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Abstract—There exists a certain level of ambiguity regarding
whether network coding can further improve download per-
formance in P2P content distribution systems, as compared to
commonly applied heuristics such as rarest first protocols. In
this paper, we revisit the problem of broadcasting multiple data
blocks from a single source in an overlay network using gossip-
like protocols. Our new finding reveals that the marginal benefit
of network coding critically depends on the dynamics of network
topologies. We show that although network coding is optimal as a
block selection mechanism, simple non-coding protocols are close
to optimal in complete and random graphs, leading to marginal
benefits of network coding. However, network coding demonstrates
salient benefits in clustered and time-varying topologies, which
are common in real-world systems with ISP-locality mechanisms
implemented. Through both theoretical analysis and simulation
results, we unveil the underlying reasons behind discrepancies in
the power of network coding under different scenarios.

I. I NTRODUCTION

Peer-to-peer (P2P) systems, or application-layer overlaynet-
works, have emerged as a powerful tool for broadcasting bulk
content in today’s Internet. Many practical deployments (e.g.
BitTorrent) of such systems are built on a simple design
philosophy: each peer connects to a random set of other peers
to form a mesh-like overlay network. Gossip-like algorithms
are then applied on top of it to disseminate content blocks.

Known as a powerful tool to achieve multicast capacities in
directed acyclic graphs (DAGs) [1], [2],randomized network
coding [2] has been introduced into P2P content dissemination
systems (Avalanche [3]). With network coding, each peer is
able to encode the blocks it has obtained with a random linear
code and transmit the encoded block. Although it has been
experimentally shown that network coding reduces download
times [3] in BitTorrent-like systems, the subsequent related
literature has raised doubts regarding the benefits of network
coding in P2P networks.

On one side, network coding has been proved to be optimal
in a time-synchronized gossiping model [4], and greatly out-
performs a naive sequential dissemination in complete graphs
[5]. However, assuming P2P networks as complete graphs,
it is shown that network coding cannot offer further benefits
over centralized scheduling without coding [6]. Such a viewis
strengthened by the empirical observation [7] that BitTorrent’s
rarest first algorithm, as a decentralized protocol, guarantees
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close-to-ideal diversity of the blocks among peers, and thus
applying network coding in such systems cannot be justified.

In this paper, we consider the fundamental problem of
distributing multiple data blocks from one or a few sources
to all the other nodes in a randomly connected network, with
upload bandwidth constraints at peers. The performance metric
is the broadcast delay needed for all the peers to obtain all the
blocks. We consider classic gossiping algorithms, in whicheach
peer randomly chooses a neighboring peer to upload to during
each transmission opportunity, and focus on the fundamental
problem of which block to choose for transmission when
multiple blocks contend for limited bandwidth resources.

Motivated by the aforementioned debate, we attempt to
demystify the power of network coding in P2P networks by
asking the following questions: 1) Does randomized network
coding achieve the optimal broadcast delay as a block selection
protocol? 2) Even if network coding achieves the optimal delay,
how much benefit can it bring over reasonably good non-coding
protocols such as rarest first, which is also decentralized and re-
quires much lower computational complexity? and 3) Are there
any factors that critically affect the marginal benefit of network
coding, so much so that such benefit is only substantial under
certain circumstances? Note that all these questions require a
careful reinvestigation in gossip-based overlay broadcast, as it
features a distinctly different model from the DAG, heavily
studied in information theory.

Seeking answers to these questions, we first show the delay
optimality of network coding in a continuous time model where
random transmission delays and arbitrary network topologies
are allowed, extending Yeung’s optimality result [4] for a
discrete time model. We further give a theoretical lower bound
on the delay of any gossip algorithms that use random neighbor
selection with arbitrary block selection schemes in complete
graphs. The theory of approximating Markov population pro-
cesses with ODEs is used to derive the bound. We numerically
show that both network coding and non-coding protocols (rarest
first policies) can achieve performance very close to the theo-
retical limits in complete and random graphs. This means the
marginal benefit of network coding is trivial in these graphs.

Motivated by the third question, we proceed to study the
impact of network topology on the power of network coding.
Due to the ever-increasing burden P2P applications put on
network providers [8], a large number of application-level
traffic control schemes have been proposed to constrain cross-
ISP traffic, reducing the costs to ISPs [8], [9]. However, traffic



locality induces ISP-based topological clustering, the impact of
which on algorithm performance remains to be explored. Time-
varying topologies are another phenomenon inherent to P2P
networks: peers may actively alter their neighbors to discover
better connections or passively do so due to peer dynamics.

