µµµTw + θ
√

wTΣw ≤
∑

s Cs, (29)
w � 1, (30)

with Ru(w) ≥ R(W) being concave and (29) being a relax-
ation of constraints (23). Since µµµT1 + θ

√
1TΣ1 ≤

∑
s Cs,

w = 1 is a feasible solution to (28).

∂Ru(w)
∂wi

∣∣∣∣
w=1

=P ′
i (wi)

∣∣∣∣
wi=1

− µi −
θ
∑N

j=1 σijwj√
wTΣw

∣∣∣∣
w=1

=P ′
i (1)− µi −

θCov[Di,
∑

j Dj ]√
1TΣ1

=P ′
i (1)− µi −

σ1M

σM
. (31)

If (26) is satisfied, i.e., ∂Ru(w)/∂wi

∣∣
w=1

≥ 0, ∀i, according
to the gradient ascent algorithm for concave maximization,
w = 1 is the optimal solution to (28). If wsi = αs given
by (19), we have 1) all constraints (23)-(25) are satisfied, 2)
Ru(w) = R(W) and 3) Ru(w) = Ru(1) in problem (28)
reaches optimality. Thus, (19) is an optimal solution to (22).

Please refer to our technical report [9] for a proof of the
converse.

It immediately follows that a good pricing policy must fall
into a certain region, depicted by the following corollary:

Corollary 1: In a good pricing policy {Pi(·) : i =
1, . . . , N}, each Pi(·) must satisfy ∀wi ∈ [0, 1],

(µi + θ · σiM

σM
)wi ≤ Pi(wi) ≤ (µi + θσi)wi. (32)
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Proof: First, Pi(wi) is upper-bounded by the cloud provider
pricing function P 0

i (wi) = (µi + θσi)wi, since otherwise the
tenants would have booked bandwidth from cloud providers
directly. Consider another pricing policy {P ∗

i (·)}, where

P ∗
i (wi) = (µi + θ · σiM

σM
)wi, ∀i. (33)

To prove that Pi(·) is lower-bounded by P ∗
i (·), we need the

following lemma (please refer to our technical report [9] for
the proof):

Lemma 1: Let f(x) be a concave function on [0, 1] with
f(0) = 0. Let k be a (constant) real number. If f ′(1) ≥ k, then
for each x ∈ (0, 1], f(x) ≥ kx. In this case, if f(x′) = kx′

for some x′ ∈ (0, 1], then f(x) ≡ kx, ∀x ∈ [0, 1].
By Theorem 3 and Lemma 1, in a good pricing policy,

for each i, we have Pi(wi) ≥ P ∗
i (wi), ∀wi ∈ (0, 1], with

equality achieved only if Pi(·) ≡ P ∗
i (·).

Fig. 2 illustrates the region of Pi(·) in a good pricing
policy, where each Pi(·) is a concave function between P ∗

i (·)
and P 0

i (·) (inclusive) with P ′
i (1) ≥ µi + θσiM/σM . In the

good pricing region, a selfish broker behaves like a social
planner facilitating workload consolidation without denying
any demand. When a pricing policy falls out of this region,
the broker will reject a part of demands to chase a profit. In
other words, the broker will determine a w∗

j < 1 for some
j, which is undesirable to tenants when supply is sufficient.
Note that Pi(·) affects not only w∗

i but also w∗
j for any other

tenant j. This phenomenon will be understood in Sec. V.
Now let us check the broker profit R(W∗). Under a good

pricing policy, w∗
i = 1. Thus, the broker’s total cost is∑

s As =
∑

s(µµµ
Tw∗

s + θ
√

w∗T
s Σw∗

s) = µµµT1 + θ
√

1TΣ1

=
∑

i µi + θσM .

Using Corollary 1, we obtain

R(W∗) ≤
∑

i(µi + θσi)w∗
i −

∑
s As = θ(

∑
i σi − σM )

= ∆B(W∗), (34)

with equality achieved when Pi(·) ≡ P 0
i (·), and

R(W∗) ≥
∑

i(µi + θσiM

σM
)w∗

i −
∑

s As = θ
P

i σiM

σM
− θσM

= 0, (35)

with equality achieved when Pi(·) ≡ P ∗
i (·).

The above bounds show that the maximum broker profit
is essentially the maximum achievable bandwidth saving
∆B(W∗) from joint bandwidth booking given by (21). More-
over, the maximum profit is achieved when the broker adopts
the same pricing policy {P 0

i (·)} as cloud providers do. On
the other hand, when Pi(·) ≡ P ∗

i (·), the broker profit is
zero, which means all the profit made from cloud bandwidth
multiplexing has been rewarded to tenants as price discounts.

