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Abstract—There has been a recent trend that video-on-demand numerous VoD providers from embracing cloud computing
(VoD) providers such as Netflix are leveraging resources from js that, unlike CPU and memory resourcesguarantee of
cloud services for multimedia streaming. In this paper, we con- anqwidthis not provided in current cloud services. Instead,

sider the scenario that a VoD provider can make reservations for L : .
bandwidth guarantees from cloud service providers to guarantee each data center has limited outgoing bandwidth shared by

the streaming performance in each video channel. We propose a Multiple tenants with no bandwidth assurance.

predictive resource auto-scaling system that dynamically books  We believe that bandwidth reservation will become a near-
the minimum bandwidth resources from multiple data centers for  term value-added feature offered by cloud services to dppea
the VoD provider to match its short-term demand projections. — ¢,stomers with bandwidth-intensive applications, suctods

We exploit the anti-correlation between the demands of video .
channels for statistical multiplexing and for hedging the risk of In fact, there have ?"rea‘_jy been proposals f_rom the pergpect
under-provision. The optimal load direction from channels to Of data center engineering to offer bandwidth guarantees fo
data centers is derived with provable performance. We further egress traffic from a virtual machine (VM), as well as among
provide suboptimal solutions that balance bandwidth and storage VM themselves [2], [3].

costs. The system is backed up by a demand predictor that Under such a context, we analyze the benefits and ad-

forecasts the demand expectation, volatility and correlations d hall f cloud bandwidth ¢ i f
based on learning. Extensive simulations are conducted driven ress open chalflenges or clou anawl auto-scaling tor

by the workload traces from a commercial VoD System_ VoD applications in this paper. In a nutShell, the benefits of
bandwidth auto-scaling are intuitive. As shown in Fig. 1(a)
l. INTRODUCTION traditionally, a VoD provider acquires a monthly plan from

Cloud computing is redefining the way many Internet selSPs, in which a fixed bandwidth capacity, e.g., 1 Gbps, is
vices are operated and provided, including Video-on-Damaguaranteed to accommodate the anticipated peak demand. As
(VoD). Instead of buying racks of servers and building pevaa result, resource utilization is low during non-peak times
data centers, it is now feasible for VoD companies to use cowf- demand troughs. Alternatively, a usage-based pay-as-yo
puting and bandwidth resources of cloud service providego model is adopted by a cloud as shown in Fig. 1(b),
As an example, Netflix moved its streaming servers, encodingiere a VoD provider pays for the total amount of bytes
software, data stores and other customer-oriented APIsttansferred. However, the bandwidth capacity availablth&o
Amazon Web Services (AWS) in 2010 [1]. VoD provider is subject to variation due to contention from

One of the most important economic appeals of clousther applications, incurring unpredictable performaissaes.
computing is its elasticity and auto-scaling in resource- prFig. 1(c) illustrates bandwidth auto-scaling and res@pwato
visioning. Traditionally, after careful capacity planginan match resource with the demand, leading to both high re-
enterprise makes long-term investments on its infragtrect source utilization and quality guarantees. Apparently,ittore
to accommodate its peak workload. Over-provisioning is irirequently the rescaling happens, the more closely resourc
evitable while utilization remains low during most non-keasupply will match the demand.
times. In contrast, in the cloud, the number of computing However, a number of important challenges need to be ad-
instances launched can be changed adaptively at a fine grasmessed to achieve bandwidth auto-scaling for a VoD pravide
larity with a lead time of minutes. This converts the up-frorFirst, since resource rescaling requires a delay of at least
infrastructure investment to operating expenses charged deveral minutes to update configuration and launch instance
cloud providers. As the cloud’s auto-scaling ability entes it is best to predict the demand with a lead time greater than
resource utilization by matching supply with demand, olWerahe update interval, and scale the capacity to meet antétdpa
expenses of the enterprise may be reduced. demand. Such a proactive, rather than passive, strategy for

Unlike web servers or scientific computing, VoD is aesource provisioning needs to take into account demand fluc
network-bound service with stringent bandwidth requiretae tuations in order to avoid bandwidth insufficienSecondas
As VoD users must download at a rate no smaller than tktatistical multiplexing can smooth traffic, a VoD provid=m
video playback rate to smoothly watch video streams onlineserve less bandwidth to guard against fluctuationpioyly
bandwidth, as opposed to storage and computation, caestitureserving bandwidth for all its video channels. However, to
the performance bottleneck. Yet, a major obstacle thatgmtsv serve geographically distributed end users, a VoD provider
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Fig. 1. Bandwidth auto-scaling with quality assurance, @spared to provisioning for the peak demand and pay-as-you-go
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Fig. 2. The system decides the bandwidth reservation frech data center S€rvice to AWS customers at a 5-minute frequency [4].

and a matrixW = [ws;] every At minutes, wheraws; is the proportion of Second the bandwidth demand history of all channels is

video channel’s requests directed to data centerDC: data center. . . . . .
fed into the demand predictor to predict bandwidth require-

usually has its collection of channels served by multipl@ent of each video channel in the next minutes, i.e., in
data centers, which are possibly owned by different clodfe period[t,¢ + At). Our predictor not only forecasts the
providers. The question is — how should the VoD provideqxpected demand, but also outputgcdatility estimate, which
optimally split and direct its workload across data centers fepresents the degree that demand will be fluctuating around
save the overall bandwidth reservation cost? its expectation, as well as the demacatrelations between