While most prior theoretical work analyzes P2P algorithms
on static complete graphs[5], [6], [10], [11], the impact of
topological clustering and time-varying propertieson algorithm
performance remains largely unexplored. To our knowledge,
this paper is the first attempt to analyze the impact of these
important topological dynamics on the power of network coding
in gossip-based overlay broadcast.

We leverage an epidemic spreading model [12] to explicitly
bound from below the delay gap between randomized network
coding and the local rarest first [7] policy, when the network
consists of peer clusters with random global links, and when
links may vary over time. The model solves a basic case when
two blocks are to be broadcast, due to the significant difficulty
in treating inter-dependent random processes. However, what
outweighs its direct result is the model’s value to shed light
on the root causes of performance discrepancy of different
algorithms with the presence of these topological dynamics. We
extend the results to more general scenarios, including synthetic
BitTorrent workloads, through extensive simulations.

We find clustering (traffic locality) and time-varying topolo-
gies are two major factors that determine the benefit of network
coding in gossip-based overlay broadcast:

• In static clustered topologies, unlike in complete and
random graphs, network coding demonstrates significant
lower broadcast delays than non-coding protocols. The
marginal benefit of network coding exhibits a threshold
behavior, depending on certain clustering metrics.

• Time-varying topologies reduce the broadcast delay of
network coding while adversely affecting the performance
of local rarest first — which critically depends on the ac-
cessibility of unbiased global views — amplifying network
coding’s benefit.

• When time-varying topologies and clustering are consid-
ered together, network coding’s benefit exhibits complex
manners depending on the topological dynamics.

The remainder of this paper is organized as follows. The
related work is reviewed in Sec. II. We formulate the problem
in Sec. III and prove the delay-optimality of network coding
in arbitrary graphs with a continuous-time model in Sec. IV.
In Sec. V, we give a lower bound on the broadcast delay of
any gossip algorithms that fall into a certain class in complete
graphs, and show that both coding and non-coding protocols
can achieve performance close to the theoretical limits in com-
plete and random graphs. In Sec. VI, we model traffic locality
and time-varying topologies via epidemic spreading modelsand
quantify the benefit of network coding in these cases. Sec. VII
presents extensive simulation results under a wide range of
settings, including synthetic BitTorrent workloads. Sec.VIII
concludes the paper.

II. RELATED WORK

The pioneering work by Ahlswedeet al. [1] has proved that
network coding can achieve multicast capacity in directed net-
works from a network-flow perspective. Hoet al. [2] proposed
randomized network coding, which was subsequently applied
to BitTorrent-like P2P content distribution by Gkantsidiset
al. [3], who show network coding can speed up downloads
over random block selection by 2-3 times in their simulations.
However, Legoutet al. [7] find in their experiments that the
rarest first algorithm of BitTorrent guarantees close-to-ideal
diversity of the blocks among peers, and using network coding
in such systems cannot be justified.

Such a confusion is largely due to the lack of theoretical un-
derstanding of network coding’s benefit in P2P networks, which
are better modeled by gossip-based overlay broadcast, instead
of the widely explored directed network model in information
theory. Yeung [4] shows in a time-synchronized model that
network coding achieves the optimal delay performance for any
transmission schedules in P2P networks. Debet al. [5] shows
in a time-synchronized model that network coding can achieve
a shorter broadcast delay ofk blocks in complete graphs, as
compared to a naive sequential dissemination. Mosk-Aoyama
et al. [13] further analyzes the broadcast delay using network
coding in arbitrary graphs and shows its correlation with the
spectral properties of the graph. Sanghaviet al. [11] considers
the problem of broadcasting multiple blocks in P2P networks,
and proposes a decentralized block exchange algorithm based
on push and pull that has a close-to-optimal performance.

Despite these efforts, there exists a major gap in understand-
ing the benefit of network coding overstate-of-the-art protocols
such as rarest first policies in practical P2P systems, where
transmissions are not synchronized and may incur random
delays. Motivated by this, we not only prove the optimality
of network coding in a continuous-time gossiping model, but
more importantly, we focus on the marginal benefits of network
coding over reasonably good non-coding block selection poli-
cies. While most prior work assumes complete graph as the
underlying network, our new finding reveals that topological
dynamics serve as a critical factor that impacts the marginal
benefits of network coding in P2P networks.

III. PROBLEM FORMULATION

In this paper, we model the P2P network as a graphGt =
(V,Et) with |V | = N nodes (peers) and edge setEt that may
change over time. Each nodei has an average upload bandwidth
µi and sufficiently large download bandwidth. To accommodate
random transmission delays, we assume the time it takes for
node i to transmit a block follows a certain distribution with
mean1/µi, whereas the size of each block is assumed to be 1.