In a controlled market, the lowest price that tenant i should
pay for having all its demand served is

P ∗
i (1) = µi + θσiM/σM . (36)

If any tenant i pays less than P ∗
i (1), the broker cannot serve

all the demands and not only i but any tenant may be denied
for service.

V. PRICING IN FREE MARKETS

In Sec. IV, pricing is enforced as a policy by a supervisory
agency other than the broker and tenants, which is still difficult
to implement in reality. In this section, we consider a free
market, where each tenant could bargain with the broker and
submit its own pricing strategy Pi(·). Recall that we have
defined utility Ui in (10). All the tenants are essentially playing
a game, each of whom aim to maximize its own utility Ui

which is a function of P1(·), . . . , PN (·). Intuitively, tenant i
cannot submit too low a Pi(·), beyond which the broker may
deny a part of Di and return w∗

i < 1, leading to Ui = −∞.
To find the equilibrium of a free market, we just need to

find the Nash equilibrium in the above game, where no tenant i
can get a better utility by unilaterally changing Pi(·). From the
results of Sec. IV, one may conjecture that {P ∗

i (·)} is a Nash
equilibrium. However, is this the unique Nash equilibrium?
Could there be another equilibrium point where any tenant
will submit a very low price and gets a utility of −∞ without
being able to better off by changing its pricing? In other words,
can market collapse happen?

A. Nash Equilibrium: Existence and Uniqueness

Theorem 4: If tenants have utility (10) and the broker
decides W∗ by maximizing its profit via (22), then {Pi(·)}
will converge to a unique Nash equilibrium {P ∗

i (·)}, where

P ∗
i (wi) = (µi + θ · σiM

σM
)wi, 0 ≤ wi ≤ 1, (37)

where σiM and σM are given by (12) and (13), respectively.
Let P−i(·) represent the pricing strategies of all tenants

except for tenant i. The proof of Theorem 4 relies on the
following two lemmas and Theorem 3 that characterize the
solution structure of (22) given {Pi(·)}.

Lemma 2: If P ′
i (1) < µi + θσiM/σM , then w∗

i < 1
regardless of P−i(·).

Proof Sketch: It suffices to show that
∂Ru(w)

∂wi

∣∣∣∣
wi=1

< 0 for all w with wi = 1,

since in this case we have w∗
i = 1 regardless of {wj}j 6=i by

the gradient ascent algorithm.



Recall that ∂Ru(w)/∂wi has been given in (31). If
P ′

i (wi) < µi + θσiM/σM , then

∂Ru(w)
∂wi

∣∣∣∣
wi=1

< θ

(
σiM

σM
−
∑N

j=1 σijwj√
wTΣw

)∣∣∣∣
wi=1

.

Now construct a function g(w1, . . . , wN ) as

g(w1, . . . , wN ) =
N∑

j=1

σijwj/
√

wTΣw.

Clearly, g(1, . . . , 1) = σiM/σM . Hence, it suffices to show
that

g(w1, . . . , wN ) ≥ g(1, . . . , 1) for all w with wi = 1.

Without loss of generality, we only need to prove the case
when N = 2 and i = 1, that is,

σ2
1 + ρ12σ1σ2w2√

σ2
1 + σ2

2w2
2 + 2ρ12σ1σ2w2

≥ σ1(σ1 + ρ12σ2)√
σ2

1 + σ2
2 + 2ρ12σ1σ2

.

It is easy to check that the above inequality indeed holds.
Hence, ∂Ru(w)/∂wi|wi=1 < 0 for all w with wi = 1.

Lemma 3: If Pi(wi) = P 0
i (wi) = (µi + θσi)wi for wi ∈

[0, 1], then w∗
i = 1, regardless of P−i(·).

Proof Sketch: It suffices to show that
∂Ru(w)

∂wi

∣∣∣∣
wi=1

≥ 0 for all w with wi = 1,

since in this case we have w∗
i = 1 regardless of {wj}j 6=i.

Recall that ∂Ru(w)/∂wi has been given in (31). If
Pi(wi) = (µi + θσi)wi, then P ′

i (wi) = µi + θσi. Thus,

∂Ru(w)
∂wi

∣∣∣∣
wi=1

= θ

(
σi −

∑N
j=1 σijwj√
wTΣw

)∣∣∣∣
wi=1

.

