
Demand Forecast and Performance Prediction in
Peer-Assisted On-Demand Streaming Systems

Di Niu, Zimu Liu, Baochun Li

Department of Electrical and Computer Engineering
University of Toronto

{dniu, zimu, bli}@eecg.toronto.edu

Shuqiao Zhao

Multimedia Development Group
UUSee, Inc.

shuqiao.zhao@gmail.com

Abstract—Peer-assisted on-demand video streaming services
are extremely large-scale distributed systems on the Internet.
Automated demand forecast and performance prediction, if
implemented, can help with capacity planning and quality control
so that sufficient server bandwidth can always be supplied to each
video channel without incurring wastage. In this paper, we use
time-series analysis techniques to automatically predict the online
population, the peer upload and the server bandwidth demand in
each video channel, based on the learning of both human factors
and system dynamics from online measurements. The proposed
mechanisms are evaluated on a large dataset collected from a
commercial Internet video-on-demand system.

I. INTRODUCTION

Video-on-demand (VoD) has become an enormously popu-
lar service on the Internet. A successful Internet VoD system
usually attracts millions of users, with more than thousands of
users concurrently online in a popular video channel at peak
times. Following the real-world success of the peer-to-peer
(P2P) architecture as a solution to live video streaming (e.g.,
CoolStreaming [1]), peer assistance has also been introduced
into VoD services to increase system scalability and alleviate
server bottlenecks [2], [3]. In peer-assisted VoD systems, peers
download from both servers and other online peers.

As bandwidth is a scarce resource, it is vital for a VoD
service to carefully provision its server capacity, in order to
meet user demands while not incurring any resource wastage.
Such capacity planning decisions are best to be made proac-
tively prior to demand changes in each video channel, and
will thus benefit from an accurate user demand forecast. In this
paper, we analyze the operational traces collected from UUSee
Inc., one of the leading peer-assisted media content providers
in China. Leveraging both the human factors and system
dynamics revealed in the traces, we investigate the feasibility
of predicting peer population, peer bandwidth contribution and
the demand for server bandwidth in the system.

From the real-world traces, we discover that the population
evolution in a video channel is highly predictable, as users
exhibit periodic viewing behavior and their interest in the
video diminishes gradually after it is released. Following the
Box-Jenkins method, we introduce seasonal ARIMA models
[4] to accurately predict future population given its past
observations. Furthermore, popular videos released around the
same time of day demonstrate similar population evolution
patterns at the beginning due to tractable behaviors of Internet
users. This enables us to infer the initial population of a

new channel from the statistics of similar channels released
earlier. A novel probabilistic model based on the regression
of mixtures of gaussians is proposed to account for such a
phenomenon. As a peer-assisted service heavily relies on the
bandwidth supplies from peers, we also propose to predict the
peer upload contribution based on a linear stochastic model
using the population evolution as a leading indicator.

Based on the prediction of online population and peer
upload, we have made possible a mechanism that can auto-
matically forecast the demand for server bandwidth in each
video channel up to 2.5 hours into the future, with the aid
of online measurements. Extensive evaluation of the proposed
methods is conducted based on the traces of 40 channels (with
peak population per channel up to 8000) in a 21-day period
spanning the entire 2008 Beijing Olympics.

A. Relation to Prior Work

The importance of demand or popularity estimation in
Internet VoD systems has been recognized recently. It is shown
that estimating time-varying demands in a large-scale IPTV
network can help the system optimally place content on its
servers [5]. Toward this goal, the recent history has been
used as an estimate of future demand in each video channel
[5]. Apparently, this simple method does not yield accurate
predictions. In contrast, we introduce a systematic approach
of time-series analysis to capture the periodicity, trends and
patterns that are unique to VoD system statistics, achieving
high prediction accuracy.

The popularity of a new video can be inferred by learning
users’ preferences on similar videos published earlier, such as
using collaborative filtering [6]. In this paper, we propose a
novel regression model to infer user demands for new videos,
which has a strong physical explanation based on the video
release time and diurnal access behavior of Internet users. The
new scheme does not require collecting a large amount of
user preference information. We also initiate the first attempt
to predict peer bandwidth contribution and server bandwidth
demand in peer-assisted video streaming services using linear
stochastic models.