In this paper, we propose a bandwidth auto-scaling faciliffifferent channels in this period. Our volatility and cdateon
that dynamically reserves resources from multiple dataecen €stimation is based on multivariate GARCH models [5], which
for VoD providers, with several distinct featureGirst, it is 9ained success in stock modeling in the past decade.
predictive. The facility tracks the history of bandwidthnaend ~ Finally, the load optimizer takes predicted statistics as the
in each video channel using cloud monitoring services, aad pnput, and calculates the bandwidth capacity to be reserved
riodically estimates the expectation, volatility and etations from each data center. It also outputs a load direction matri
of demands in all video channels for the near future usingtimW = [ws;], wherew,; represents the portion of video channel
series technigues. We propose a nowsiannel interleaving i's workload directed to data center Apparently, we should
schemehat can even predict demand for new videos that ladlave ) ws; = 1 if the aggregate data center capacity is
historical demand dat&Secondit provides quality assurancesufficient. The matrixW also indicates the content placement
by judiciously deciding the minimum bandwidth reservatioflecision: videa is replicated to data centeronly if w,; > 0.
needed to satisfy the demand with high probabilitird, it In practice, the load directioRV can be readily implemented
optimally mixes demands based on anti-correlation to sage 0y routing the requests for video channefo data centes
aggregate bandwidth capacity reserved from all data cgnte¥ith probability ws;.
while confining risks of under-provision. The system finishes the above three steps before ttirse

We formulate the bandwidth minimization problem givetthat a new bandwidth reservation can be performed at time
the predicted demand statistics as input, derive the tkieore for the period[t,t + At), after which the above process is
cally optimal load direction across data centers, and mepdgepeated for the next peridd+ At, ¢t + 2At).
heuristic solutions that balance bandwidth and storagéscos Bandwidth Reservation vs. Load BalancingOne may be
The proposed facility is evaluated through extensive tracempted to think that periodic bandwidth reservation isamn
driven simulations based on a large data set of 1693 videssary, since requests can be flexibly directed to whichever
channels collected from UUSee, a production VoD systemiata center that has available capacity by a load balancer.
over a 21-day period. However, the latter will exactly fall in the range of pay-as-
you-go model with no quality guarantee to VoD users, whereas
bandwidth reservation ensures that the provisioned resour

Consider a VoD provider withV video channels, relying exceeds the projected demand with high probability.
on S data centers for service, which are possibly owned by Furthermore, a major difficulty of load balancing is that

II. SYSTEM ARCHITECTURE
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Fig. 3. Using demand correlation between channels, we canthavtotal bandwidth reservation, even within each 10-reimariod, while still providing
quality assurance to each channel. DC: data center.

data centers might be owned by different cloud providers. And variances?. For convenience, lIeD = [Dy,..., Dy]T,
a result, it is complicated if not infeasible to implement @ = [u1,...,un]" ande = [oy,...,on]".
gateway that can continuously watch resources of each cloudNote that the random demandy, ..., D, may be highly

provider (instead of every 5 minutes as offered by free clousrrelated due to the correlation between video genresievie
watch services) and redirect requests instantaneousbssCipreferences and video release times. Depgt¢he correlation
cloud providers. Even if requests can be redirected instatpefficient of D, and Dj, with p;; = 1. Let ¥ = [0;;] be the
taneously to lightly loaded data centers when the playbagk x N symmetric demandovariance matrixwith o;; = o2
quality degrades, significant engineering efforts are irequ ando;; = p;;0;0; for i # j.
to monitor the video playback quality at end users. The VoD provider will book resources froii data centers.
Quality-Assured Bandwidth Multiplexing. The bandwidth DenoteC the upper bound on the bandwidth capacity that can
demand of each video channel can fluctuate drastically evema reserved from data centerfor s = 1,...,5. C, may be
small time scales. To avoid performance risks, the bandwidimited by the available instantaneous outgoing bandwitth
reservation made for each channel in edchperiod should data centes, or may be intentionally set by the VoD provider
accommodate such fluctuations, inevitably leading to low geographically spread its workload and avoid booking
utilization at troughs, as illustrated in Fig. 3(a) and (Bpugh resources from a single data center. Ugt, = 5, C, be the
filling within a short period such as 10 minutes is hard wit@ggregate utilizable bandwidth capacity of slidata centers.
too many random shocks in demand. Throughout the paper, we assume tifat.,, is sufficiently
However, our load optimizer strives to enhance utilizatiofarge to satisfy all the demands in the system.
even whenAt¢ is as small as 10 minutes by multiplexing e define a load direction decision as a weight matrix
demands based on their correlations. The usefulness of ag{r — [wsi], s=1,...,5,i=1,...,N, wherew,, represents
correlation is illustrated in Fig. 3(c): if we jointly bookapac- the portion of videoi’s demand directed to and served by
ity for two negatively correlated channels, the total resdr gata centers, with 0 < w,; < 1 and S owe = 1. We
capacity isAsum < A1+ A,. Besides aggregation, we can als@bserve thatw, = [w,1, ..., wsny]T represents thevorkload

take a part of demand from each channel, mix them and resep¢tfolio of data centes. Givenw,, the aggregate bandwidth
bandwidth for the mixed demands from multlple data Centel]éad imposed on data centeris a random variable