Now construct a random variable X as X =
∑

j 6=i wjDj +
Di. By the Cauchy-Schwarz inequality, we have

E2[(Di − µi)(X −E[X])] ≤ E[(Di − µi)2]E[(X −E[X])2],

which is
(
σ2

i +
∑

j 6=i σijwj

)2 ≤ σ2
i

√
wTΣw

∣∣
wi=1

. It follows
immediately that

σi ≥
∑N

j=1 σijwj√
wTΣw

∣∣∣∣
wi=1

.

Hence, ∂Ru(w)/∂wi|wi=1 ≥ 0 for all w with wi = 1.
We are now ready to prove Theorem 4.
Proof of Theorem 4: We first show that {P ∗

i (·)} is a Nash
equilibrium. We need to show that at {P ∗

i (·)}, any tenant i
cannot increase its utility Ui by unilaterally changing Pi(·),
i.e.,

Ui[P ∗
i (·), P ∗

−i(·)] ≥ Ui[Pi(·), P ∗
−i(·)] ∀i. (38)

We exhaust the possibilities of Pi(·) by considering the range
of P ′

i (1). First, if P ′
i (1) < µi+θσiM/σM , by Lemma 2, w∗

i <
1, and by (10),

Ui[Pi(·), P ∗
−i(·)] = −∞ < −P ∗

i (1) = Ui[P ∗
i (·), P ∗

−i(·)].

Second, if P ′
i (1) ≥ µi + θσiM/σM , while P−i(·) ≡ P ∗

−i(·),
by Theorem 3, we have w∗

i =
∑

s w∗
si =

∑
s αs = 1. Hence,

Ui[Pi(·), P ∗
−i(·)] = −Pi(1) ≤ −P ∗

i (1) = Ui[P ∗
i (·), P ∗

−i(·)].

The inequality is due to Lemma 1 and P ∗
i (wi) is linear in

wi and passes (0, 0). We have thus proved (38). Therefore,
{P ∗

i (·)} is indeed a Nash equilibrium.
Now we show {P ∗

i (·)} is the unique Nash equilibrium, i.e.,
if {Pi(·)} is a Nash equilibrium, then Pi(·) ≡ P ∗

i (·). First of
all, we must have

P ′
i (1) ≥ µi + θσiM/σM , ∀i. (39)

We prove (39) by contradiction. Assume P ′
i < µi +θσiM/σM

for some i. By Lemma 2, w∗
i < 1 and thus Ui = −∞. If

tenant i uses another strategy P 0
i (wi) = (µi + θσi)wi, then

by Lemma 3, w∗
i = 1, regardless of P−i(·). Hence,

Ui[P 0
i (·), P−i(·)] = −P 0

i (1) > −∞ = Ui[Pi(·), P−i(·)],

contradicting with the definition of Nash equilibrium that
unilaterally changing Pi(·) cannot increase Ui. Therefore, (39)
must hold.

If (39) holds, by Theorem 3, w∗
i =

∑
s w∗

si =
∑

s αs = 1
for all i, and thus Ui[Pi(·), P−i(·)] = −Pi(1) for all i. If (39)
holds, by Lemma 1, Pi(1) ≥ (µi + θσiM/σM ) · 1 = P ∗

i (1),
with equality achieved only if Pi(wi) ≡ (µi+θσiM/σM )wi ≡
P ∗

i (wi) for wi ∈ [0, 1]. In other words, if Pi(·) is not P ∗
i (·),

Ui[Pi(·), P−i(·)] = −Pi(1) < −P ∗
i (1) = Ui[P ∗

i (·), P−i(·)],

contradicting with the fact that {Pi(·)} is a Nash equilibrium.
Therefore, Pi(·) must be P ∗

i (·), which proves that {P ∗
i (·)} is

the unique Nash equilibrium.

B. Discussions

Theorem 4 shows that even without a supervisory party, the
selfishness of tenants will drive {Pi(·)} into an equilibrium
point {P ∗

i (·)}, which is exactly the lower border of the good
pricing region. Therefore, in a free market, a profit-driven
broker is naturally a workload consolidator that optimizes the
cloud resource efficiency.

In equilibrium market, we have Pi(·) ≡ P ∗
i (·) and broker

profit R(W∗) = 0 according to (35). This means the broker
would be unable to exploit the arbitrage opportunity from
bandwidth multiplexing in equilibrium. When multiple brokers
exist, the unique Nash equilibrium still holds because the
game is played by all the VoD providers, while each broker
determines the service fraction w∗

i based on the submitted
{Pi(·)} in the same way. And the competition among brokers
will necessarily lead to a zero broker profit. However, the
broker can still earn income through other means such as agent
fees, membership fees and commercials.