II. CAPACITY PLANNING IN VOD SYSTEMS

UUSee is one of the leading commercial P2P multimedia
solution providers in China, simultaneously broadcasting thou-
sands of on-demand video channels to millions of users dis-



Fig. 1. The number of downloading peers and their mean downloading rate
in a typical video channel after the channel was released. The length of a
time period is 10 minutes. The video bit rate is 400 kbps.

tributed across over 40 countries in the world. The UUSee on-
demand streaming system organizes users that are interested in
the same video into a random mesh network. In such a mesh
network, there are three types of nodes, namely media servers,
downloading peers, i.e., peers that are currently downloading
and watching the video, and cached peers, i.e., online peers
that have previously watched the video and cached it in their
file systems. A downloading peer can download media blocks
from all three kinds of peers.

Consider a particular video channel. Let Nt be the on-
line population, i.e., the number of downloading peers in
the channel at time t. Denote st, ut, and ct the average
bandwidth each downloading peer receives from the servers,
other downloading peers, and cached peers. Hence,

rt = st + ut + ct (1)

is the mean downloading rate of downloading peers in the
channel, and St = stNt is the aggregate server bandwidth
used by the channel.

In VOD services, capacity planning is the process of decid-
ing the amount of server resources, especially bandwidth, that
need to be provisioned to each channel in order to meet the
user demand. The server bandwidth demanded by each channel
varies over time due to time-varying video popularity and
peer upload contribution. A discrepancy between the serving
capacity and user demands results in inefficiency, either in
under-utilized server resources or unfulfilled user demands.

Like most other Internet VoD companies, UUSee over-
provisions its server capacity with the hope to maintain a
stable quality of service. This causes significant server under-
utilization during periods of low demand or high peer upload
contribution. However, there still exist unfulfilled demands in
the system. For example, the evolution of online population
and their mean downloading rate are plotted in Fig. 1 for a
typical Olympics video that attracted a flash crowd upon its
release. Clearly, there is a performance issue during the first
two days (before t = 300) , marked by a relatively low mean
downloading rate. The reason for such a bandwidth shortage
is because the video was not replicated on enough servers and
the aggregate server bandwidth to serve the channel was not
sufficient to meet the demand.

To minimize the discrepancy between a system’s serving
capacity and user demands, it is therefore vital for the system

to accurately forecast user demands and provisioning servers
proactively. Let Sr

t be the aggregate server bandwidth de-
manded by a channel at time t to achieve a target mean
downloading rate of R. To maintain smooth playback, R is
usually greater than the video bit rate in order to accommodate
the fluctuation in downloading rates. Towards demand forecast,
we propose to collect statistics about Nt, ut and ct up to time
t, and make prediction of Sr

t+h at future time t+h required by
the channel so that the achieved rt ≥ R. We first predict Nt+h,
ut+h and ct+h to obtain the estimates N̂t+h, ût+h and ĉt+h.
The server bandwidth demand Sr

t+h can thus be forecasted as

Ŝr
t+h = N̂t+h(R− ût+h − ĉt+h). (2)

To facilitate research and analysis, we have implemented
detailed measurement capabilities within each UUSee client,
which sends its vital statistics to our dedicated logging servers
every 10 minutes. (A 10-minute sampling interval proves to
be sufficiently fine-grained for capacity planning purposes
without incurring overly high computational cost.) The data
for validation in this paper feature a set of traces collected
from 40 video channels during a 21-day period spanning the
entire period of 2008 Summer Olympics.

III. POPULATION PREDICTION

Among all 40 channels in our traces, 32 were published
during the measurement period and attracted flash crowds upon
release, which we call flash-crowd channels. The other 8 were
released earlier and exhibit a steady daily population of a
smaller size, which we call steady-state channels. We use the
Box-Jenkins approach [4] to predict the future population in
both kinds of channels and introduce regression methods to
infer the initial population evolution of flash-crowd channels.

A. Population Prediction: a Box-Jenkins Approach

Given the population time series of a channel in the past
few days, we can make fine-grained prediction into its future
evolution, leveraging the trend, periodicity and autocorrelation
exhibited in its own history. Due to the periodicity (diurnal
pattern) in all the channels and the decreasing trend in flash-
crowd channels, Nt of any channel is clearly non-stationary 1.
However, following the Box-Jenkins method, we can eliminate
both the periodicity and trend via differencing to obtain a
stationary yet autocorrelated series, which can then be char-
acterized by models for stationary processes such as ARMA
(autoregressive moving-average). Now we briefly outline the
so-called seasonal ARIMA (autoregressive integrated moving-
average) model [4] for non-stationary population prediction.