As an example, in Fig. 3(d) and (e), the aggregate demand
of two channels is split into two data centers, each serving a Ly =Y. wyD; =wlD. (1)
mixture of demands, which still leads to a total bandwidth ’

reservation of As,m. In each At period, we leverage the yye ysed, to denote the amount of bandwidth reserved from
estimated demand correlations to optimally direct worea y,:5 centex for this period. Clearly, we must hawé, < C
across data centers so that the total bandwidth reservatjon 5 _. [Ai,...,Ag]T. To control ’the under-provissian I'SiSk
necessary to guarantee quality is minimized. we require the load imposed on data centéo be no more

than the reserved bandwidth, with high probability, i.e.,
IIl. L oAD DIRECTION AND BANDWIDTH RESERVATION

In this section, we focus on the load optimizer. Suppose Pr(Ls > As) <€ Vs, )
before timet, we have obtained the estimates about demands ) o
in the coming periodt, t+At). Our objective is to decide load Wheree > 0 is a small constant, called thender-provision
directionW so as to minimize the total bandwidth reservatioRrobability.
while controlling the under-provision risk in each datateen
The question of how to make demand predictions will be th€ The Optimal Load Direction
subject of Sec.IV.

We first introduce a few useful notations. Since we are Given demand expectations and covariance&, and the
considering an individual time period, without loss of gen@vailable capacitie€’s, . .., Cs, the load optimizer can decide
erality, we drop subscript in our notations. Recall that the optimal bandwidth reservatioh™ and load directiorW*
the VoD provider runsN video channels. The bandwidth
demand of channel is a random variableéD; with meany; 1A rigorous condition for supply exceeding demand is given lredrem 1.



by solving the following optimization problem: if > .Co > u'l + 6V1TX1, it is easy to verify (15) is
feasible. Whenw?;, = a, given by (14), we find (11), (12)

\Izrvl%g 2 As (3) and (13) are all satisfied. Hence, (14) is a feasible solwiah
st A, <Oy, Vs, (4) > Ws = 1 is feasible. By (16), the objective (9) satisfies
PI'(LS > Aé) S €, VS, (5) ZS(ILTWS + 9\/ W;I—EWS)
Yowsi =1, Vi (6) >pt>S w0/ wHEQ, ws)
=p"146V1TZ1.

Through reasonable aggregation, we believe thatfol-
lows a Gaussian distribution. We will empirically justiflis ~ We find that{w?;] given by (14) achieves the above inequality
assumption in Sec. V using real-world traces. Whenis with equality, and thus is also an optimal solution to (9]

Gaussian-distributed, constraint (2) is equivalent to Theorem 1 implies that in the optimal solution, each video
7 , o=l channel should split and direct its workload $odata centers
As 2 ElLs] + 0/ var[Li],  with §:= F7 (1), (7) following the same weights, ..., ag, which can be found
where F(-) is the CDF of normal distribution\'(0,1). For by solving the linear constraints (15). Moreover, the optim
example, where = 2%, we havef = 2.05. Since workload portfolio of each data centehas a similar structure

of w, = a1, wherea, depends on its available capacity
through the constraints (15).
Under the optimal load direction, the aggregate bandwidth

E[L] = pwe + ... + pywsy = p' Wi,
var[L,] = Zm. PijTi0WsiWs; = W] Bwy,

it follows that (2) is equivalent to reservation reaches its minimum value:
Ay > pTw, + 0/ Wl Sw,. 8 S A= (u"w:+0/wiTEw:) =p"1+60V1TX1,
Therefore, the bandwidth minimization problem (3) is nowhich does not depend ofy the number of data centers. This
converted to means that having demand served by multiple data centers
. instead of one big data center does not increase bandwidth
min )" A 9) ) .
w reservation cost as long as; = a, Vi given by (14). There-
Ay =pu"w, + 0/ WIZw,, (10) fore, the load optimizer can first aggregate all the demands a
then split the aggregated demand into different data center
st uTw,+0/wlZw, <O, Vs, 11 _ : "
BIWs T+ OVW 2Ws = y (11) subject to their capacities.
Yo We =1, (12)
0<w, <1, Vs, (13) B. Suboptimal Heuristics with Limited Replication
T T . ) Although solution (14) is optimal and efficient, it encouste
wherel = [1,...,1]" and0 = [0,...,0]" are N-dimensional

I deri v closed-f Ut two major obstacles in practicé&irst, as long asas; > 0,
column vectors. We can derive nearly closed-form solutions. _ a, > 0 for all i, which means that data centehas to

. . ) st
to problem (9) in the following theorem: store allV videos. In other words, a video has to be replicated

Theorem 1: When Cy,, > p'1 4+ 6v/1TX1, an optimal at all the data centers that has > 0. This incurs significant
load direction matriw?;] is given by additional storage fees at the VoD provider charged by data
centers.Secondeach video channélsplits its workload into

Wi =as, Vi, s=1...,85 (14) 5 data centers according to the weights . .., ag. When S
whereay, ..., ag can beany solutionto is large andD; is small, such fine-grained splitting will not be
c technically feasible. Therefore, in practice, we need toitli
Z as =1, 0 < a, <min {1, “‘}, Vs. the replication degreeof each video, or equivalently, limiting
s pT1+6V1TE1 the number of videos stored in each data center.