An edge between two peers represents a data connection
between them. A node maintains connections with a subset of
all the other peers, which form itsneighborhood. Inspired by
gossip-based overlay broadcast systems, we study the problem
of delivering k data blocks{b1, b2, . . . , bk} that are initially
possessed byN0 source nodes to all the other nodes in the



network. We are concerned with thebroadcast delayT (Gt, k),
defined as the time needed to disseminate allk blocks to all
the nodes inGt. We are also interested in theǫ-broadcast delay
T (ǫ)(Gt, k), at which1− ǫ of all the peers finish downloading,
e.g., ǫ = 5% gives a 95th percentile value in the CDF of
individual peer download times.

We consider a class ofGossip Algorithms that conform to
the following rules. For each nodei ∈ V , at rateµi, it

a) randomly chooses one of its neighbors to serve, and
b) transmits one or a linear combination (in Galois field) of

blocks it has obtained.

Criterion a) is the random target peer selection originated
from the classical gossiping problem [14], [15] and has recently
been applied to the analysis of information dissemination [5],
[11], [13], [16]. Criterion b) concerns with the block selection.
We consider the following block selection/encoding algorithms:

• Random Useful Block (RUB).Among the blocks needed
by the target peer, the sender transmits a random block.

• Local Rarest First (LRF). Among the blocks needed by
the target peer, the sender transmits a random block with
the smallest number of copies in the neighborhood.

• Global Rarest First (GRF). Among the blocks needed
by the target peer, the sender transmits a random block
with the smallest number of copies in the network.

• Randomized Network Coding (NC).The sender linearly
encodes all the (coded) blocks it has obtained using
random coefficients in Galois fieldGF (2q) and uploads
the encoded block to the target peer [17], [18]. A peer
has finished downloading when it has obtainedk linearly
independent coded blocks.

Note that RUB, LRF and NC can all be implemented in a
decentralized way. RUB requires data reconciliation between
the sender and receiver. LRF requires each peer to be aware of
the block distribution in its neighborhood. In contrast, NCdoes
not involve any control overhead. Since GRF requires global
views at the peers, it is impractical to implement and only
serves as a reference algorithm.

IV. ON THE OPTIMALITY OF NETWORK CODING

First, it is necessary to point out that applying a random
linear code at each transmitting node can achieve the optimal
broadcast delay, regardless of the network topology and target
peer selection schedule (transmission schedule). Yeunget al.
[4] have shown its optimality in a discrete-time model where
transmissions are synchronized. Here we extend [4] to our
continuous-time model mentioned in Sec. III, where random
transmission delays are allowed.

We model the block transmission using a continuous-time
trellis G∗ = (V ∗, E∗) constructed in the following way. To
model block transmissions, if a block is sent from nodeu at
time t1 and is received by nodev at time t2, we introduce
verticesut1 ∈ V ∗ andvt2 ∈ V ∗ to represent nodeu at timet1
and nodev at timet2, respectively. A directed edge of capacity
1 from ut1 to vt2 is also introduced. Denote the source node

at time 0 by s0. Note that all the “transmission edges” are
determined by transmission schedules.

To model the process of information accumulation at nodes
over time, for each nodeu ∈ V , we then connect the introduced
verticesuti

along the time line with edges of infinite capacity.
In other words, for any two consecutive vertices over timeut1

andut2 (t1 < t2), there is an edge of infinite capacity fromut1

to ut2 . These “memory edges” model the fact that the blocks,
once possessed by a node, are retained in that node indefinitely
over time. Without loss of generality, we may assume that all
the blocks possessed by nodesut1 are transmitted uncoded on
the edge fromut1 to ut2 (t1 < t2).
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Fig. 1. Continuous-time trellis for a network where transmissions are subject
to random delays. maxflow(vt) = 3 at time t as shown by the grey edges.

Denote the value of a max-flow from nodes0 to a nodevt ∈
V ∗ by maxflow(vt). Note thatG∗ is an acyclic graph since each
edge inE∗ goes from a node at an earlier time to a node at a
later time. According to the well-known theorem on multicast in
acyclic graphs [1], [19], those nodesvt with maxflow(vt) ≥ k
can receive allk blocks. Thus, given a transmission schedule
(V ∗, E∗), the minimum possible timet∗(v) it takes a node
v ∈ V to receive allk blocks is

t∗(v) = inf{t : maxflow(vt) ≥ k}.

By [2], when the field sizeq is large enough, this lower bound is
achievable with high probability by applying a random linear
code at each nodev ∈ V . Therefore, we have obtained the
following optimality result of network coding in gossip-based
overlay broadcast.