Given a time series of interest {Yt}, define the backward
shift operator B by BYt = Yt−1, the lag-1 difference operator
∇ by ∇Yt = Yt−Yt−1 = (1−B)Yt, and the lag-d difference
operator ∇d by ∇dYt = Yt − Yt−d = (1−Bd)Yt.

For steady-state channels, the population series {Nt} has
a period of 144 (one day) with no trend. We therefore de-
seasonalize {Nt} to obtain a stationary series Ñt = ∇144Nt,

1A process {Yt} is (weakly) stationary if its mean E[Yt] and its covariance
function Cov(Yt+h, Yt) at each lag h are independent of t.



500 1000 1500 20000

50

100

150

Time

Po
pu

lat
ion

 

 

Validation data
144 step−ahead prediction
Training data

(a) Steady state channel B830

200 400 600 800 10000

500

1000

1500

2000

2500

3000

Time

Po
pu

lat
ion

 

 

Validation data
144 step−ahead prediction
Training data

(b) Flash-crowd channel A55F, d = 0

200 400 600 800 1000 12000

200

400

600

800

1000

1200

Time

Po
pu

lat
ion

 

 

Validation data
144 step−ahead prediction
Training data

(c) Flash-crowd channel 7A40, d = 1

Fig. 2. One day-ahead population prediction based on seasonal ARIMA models for three different channels.

which can then be modeled as an ARMA(p, q) process.
Equivalently, {Nt} is modeled by the seasonal ARIMA model

φ(B)∇144Nt = θ(B)Zt, (3)

where {Zt} ∼ WN(0, σ2) denotes the uncorrelated white
noise with zero mean, and φ(B) = 1−φ1B− . . .−φpB

p and
θ(B) = 1 + θ1B + . . . + θqB

q are polynomial operators in B
of degrees p and q.

For flash-crowd channels, however, both trend and season-
ality exist in {Nt}, as shown in Fig. 1. The daily fluctuation
in Nt also decreases as t increases. We therefore first apply
transformation log(·) to {Nt} to equalize the fluctuation. We
then apply transformation ∇144 to {log(Nt)} to remove peri-
odicity, and difference ∇144 log(Nt) for d times to remove the
trend, obtaining the stationary series Ñ(t) = ∇d∇144 log(Nt),
which is well explained by an ARMA(p, q) process. The
corresponding seasonal ARIMA model for {Nt} is thus

φ(B)∇d∇144 log(Nt) = θ(B)Zt, d ∈ {0, 1}, (4)

where {Zt} ∼ WN(0, σ2), φ(B) = 1 − φ1B − . . . − φpB
p

and θ(B) = 1 + θ1B + . . . + θqB
q. The difference order

d is chosen from {0, 1}, depending on how fast the daily
population decreases in trend.

Once the parameters of the above models are learned from
training data, the prediction for Nt+h (h > 0), denoted
PtNt+h, given the values {N1, . . . , Nt} is performed as fol-
lows. To predict Nt+h, we first obtain PtÑt+h, the minimum
mean square error (MMSE) predictor for Ñt+h. PtNt+h is
then obtained by retransforming PtÑt+h using the inverse of
the corresponding operators ∇d, ∇144 and log(·).

As an example, we make one day-ahead (144-step) popula-
tion prediction, i.e., to predict each Nt+144 based on {Nτ ; 0 ≤
τ ≤ t}, in three channels, including a steady-state channel and
two flash-crowd channels. The data of the first two days are
chosen as the training data, i.e., {Nt; t1 < t ≤ t1 + 288},
where t1 ≤ 72 is to exclude the initial samples that may not
comply with the later evolution pattern. Model (3) is fit to
the steady-state channel, while model (4) is fit to the flash-
crowd channels. The parameter estimates are obtained through
a maximum likelihood estimator [4]. As shown in Fig. 2,
with p = 144, q = 0, model (3) is able to tract the slight
demand variations from day to day. For a channel with slowly
decreasing daily population such as in Fig. 2(b), d is chosen

to be 0 by the estimator, while for channels with faster daily
population decrease in Fig. 2(c), d = 1.