To achieve the above goal, we propose suboptimal solutions
problem (9) that addresses replication concerns. First,
we need the following heuristic to bridge the optimal load
Proof Sketch First, f(w,) = \/m is a cone and direction to replication-limited load direction:

thus a convex function. Hencé¢|(w; + wz)/2] < [f(w1) + Heuristic 1: Per-DC Optimal. The algorithm iteratively
f(w2)]/2, or equivalently, outputswi*, ..., wx* for one data center after another. Ini-
tially, setb = 1. Repeat the following fosk = 1,...,S:

1) Solve the following problem to obtaiw}*:

When Cqym < p'1 + 0v1TX1, there is no feasible solution ¢
that satisfies constraints (11) to (13).

VWi +w2)TE(wy + wa) < \/W-lrﬁwl + \/W;—EWQ.

By induction, we can prove

maXy, MW, a7
Zs \/WZEWS Z \/(Zs W;F)E(ES WS)‘ (16) S.t. [I,TWS —+ 9\/W;!—EWS S As S Cs, (18)
If >, w, = 1is feasible, by (11) and (16) we have 0<w, <bh. (19)

Y Co>p"1+0/ >, whHE(X ., ws) =p"1+6V1TE1.  2) Replaceb in (19) by b — wi*.



The program terminates b = 0. [7] for conditional variance prediction to obtainraultivari-
Heuristic 1 packs the random demands into each datte GARCHmodel that can forecast the demand covariance
center, one after another, by maximizing the expected ddmanatrix. The model extracts the periodic evolution pattern
u'w, each data centes can accommodate subject to thdrom each channel's demand time series, and characterizes
probabilistic performance guarantee in (18). As a reshk, tthe remaininginnovation series as autocorrelated GARCH
total amount of resources needed to guard against demamdcesses. We briefly describe these statistical modeks. her
variability is reduced. Clearly, under Heuristic 1, the esggte Interested readers are referred to [6], [7] for details.
bandwidth reservation from all data centers is The difficulty in modeling the bandwidth demand of a chan-
I _— - nel i is that it exhibits diurnal periodicity, a downward trend
2o AT = 2w 0w TEw). (20) 55 the video becomes less popular over time, and changing
levels of fluctuation as population goes up and down. Such
non-stationarityin traffic renders unbiased linear predictors
useless. We tackle this problem by applying one-day-lagged
differences (the lag is 144 i\t = 10 minutes) onto{D;. }
remove daily periodicity to obtain the transformed serie
D._:= D;; — D;;_144}, Which can be modeled as a low-
order autoregressive moving-average (ARMA) process:

Note that Heuristic 1 is also computationally efficient ginc
(17) is a standard second-order cone program.

Now we can introduce the replication-limited load direntio
which only requires the VoD provider to uploddvideos to
each data center. We modify Heuristic 1 to cope with th
constraint as follows:

Heuristic 2: Per-DC Limited Channels. The algorithm it-
eratively outputsv?, ..., w’ for one data center after another. { D! — ;D! | = Nir +7;Nir_1,
Initially, setb = 1. Repeat the following fog =1,...,5: D! = Di; — Diy 144,

1) Solve problem (17) to obtaiw?*.

2) Choose the toj: channels with the largest weights an
solve problem (17) again only for thegechannels to
obtainw’,.

(22)

a/vhere {N;:} ~ WN(0,0?%) denotes the uncorrelated white
noise with zero mean. Model (22) falls in the category of
seasonal ARIMA models [6], [8].

; Model parameterg,; and~; in (22) can be trained based on
3) Replaceb in (19) byb — w'.
) P (19) by Vs historical data using a maximum likelihood estimator [8). T

The program terminates b = 0. _ _ predict the expected demang, of channeli, we first predict
Under Heuristic 2, the aggregate bandwidth reserved is i, = E[D,|D!,_,,Dl_,,...] for the transformed series

) s T To, {D},} to obtain the estimatg},, using an unbiasedhinimum
2 Ay =2 (W 0y W BwW ). (21)  mean square erro(MMSE) predictor. We then retransform

In Sec. V, we will show through trace-driven simulationstthgli: N0 an estimatei;; of the conditional meam.;;, with the
Heuristic 2, though suboptimal, effectively limits the ¢emt NVErse of one-day-lagged differencing. ‘

replication degree, thus balancing the savings on storage ¢ Given the conditional meangji;, } of channeli over all
and bandwidth reservation cost for VoD providers. time 7, we denote thénnovationsin {D;} by {Z;}, where