More importantly, let us take a closer look at the equilibrium
bandwidth reservation price for each tenant. In equilibrium, we
have w∗

i = 1 and P ∗
i (w∗

i ) = P ∗
i (1). Rewriting (36), we obtain

$ P ∗
i (w∗

i ) = µi + θσiρiM = µi + [fε(Di)− µi]ρiM , (40)

proving Theorem 1, the key theorem of this paper.
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Fig. 3. The aggregate bandwidth
P

s As(t) booked by the broker, com-
pared to the aggregate bandwidth

P
i Bi(t) needed if each channel books

individually and the real aggregate demand
P

i Di(t).

The free market automatically guarantees a fairness on the
bandwidth costs of different tenants. Note that the tenant
payment consists of two parts: $1 per unit bandwidth for
mean demand µi, and $ρiM per unit bandwidth for reservation
beyond the expected demand µi. Apparently, the discount
for tenant i depends on its correlation ρiM to the market
demand. In the extreme case of ρiM < 0, Di is negatively
correlated with the market demand. Surprisingly, except for
paying for mean demand, tenant i actually earns a bonus
of −θσiρiM > 0. The reason is that tenant i serves as
a risk neutralizer: whenever market demand has a random
increase, Di will decrease to release occupied resources to
accommodate the market surge. This helps the broker save
the bandwidth reservation and hedge under-provision risks.

VI. TRACE-DRIVEN SIMULATIONS

In this section, we simulate a broker-assisted cloud band-
width trading system, and conduct trace-driven performance
evaluation. We use workload traces collected from UUSee
[10], an operational large-scale VoD service based in China.
The dataset contains the bandwidth demand in UUSee video
channels sampled every 10 minutes during 2008 Summer
Olympics. We consider two 800-minute time spans in the
traces, time periods 702—780 and 1562—1640, containing 91
and 176 concurrent video channels, respectively. We let each
video channel i represent the ith tenant of the cloud services,
with the same demand Di as the channel’s demand.

In our system, bandwidth reservation and trading are carried
out online every ∆t = 10 minutes. We believe a 10-minute
frequency is close to the fastest frequency that the system
can react to demand changes, since historical demand data
is available for free from cloud monitoring services such as
Amazon CloudWatch at a 5-minute frequency [5]. Before time
t, the broker should have obtained estimates about expected
demands µµµt = [µ1t, . . . , µNt] and the demand covariance
matrix Σt = [σijt] for all VoD providers in the coming
period [t, t + ∆t). Such statistics can be predicted accurately
based on historical demand data, since VoD demand follows
repeated daily patterns and is highly predictable [6], [7], [11].
Some established time series forecasting tools in econometrics
(e.g., [12], [13]) may be used for prediction. In particular,
we implement an online version of seasonal ARIMA and
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Fig. 4. The histogram of payment discounts of all channels at all times in
equilibrium, i.e., the histogram of 1− P ∗

i (1, t)/P 0
i (1, t) for all i and t.

GARCH models introduced in [6], [7] to predict µµµt and Σt.
Once µµµt and Σt are obtained, the broker maximizes its profit
by solving (22), making load direction decision W∗ and
bandwidth reservation As from each cloud provider s. The
broker serves as a gateway that routes w∗

si portion of VoD
provider i’s incoming video requests to cloud provider s for
service during the period [t, t + ∆t). The above process is
repeated for the next period [t + ∆t, t + 2∆t).

To evaluate the benefit of such a system, we quantify the
equilibrium point in the market. Fig. 3 evaluates the saving
on cloud bandwidth resources in equilibrium market. Due to
multiplexing, the aggregate bandwidth

∑
s Ast booked by the

broker is less than the aggregate bandwidth
∑

i Bit needed
if each tenant books bandwidth individually. We set the risk
factor as ε = 5% and ε = 1% for time periods 702—780
and 1562—1640, respectively, which results into an actual
under-provision probability of ε′ = 5.06% and ε′ = 1.27% in
Fig. 3(a) and Fig. 3(b), respectively. Although

∑
i Bit always

exceeds the real aggregate demand
∑

i Dit, it does not mean
there is no outage when booking individually: each individual
tenant is still subject to an under-provision probability ε. In
general, the broker can save bandwidth reservation by more
than 30% on average with controllable quality risks.