B. Inferring Initial Population with a Mixture of Gaussians

We now infer the initial population evolution in a newly
released video channel. Since no past observation is available
yet, the inference of initial population cannot make use of
seasonal ARIMA models as in Sec. III-A. However, the
inference can be done based on the fact that videos released
around the same time of day (possibly on different dates)
demonstrate a similar population evolution pattern in the first
several days. For example, Fig. 3 shows the initial populations
of 3 different channels released around 7-9 PM on different
dates. They exhibit a similar population evolution pattern: the
first population peak was around the midnight after the videos
were published, while the second peak was on the second day
around noon.

For the {Nt} series of each video v, we assume t = 0 upon
its release. We group all the videos into a number of classes by
their release times. We conjecture that the population {Nt; 0 ≤
t ≤ 144n} in a video channel v for the first n days is a
realization of the random process

Nt = P (v)
k∑

j=1

πj√
2πσ2

j

exp
(
− (t− µj)2

2σ2
j

)
+ Zt, (5)

where
∑k

j=1 πj = 1, Zt is a zero-mean random noise, P (v)
is a popularity index for video v, and

Gt :=
k∑

j=1

πj√
2πσ2

j

exp
(
− (t− µj)2

2σ2
j

)

is the same pattern that underlies the population evolution of
all the videos in the same class.

There is a probability rationale for this model based on how
a user chooses the time u(v) that she watches video v. Assume
each user only watches the video once and her viewing span
is negligible as compared to 144n. Let µj , j = 1, 2, . . . , k,
represent the j-th peak time (usually at midnight or noon)
after v is published. In reality, a user will watch v around time
µ1 < µ2 < . . . with probabilities π1 > π2 > . . ., since a video
is more likely to attract audience when it is just published.
Conditioned on that a user chooses to watch v around µj ,
u(v) is normally distributed with density N (µj , σ

2
j ). Thus,



0 50 100 150 200 250 300 350
0

200

400

600

800

1000

1200

1400

Time

Po
pu

la
tio

n

 

 

Training data
Test data 1
Test data 2
Fit to training data
Prediction of test data 1
Prediction of test data 2

Fig. 3. Inferring initial population. Training data: channel 8331 released
on 2008-08-10 19:46:29; test data 1: channel 57F7 released on 2008-08-
18 20:16:35; test data 2: channel EDAF released on 2008-08-18 20:49:39.
Prediction errors: RMSE1 =74, RMSE2 = 274.

we have

Pr
(

t ≤ u(v) < t+1
)
≈

k∑
j=1

πj√
2πσ2

j

exp
(
− (t− µj)2

2σ2
j

)
·1,

Let P (v) be the total number of potential users interested in
video v. When P (v) is large, we have Nt, the number of users
that choose to watch video v at time t, given by (5).

In our experiments, we categorize all 32 newly released
channels into 7 classes based on their release times. For each
class, we train the mixture of Gaussians (5) with k = 5 using
the EM algorithm [7] based on data {Nt; 0 < t ≤ 144n}
from the training channels. For each test channel in the same
class, {Nt; l < t ≤ 144n} are inferred with the trained model,
given very limited initial observations {Nt; 0 ≤ t ≤ l} of
its own. ({Nt; 0 ≤ t ≤ l} is used to estimate P (v), i.e.,
P (v) =

∑l
t=1 Nt/

∑l
t=1 Gt. We choose n = 2.5 and l = 30.

A prediction example of two channels based on the model
trained from only one channel is plotted in Fig. 3. We can
see the proposed method achieves satisfactory performance
as a best-effort coarse-grained predictor, with relatively small
RMSEs compared to the population in the test set.

IV. PREDICTING PEER CONTRIBUTION

In order to predict the server bandwidth Sr
t+h demanded

by a channel at future time t + h, besides Nt+h, we need
to estimate the bandwidth contributions ct+h and ut+h from
cached peers and downloading peers. We find that in all
the channels, {ut} is a stationary noisy process that can be
modeled as a simple low order AR(p) process. In contrast, ct

is much harder to predict. In general, ct increases from 0 to
a relatively stationary value over time, as more downloading
peers finish downloading and become cached peers. Since
{ct} has a slowly increasing trend, we are tempted to model
∇ct as an ARMA process. However, the model yields a
linear predictor that miss-interprets a large part of the system
dynamics as noise and fails to capture the slightly concave
trend in ct as t grows. Therefore, ct is hardly predictable only
based on its own history.