IV. DEMAND FORECASTINGMODELS Zir := Dir = flir. (23)

The derivation of load direction decisions critically dede Since the innovation terrf; represents the fluctuation &f;,
on parameters, and 3, which are estimates of the expectedelative to its projected expectatign-, and such fluctuation
demands and demand covariances for the short-term futfit@y be changing over time, we model the innovati¢as: }
t,t + At). In this section, we present efficient time seriedsing a GARCH process:
forecastipg methods to make such predictions based on past Zir = Vhmer, {er} ~1ID N(0,1),
observations. { hir = o + 0 Z2 1 + Bihiry

We assume that the bandwidth demand of chanrmglany T L T
point in the period[t,t + At) can be represented by thewhere {Z;,} is modeled as a zero-mean Gaussian process
same random variabl®,;. This is a reasonable assumptioryet with a time-varying conditional variancg;,. Instead
when At is small. Similarly, letp; = [u1,...,une] and of assuming a constant variance f0%;,}, (24) introduces
3, = [oi;¢] represent the demand expectation vector amditocorrelation into volatility evolution and forecash® tcon-
demand covariance matrix for aN channels in[t,t + At). ditional variancé;; of Z;; as a regression of past. and Z? .
We assume that before timethe system has already collected’he model parameters in (24) can be learned using maximum
all the demand history from cloud monitoring services witlikelihood estimation (pp. 417, [8]) based on training data
a sampling interval ofA¢. The question is how to use the Finally, to predict covariance matriX;, we introduce a
available sampled bandwidth demand histdi;, : 7 = constant conditional correlatiofCCC) model [9], which is
0,...,t—1,i=1,...,N} to estimateu; andX;? a popular multivariate GARCH specification that restridts t

In this paper, we combine our previously proposed seasogalrelation coefficientp;; to be constantp;; can be estimated
ARIMA model [6] for conditional mean (expectation con-as the correlation coefficient between sefés, } and{Z,,}
ditioned on the history) prediction with the GARCH modein recent time periods, ang;; = 1 if ¢ = j. The covariance

(24)



o;j: between vided andj at timet is thus predicted as g 600 {—Tr‘ace data L-step prediction --Training daté\ ]
Gijt = hije = pij\/hithje, (25) £ 4. ' A 3
S 4000 h¢! 1 " .
with h;; and h;, predicted using (24) for channeisand j g ::_,!,;:-'. j"! i :
individually. S 00 TTm ] Py, ]
The full statistical model is a seasonal ARIMA condition: % H ‘-.',,‘é i 5 I A
mean model (22) with a CCC multivariate GARCH innovatio 5 PR B SR VA N N BN
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model given by (24) and (25). The above seemingly compl
model is extremely efficient to train, as the five parameggrs
i» (o, 1 @nd g; are learned for each videcseparately fol-
lowing the procedures mentioned above, apdis calculated

straightforwardly from recent history. from the traces [6] that videos released on different datgs b
around the same time of day exhibit similar initial demand
evolution patterns, though with possibly different popities.

We conduct a series of simulations to evaluate the perforhe main reason is that most users watch VoD channels around
mance of our bandwidth auto-scaling system. The simulatiogeyeral peak times of a day. Therefore, it is possible toigred
are driven by the replay of the workload traces of UUSegemands for new videos based on earlier videos.
video-on-demand system over a 21-day period during 2008\\e definevirtual new channel k as a combination of all

Summer Olympics [10]. As a commercial VoD companysigeo channels with an age less than 1.25 days and released
UUSee streams on-demand videos to millions of Interngf hour ; € {1,...,24} on any date. Upon release, a new

users across over 40 countries through a downloadablet cliggeo joins virtual new channet based on its release hour
software. The dataset contains performance snapshota ta#_ESim"aHy, we aggregate small video channels and set up
at a 10-minute frequency of 1693 video channels, includingy virtual small channels. When a video reaches the age of
sports events, movies, TV episodes and other genres. Hngs days, it quits its virtual new channel. If its demanderev
statistics we use in this paper are the time-averaged toigleeded a threshold (e.g., 40 Mbps) in the first 1.25 days, it
bandwidth demand in each video channel in each 10-minyg) join one of the virtual small channels in a round robin
period. There are 144 time periods in a day. We ask theshion. Otherwise, it becomesnaature channel
question—what the performance would have been if UUSeegach mature or virtual channel is deemed as an entity to

had all its workload in this period served t’)?y cloud servicgghich predictions and optimizations are applied. For exam-
through our bandwidth auto-scaling system? ple, we make 10-minutes-ahead conditional mean prediction
We conduct performance evaluation for 4 typical time spags, virtual new channel 11 and plot results in Fig. 4. The

which are near the beginning, middle and end of the 2{anqwidth demand exhibits repetition of a similar pattern
day duration. We implement statistical learning and demapgd . se the videos in this virtual channel are all released i

prediction techniques presented in Sec. IV to forecast thg,r 11 (possibly on different dates). Although conditiona
expected demangs; and demand covariance matlix every mean prediction is subject to errors, the GARCH model can