More importantly, we further evaluate the price discount
each tenant can enjoy. At time t, tenant i pays $ P 0

it(1) =
µit + θσit if reserving bandwidth individually, but only pays
$ P ∗

it(1) = µit +θσitρiMt in the equilibrium market if it buys
bandwidth guarantees from a broker. The discount it receives
at time t is 1 − P ∗

it(1)/P 0
it(1). Fig. 4 plots the histogram of

discounts 1−P ∗
it(1)/P 0

it(1) for all i and over all time periods
t. It shows that the mean price discount depends on demand
statistics and even exceeds 50% during the second time span.

An interesting finding is that the discount is over 100%
in some rare cases, which means that the payment P ∗

it(1) =
µit + θσitρiMt of some tenant i at some point t is negative.
We call such VoD providers “bonus winners,” since the broker
would even not mind paying to have them in the system. As
pointed out in Sec. V, this is because “bonus winners” have
demand negatively correlated to the market and thus are risk
neutralizers: whenever there is an increase in market demand,
the demand of “bonus winners” will drop to make resources
available for other tenants in need of resources.



VII. RELATED WORK

Cloud bandwidth reservation is becoming technically fea-
sible. There have been proposals on datacenter engineering
to offer bandwidth guarantees for egress traffic from virtual
machines (VMs) [2], or to connect the VMs of the same
tenant in a virtual network with bandwidth guarantees [2],
[3]. These advances have made the cloud more attractive
to bandwidth-intensive applications such as VoD and video
gaming. Virtualization techniques particularly for supporting
cloud-based IPTV services are also being developed by major
U.S. VoD providers such as AT&T [14]. Furthermore, video
demand forecasting techniques have been proposed, such as
the non-stationary time series models introduced in [6]–[8],
and video access pattern extraction via principal component
analysis in [11]. These prediction methods help to estimate
the amount of resources to be reserved.

Cloud brokers, e.g., Zimory [15], have recently emerged
as intermediators connecting buyers and sellers of computing
resources. The engineering aspects of using brokerage to
interconnect clouds into a global cloud market have been
discussed in [16]. We propose a new type of cloud brokerage
that multiplexes bandwidth reservations to save cost while
providing quality guarantees to customers. Amazon Cluster
Compute (as of 2011) [17] allows tenants to reserve, at a
high cost, a dedicated 10 Gbps network with no multiplexing.
Instead of over-provisioning a fixed amount of capacity, our
proposed broker dynamically books resource in adaption to
demand changes, exempting tenants from demand estimation,
for which they have no expertise. We aim to find the pricing
policies under which a selfish broker can also enhance cloud
resource efficiency and save money for VoD providers. Differ-
ent from usage-based pricing [4], our proposed pricing policy
depends on demand statistics such as burtiness and correlation.

The idea of statistical multiplexing has been empirically
evaluated for a shared hosting platform in [18]. VM consoli-
dation with independent random bandwidth demands has also
been considered in [19]. In contrast, our work exploits the
unique characteristics of user-oriented applications. We lever-
age the fact that VoD demand is fractionally splittable into
video requests, which can be optimally directed to different
clouds and statistically mixed toward workload consolidation.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we consider the scenario that multiple VoD
providers make reservations for bandwidth guarantees from
cloud service providers in order to support continuous me-
dia streaming. VoD providers attract inter-correlated random
demands that can be directed to multiple cloud providers,
subject to their bandwidth capacities. We introduce a profit-
making broker that statistically mixes demands based on anti-
correlation while controlling the quality risk. We study how
each VoD provider should be charged in such a market.

The region of all good pricing policies is characterized,
such that making a profit at the broker is equivalent to
optimizing cloud resource efficiency. In a free market where
VoD providers can negotiate the bandwidth price with the

broker, we prove that the prices will converge to a unique Nash
equilibrium, which forms the lower border of the good pricing
region. Furthermore, the equilibrium bandwidth price of a
VoD provider critically depends on its demand burstiness and
correlation to the market demand. Trace-driven simulations
verify that the presence of a broker can lower the market price
for cloud bandwidth reservations by around 50% on average,
and save cloud resources by over 30% given the same demand.

Interesting directions for future work include developing
robust methods to deal with prediction inaccuracy and practical
schemes to facilitate fast convergence to the market equilib-
rium, as well as extending this cloud pricing theory to other
applications with predictable workload, such as video gaming.
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