However, the prediction of {ct} is much more accurate
if {Nt} is used as a leading indicator. We transform both
series {ct} and {Nt} into stationary series {c̃t} and {Ñt} by

logarithm transformation and differencing, so that {c̃t} and
{Ñt} can be linked together through a linear time-invariant
(LTI) system of the form

δ(B)c̃t = ω(B)Ñt + Zt, (6)

where δ(B) = 1 − δ1B − . . . − δpB
p, ω(B) = ω0 + ω1B +

. . . + ωqB
q, and Zt is white noise. We thus obtain a transfer

function model [4] for {ct} and {Nt}:
c̃t = δ−1(B)ω(B)Ñt + δ(B)−1Zt,

Ñt = ∇d1∇144 log(Nt)− µ1, d1 ∈ {0, 1},
c̃t = ∇d2∇144 log(ct)− µ2, d2 ∈ {0, 1},

(7)

where {Zt} ∼ WN(0, σ2), and µ1 and µ2 are the means
of ∇d1∇144 log(Nt) and ∇d2∇144 log(ct), respectively. By
appropriately choosing d1, d2 ∈ {0, 1}, for any flash-crowd
channel, the relationship between {ct} and {Nt} can be
characterized by model (7). Given training data, the maximum
likelihood estimates of δ’s and ω’s in (7) can be obtained by
minimizing the conditional sum-of-squares function [4], which
is standard in system identification theory.

We illustrate the prediction procedure with a typical flash-
crowd channel A55F. We choose d1 = d2 = 0, p = 54,
q = 0, and learn the model parameters using the data
of the first few days. For a lead time h, each ct in the
validation data is predicted based on {ct−h, ct−h−1, . . .} and
{Nt−h, Nt−h−1, . . .}. From Fig. 4(a), we see that a model
trained from the first 6 days’ data yields very accurate 2.5
hour-ahead (15-step) prediction for ct.

We also evaluate the h-step prediction for the total receiving
rate from cached peers ctNt shown in Fig. 4(b) and Fig. 4(c).
ctNt is predicted as ĉtN̂t, where the predictions ĉt and N̂t

are made using models (7) and (4), respectively, based on
observations up to time t − h. Fig. 4(b) shows that the pro-
posed method can predict the total receiving rate from cached
peers accurately for 2.5 hours into the future. An interesting
phenomenon is that although ct is increasing over time, the
peak of ctNt is around the 5th day due to a decreasing number
of Nt. The proposed method is able to predict such a peak in
ctNt one hour ahead of time, simply with a training period
of the first 3 days, as shown in Fig. 4(c), although with lower
accuracy as compared to Fig. 4(b).

V. DEMAND FORECAST

Having elaborated the algorithms for predicting {Nt}, {ut}
and {ct}, we are ready to solve the server bandwidth de-
mand forecast problem outlined in Sec. II. Recall that given
observations up to time t, the total server bandwidth Sr

t+h

required by a channel to achieve an rt ≥ R is given by (2).
To facilitate application in practical systems, we propose an
iterative procedure for progressive model learning and demand
prediction, with the aid of online measurement collection.

We illustrate such a procedure in a typical flash-crowd
channel A55F. After the release of the channel, we first
train the models (4) and (7) for {Nt} and {ct} and the
autoregressive model for {ut} using the data of the first 1.25



500 1000 1500 2000 25000

20

40

60

80

100

Time

KB
/s

 

 

Validation data
Prediction
Training data

(a) ct, with a 6-day training period, h = 15

500 1000 1500 2000 25000

1

2

3

4

5

6x 104

Time

KB
/s

 

 

Validation data
Prediction
Training data

(b) ctNt, with a 5-day training period, h = 15

500 1000 1500 2000 25000

1

2

3

4

5

6x 104

Time

KB
/s

 

 

Validation data
Prediction
Training data

(c) ctNt, with a 3-day training period, h = 6

Fig. 4. The h-step prediction of average receiving rate ct and total receiving rate ctNt from cached peers in channel A55F. d1 = d2 = 0, p = 54, q = 0.