10 minutes. The model parameters are retrained daily, Wilyecast the changing error variance, which contributethéo
training data being the bandwidth demand sefiBs. } in the (igy constraint (11) in resource minimization (9).

recent 1.25 days of each chanmeDnce trained, the models
will b_e_used fqr the next 24 hours. Although vide_o USerg - algorithms for Comparison

may join or quit a channel unexpectedly, our prediction is

still effective, since it deals with thaggregate demanth the ~ We compare our optimal load direction (14), Heuristic 1
channel which features diurnal evolution patterns. We rassuand Heuristic 2 with the following benchmark algorithms:
that there is a p00| of data centers from which UUSee CanReactive without Prediction. Inltlally replicate each video
reserve bandwidth. To spread the load across data centt¥sK random data centers. This limits the initial content
we setC, = 300 Mbps for eachs. The QoS parameter replication degree td<. Each client requesting channeis

6 := F~1(1 —¢) is set tof = 2.05 to confine the under- randomly directed to a data center that has videmd idle

Time (unit: 10 minutes)

Fig. 4. The conditional mean demand prediction for virtual éannel 11,
with a test period of 1.5 days from time 1585 to 1800.

V. EXPERIMENTS BASED ONREAL-WORLD TRACES

provision probability toe = 2%. bandwidth capacity. A request is dropped if there is no such
) data center. In this case, the algorithm reacts by reptigati
A. A Novel Channel Interleaving Scheme videoi to an additional data center chosen randomly that has

There are two practical challenges with regard to demaidie capacity. Replicating content is not instant: we assum
prediction.First, many of the 1693 video channels are releasdbat the replication involves a delay of one period of time.
during the 21 days: a new video does not have sufficientRandom with Prediction. Initially, let s =1 andb = 1.
demand history for statistical model learni®gcondthere are Second, randomly generate, in (0,b) and rescale it so that
many small channels with only a few users online for whicthe QoS constraint (11) is achieved with equality fotJpdate
prediction is hard. We propose a novel channel interleaviligto b—w, and update to s+1. Go to the second step unless
scheme to circumvent these obstacles. It has been shdwa 0 or s =S + 1, in which case the program terminates.



15 1500, are randomly replicated td&C = 2 data centers (shown in
1000 * Fig. 6(c) att = 702) and requests are randomly directed,
3 it is likely that a channel does not acquire enough capacity
to meet its demand. As Reactive detects the QoS problem,
videos are replicated to more data centers to acquire more

10 e
500

0|

Quantiles of Input Sample
o ol
Quantiles of Input Sample

I 500 i capacity, with a gradually increasing replication degreero

10w -1000] . time, as in Fig. 6(c). We can see that after 140 minutes, when

e T S T ~1500, +_2 R the replication.degree reaphe; above 4, the QoS of Rea_ctive
Standard Normal Quantiles Standard Normal Quantiles becomes relatlvely stable in Fig. 6(a) However, arouncetim

(a) Zi; of a typical channel  (b) 3, Zi; of all channels combined 763, Reactive suffers from salient QoS problems again,_ d_ue
to a sudden ramp-up of demand. In contrast, the predictive

The reactive scheme represents provisioning for peak Jauch better QoS, even in the event of drastic demand increase
mand in Fig. 1 in some way, with limited replication. It does The predictive schemes also achieve higher resourceaitiliz

not leverage prediction or bandwidth reservation. We assuffpn- Utilization of a pre.dictive scheme is the ratio betwge
in Reactive, the total cloud capacity allocated is alwayes tﬁhe actual used bandwidth and the tOt.a.I bgokgd bandwidth
minimum capacity needed to meet the peak demand in fineall data centers. For Reactive the utilization is the alctu
system. The random scheme leverages prediction and ma?@gdw'dth demand divided by the peak demand. Although

bandwidth reservation, but randomly directs workloadssiag " '9- 6(b) shows that Reactive achieves a high utilizatiaritie
of using anti-correlation to minimize bandwidth resersati peak demand around time 763, its average utilization is imere
77.19% in the test period from 702 to 780. Predictive auto-

C. Assumption Validation scaling enhances utilization ®5.67% with Per-DC Limited
First, we Verify tha]:Dn5 approximate|y follows Gaussian Channels, t®9.99% with Per-DC Optlmal, and t92.9% with
distribution in each 10-minute period_ For each Charme| the theoretical Optlmal solution. In addition, the preidint
given conditional mean predictigin, at timet, the innovation and optimization in predictive methods are computatignall
is Z; = Dy — juy. Fig. 5(a) shows the QQ plot of;, for efficient, e.g., prediction and Per-DC Optimal finish in 2
a typica| channel = 121 from time period 1562 to 1640, minutes, well before the deadline of 10 minutes.
which indicates{Z;;} sampled at 10-minute intervals is
Gaussian process. Thus, it is reasonable to asdpytollows
a Gaussian distribution within the 10 minutes following ~ Now we focus on each of the four predictive schemes.
with mean fi;;. Fig. 5(b) shows the QQ plot o}, Zi, Among them, as shown in Table I, Optimal books the mini-
which indicates that the aggregated dem@ngt tends to mum n-ecessary bandW|dth and ach?eve.s the hlgheSt bandW|dth
Gaussian even iD;, is not for some channel Since the load Utilization, yet with the highest replication overhead: ideo
L, of each data center is aggregated from many videos, itigsreplicated to every data center. The VoD provider thusisee
reasonable to assunie, is Gaussian. to pay a high storage fee to the cloud.
Furthermore, it has been verified in [7] that the innovations Per-DC Optimal can reduce the replication degree while
{Z;} forms a stationary uncorrelated series wherg#$} is maintaining other performance metrics. By further impos-
auto-correlated, justifying the validity of GARCH modain ing a channel number constraint on each data center, Per-