180 468 756 1044 1332 1620 1908
0

20

40

60

80

Time

KB
/s

 

 

Server bandwidth required per peer
Predicted server bandwidth required per peer
Actual server bandwidth used per peer

(a) Prediction for the server bandwidth required per peer

180 468 756 1044 1332 1620 1908 2196 2484
0

2

4

6

8

10 x 104

Time
KB

/s
 

 

Total server bandwidth required
Predicted total server bandwidth required
Actual total server bandwidth used

(b) Prediction for the total server bandwidth required by the channel

Fig. 5. Progressive model learning on a daily basis and 2.5 hours ahead (15-step) prediction for the server bandwidth demanded by channel A55F over 16
days. The channel is released on 2008-08-10 10:47:39, and the prediction starts from 2008-08-11 16:47:39 (time period 181).

days (180 time periods), assuming an AR(p) for (4) and (7)
with p = 10. The models are retrained every 24 hours during
the system operation, with a progressively increased model
order, based on the measurements collected so far, i.e., p is
increased by 10 everyday. The prediction starts at time period
181 and is always made with the newest trained model.

We make 2.5 hours ahead (h=15) prediction for the server
bandwidth Sr

t+h demanded by the channel and plot the results
in Fig. 5. The target mean downloading rate is R = 80
KB/s, which can be obtained empirically. We can see that
the predicted server bandwidth demand Ŝr

t+h is quite close
to the real demand Sr

t+h in the traces. We also see that the
actual server bandwidth used by the channel in the traces is
often less than the required minimum amount, especially in
the first 3 days. This accounts for the performance issues
after the channel is just released, as observed in Fig. 1.
Incorporating our prediction mechanism into the system would
have forecasted the server bandwidth demand 2.5 hours ahead
of time and advised proper server provisioning actions.

In addition, Fig. 5(b) shows that the mechanism is able
to predict an abnormal surge in the bandwidth demand at
time 2075 because the seasonal ARIMA model (4) accurately
predicts a surge in Nt at this point. Moreover, the entire sim-
ulation of the above procedure takes less than 90 seconds on
a Macbook Pro with 2.26 GHz duo-core processor, indicating
reasonable computational cost.

VI. CONCLUDING REMARKS

In this paper, we address the issues of demand forecast and
performance prediction in peer-assisted VoD services. Through

mining the data collected from UUSee Inc., we observe
clear patterns in the evolution of online peer population, and
propose to predict online population in both existing and
new channels making use of the viewing behavior of Internet
users. Furthermore, we propose a novel scheme to forecast
the instantaneous peer upload contribution with the population
evolution as a leading indicator. The prediction of these key
statistics in the network enables an accurate forecast of the
server bandwidth demand in each channel, which is useful
towards efficient and proactive capacity planning and quality
control. We also shed lights on how prediction and forecasting
can be incorporated in real systems at the runtime with the
aid of online monitoring. The effectiveness of our methods is
corroborated by operational traces collected from UUSee Inc.

REFERENCES

[1] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “CoolStreaming/DONet: A
Data-Driven Overlay Network for Efficient Live Media Streaming,” in
Proc. of IEEE INFOCOM, 2005.

[2] Y. Huang, T. Z. J. Fu, D.-M. Chiu, J. C. Lui, and C. Huang, “Challenges,
Design and Analysis of a Large-scale P2P-VoD System,” in Proc. of
SIGCOMM’08, Seattle, Washington, August 2008.

[3] Z. Liu, C. Wu, B. Li, and S. Zhao, “UUSee: Large-Scale Operational
On-Demand Streaming with Random Network Coding,” in Proc. of IEEE
INFOCOM ’10, San Diego, California, March 2010.

[4] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis:
Forecasting and Control. WILEY, 2008.

[5] D. Applegate, A. Archer, V. G. S. Lee, and K. Ramakrishnan, “Optimal
Content Placement for a Large-Scale VoD System,” in Proc. of ACM
CoNEXT, Philadelphia, USA, November, 2010.

[6] Y. Koren, “Factorization Meets the Neighborhood: a Multifaceted Collab-
orative Filtering Model,” in Proc. of KDD, Las Vegas, Nevada, August,
2008.

[7] C. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.