8. Theoretical Optimal vs. Replication-limited Heuristic

of innovations{Z;} in Sec. IV. DC Limited Channels strikes a balance between replication
o ) ) o overhead and bandwidth utilization. It aggressively resuc
D. Predictive Auto-Scaling vs. Reactive Provisioning the replication degree to a very small value of 2.4-2.6

We implement all of the five schemes discussed above, arwpies/video, which is the smallest among all four schemes,
present their performance comparison in Table | for each with an extremely low drop rate and an over-provisioning
the four time spans. Note that the channels in the tabledecluratio only slightly higher than Optimal and Per-DC Optimal.
mature channels, virtual new and virtual small channele TRandom achieves the lowest utilization, since it is blindh®
number of videos in each virtual channel can vary over timeorrelation information in workload selection and direati
As new videos are introduced, more channels are present iWe further show a detailed comparison between the three
later test periods. We evaluate the performance with regardpredictive heuristicsfrom time 1562 to 1640 in Fig. 7. The
QoS, bandwidth resource occupied, and replication cost. efficiency of predictive bandwidth booking can be evaluated

Table | shows that Reactive generally has a more salidnt the cushion bandwidtmeeded, which is the gap between
QoS problem than all four predictive schemes in terms tfie booked bandwidth and actual required bandwidth. Fag). 7(
both the number of unsatisfied channels and request dmpts the cushion bandwidth. While being on the same QoS
rate, demonstrating the benefit of utilizing demand préatict level, random load direction results into a cushion bantiwid
Fig. 6 presents a more detailed comparison for a typical peaft to 3 Gbps compared to a mean demand of 5.62 Gbps,
period from time 702 to 780. Without surprise, Reactive haspresenting significant over-provisioning. Using Per-D@-
many unfulfilled requests at the beginning. Since the videtimal, the cushion bandwidth can be savedby; on average,



TABLE |
THE PERFORMANCE OF5 SCHEMES AVERAGED OVER EACH TEST PERIODN TERMS OF QOS, RESOURCE UTILIZATION, AND REPLICATION.

Periods Time periods 702—780(91 mature and virtual channels) Time periods 1422—148(Q161 mature and virtual channels)
Peak demand 6.56 Gbps, mean demand 5.19 Gbps Peak demand 6.81 Gbps, mean demand 4.91 Gbps
Short Drop util Rep Booked | Over-prov Short Drop Util Rep Booked Over-prov

Optimal 0.2 Chs| 0.66% | 92.9% | 91.0 | 6.57 Gbps| 108.5% 0.1 Chs | 0.25% | 91.1% | 161.0 | 6.38 Gbps | 110.3%
Per-DC Opt || 1.0 Chs| 0.37% | 90.0% | 85 | 6.79 Gbps| 112.2% 1.2Chs | 0.13% | 88.6% | 6.9 6.56 Gbps | 113.4%
Per-DC Lim || 0.3 Chs| 0.06% | 85.7% | 2.6 | 7.13 Gbps| 117.8% 0.2 Chs | 0.03% | 84.6% | 2.4 6.86 Gbps | 118.8%

Random 5.9 Chs| 0.02% | 83.3% | 3.8 | 7.33 Ghps| 121.2% 7.6 Chs | 0.00% | 82.2% | 3.0 7.08 Ghps | 122.4%

Reactive 79 Chs| 047% | 77.2% | 4.3 7.91 Gbps| 132.4% 7.2Chs | 0.34% | 70.4% | 3.6 8.20 Gbps | 146.0%
Time periods 1562—164(Q(176 mature and virtual channels Time periods 2402—250Q199 mature and virtual channels)

Peak demand 7.55 Gbps, mean demand 5.62 Gbps Peak demand 9.19 Gbps, mean demand 7.62 Gbps
Short Drop util Rep Booked | Over-prov Short Drop Util Rep Booked Over-prov

Optimal 0.1 Chs| 0.31% | 91.1% | 176.0 | 7.27 Gbps| 110.4% 0.0 Chs | 0.11% | 85.4% | 199.0 | 10.54 Gbps| 118.1%
Per-DC Opt || 0.7 Chs| 0.16% | 88.3% | 7.3 | 7.51 Gbps| 114.0% 1.0Chs | 0.09% | 82.7% | 6.3 10.87 Gbps| 121.8%
Per-DC Lim || 1.4 Chs| 0.00% | 83.9% | 2.4 | 7.89 Gbps| 119.9% | 20.7 Chs| 0.17% | 82.3% | 2.5 10.95 Gbhps| 122.6%

Random 6.2 Chs| 0.00% | 80.4% | 3.3 | 8.28 Gbps| 125.4% | 33.4 Chs| 0.02% | 77.9% | 4.5 11.54 Gbps| 129.3%

Reactive 59 Chs| 0.27% | 72.7% | 3.5 9.08 Gbps| 140.4% | 15.8 Chs| 0.43% | 74.6% | 3.6 12.01 Gbps| 140.3%

Periods

Short # channels with dropped requesBrop: the request drop ratéjtil: utilization of allocated resource®ep replication degreeBooked the booked
bandwidth;Over-prov over-provisioning ratio.

50 - i i 120 i i i i i i i 14 -
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Fig. 6. Predictive vs. reactive bandwidth provisioning éotypical peak period 702—-780. There are 35 data centerillmieach with capacit$00 Mbps,
and 91 channels, including 52 popular channels, 24 smallngianl5 non-zero new channels. = 2, k = 10.

as shown in Fig. 7(b). Even Per-DC Limited Channels, witbandwidth demand projection on capacity planning has also
a replication degree of 2.4 copies/video, can save cushibeen recognized. It is shown that demand estimates can help
bandwidth by aroun®0% as compared to Random, whichwith optimal content placement in AT&T’s IPTV network [12].
has a higher replication degree of 3.3 copies/video. More advanced video demand forecasting techniques have
QoS problems occur if bandwidth is under-provisionedieen proposed, such as the non-stationary time series snodel
leading to a cushion bandwidth below 0 and an ovemtroduced in [6], [7], and video access pattern extracti@n
provisioning ratio less thanl00%. From Fig. 7(a) and principal component analysis in [13].
Fig. 7(c), we observe that QoS problems occur occasionally
for Per-DC Optimal but seldom for Per-DC Limited Channels Predictive and dynamic resource provisioning has been pro-
from time 1562 to 1640, because the latter scheme cons@@sed mostly for virtual machines (VM) and web applications
vatively books more cushion bandwidth. In addition, we not&ith respect to CPU utilization [14]-[17] and power consump
that request drop rates in Table | are significantly lowenthdion [18], [19]. VM consolidation with dynamic bandwidth
the frequency of under-provisioning in the figures, becauéémand has also been considered in [20]. Our work exploits
when under-provisioning happens, most user requestsitre gpe unique characteristics of VoD bandwidth demands and
served. Only the demand exceeding the booked capacitydigtinguishes from the above work in three aspeéisst,
dropped. From the above analysis, we conclude that Per-0&f bandwidth workload consolidation is as simple as sglvin

Limited Channels achieves the best tradeoff in the domain @nvex optimization for a load direction matrix. We levezag
utilization, QoS and replication overhead. the fact that unlike VM, demand of a VoD channel can

be fractionally split into video requestsSecond our system
VI. RELATED WORK forecasts not only the expected demand but also the demand
Researches on exploiting virtualization techniques for deolatility, and thus can control the risk factors more aetey.
livering cloud-based IPTV services have been conducted lyycontrast, most previous works [15], [17] assume a conhstan
major VoD providers like AT&T [11]. The importance of VoD demand varianceThird, we exploit the statistical correlation
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Fig. 7. Workload portfolio selection vs. random load directfor a typical peak usage period from time 1562 to 16A0= 2, k = 10.

between bandwidth demands of different video channels ta]
save resource reservation while previous works such as [28]
consider independent workloads. [6]

The idea of statistical multiplexing and resource over-
booking has been empirically evaluated for a shared hostin%
platform in [21]. Our novelty is that we formulate the quglit [
assured resource minimization problem using Value at Risk
(VaR), a useful risk measure in financial asset management
[22], with the aid of accurate demand correlation forecast
We believe our theoretically grounded approach bearsgtron [9]
robustness against intractable demand volatility in fpract (10]

VIl. CONCLUDING REMARKS

In this paper, we propose an unobtrusive, predictiye
and elastic cloud bandwidth auto-scaling system for VoD
providers. Operated at a 10-minute frequency, the system
automatically predicts the expected future demand as gell @
demand volatility in each video channel through ARIMA and
GARCH time-series forecasting techniques based on history
Leveraging demand prediction, the system jointly makesd log 3
direction to and bandwidth reservations from multiple data
centers to satisfy the projected demands with high proityabil [24]
The system can save the resource booking cost for VoD
providers with regard to both bandwidth and storage. [15]

We exploit the predictable anti-correlation between dessan
to enhance resource utilization, and derive the optimadi log g
direction that minimizes the bandwidth resource resemwati
while confining under-provision risks. Two suboptimal hesur 17]
tics have also been proposed to limit the storage cost. Fr&m
extensive simulations driven by the demand traces of adarge
scale real-world VoD system, we observe that suboptimaf!
heuristics have practical appeals due to their ability taee

the costs of bandwidth and storage.
[19]
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