Proposition 1: Randomized Network Coding achieves the
minimum possible broadcast delay for any topology and any
transmission scheduleG∗ = (V ∗, E∗) with high probability.

V. COMPLETE AND RANDOM GRAPHS

In this section, we first derive a theoretical lower bound
on the broadcast delay of any “gossip algorithm” in complete
graphs. We then compare different algorithms against the
derived lower bound numerically. We find in complete and
random graphs, rarest first algorithms are enough to achieve
close-to-optimal performance, and the further improvement
brought by network coding is trivial.

A. Performance Bounds

Assume that the network is a complete graph ofN nodes
(Gt ≡ KN , ∀t ≥ 0). We call a node a typei-node if it
holds i blocks. Let Xi(t) ∈ Z

+ (i = 0, 1, . . . , k) denote
the number of typei-nodes. Then the processX(t) :=
{X0(t),X1(t), . . . ,Xk(t)} characterizes network states. Define



the normalized process ofX(t) as x
(N)(t) := X(t)/N . For

tractability, we assume the time for each peer to upload a block
follows an exponential distribution with rateµ = 1.

We denote the probability that a type-i node can update a
type-j node with useful blocks at timet by σij(t). With any
gossip algorithm defined in Sec. III,σij(t) ≡ 1 if i > j. We
define theideal gossip algorithm (IDEAL) as the one with
σij(t) ≡ 1 for all i 6= 0, j 6= k. This meansany non-empty node
can update any of its non-full neighbors with useful blocks. It
is clear that the broadcast delay of IDEAL gives a lower bound
on the broadcast delay of any gossip algorithm. Based on this,
we can obtain the following proposition:

Proposition 2: AssumeGt ≡ KN , ∀t ≥ 0, and initially
N0 = Nǫ nodes each holdk blocks, whereǫ ∈ (0, 1) is a small
constant. Let{xi(t) : t ≥ 0} be determined by the ODEs











ẋ0 =−(1 − x0)x0,

ẋi =(1 − x0)(xi−1 − xi), i = 1, 2, . . . , k − 1,

ẋk =(1 − x0)xk−1,

(1)

with
∑k

i=0 xi(t) = 1, x0(0) = 1−ǫ, xk(0) = ǫ, andxi(0) = 0
for i = 1, . . . , k− 1. As N → ∞, the ǫ-broadcast delay of any
gossip algorithmT (ǫ) has a lower bound:

T (ǫ) ≥ inf{t : xk(t) ≥ 1 − ǫ}. (2)

If k = 2, such a lower bound is explicitly given by

T (ǫ) ≥ 2 ln(
1

ǫ
− 1) + ln ln(

1

ǫ
− 1). (3)

Sketch of Proof:Let us first analyze the case ofk = 2.
Consider the delay of IDEAL. Whenσij(t) ≡ 1 for all
i 6= 0, j 6= 2, X(t) is a Markov process with transitions
l1 = (−1, 1, 0) and l2 = (0,−1, 1), and their corresponding
intensitiesq(N)

X,X+li
(X ∈ Z+

3):

X → X + l1, q
(N)
X,X+l1

= (N − X0)µ · X0

N

X → X + l2, q
(N)
X,X+l2

= X2µ · X1

N
+ X1µ · X1

N
.

This is because when a non-empty node uploads to an empty
node (which happens at rate(N − X0)µ · X0

N
), X0 decreases

by 1 andX1 increases by 1, and the second transition occurs
when a type2 or type1-node updates another type1-node.

Considering the normalized processx
(N)(t) := X(t)/N ,

the above intensities can be rewritten asq
(N)
X,X+l = Nβl(

X
N

)

(X ∈ Z+
3), where

βl1(
X

N
) = µ(1 −

X0

N
) ·

X0

N

βl2(
X

N
) = µ · (

X2

N
·
X1

N
+ (

X1

N
)2).

Hence,x(N)(t) is a density dependent jump Markov process
(see [20], pp. 51). We setF (x) =

∑

l lβl(x) and note that
x

(N)(0) = x(0) = (1 − ǫ, 0, ǫ) does not depend onN . By
Kurtz Theorem (Theorem 8.1 in [20]), under the conditions
easily verified here (boundedness and Lipschitz continuityof
F (x)), as N → ∞, x

(N)(t) convergesalmost surelyto the

deterministic fluidx(t) = {x0, x1, x2}:

x(t) = x(0) +

∫ t

0

F (x(u))du, t ≥ 0,

which can be rewritten as
{

ẋ0 = −(1 − x0)x0,

ẋ1 = (1 − x0)x0 − x1x2 − x2
1.

(4)

with x0(0) = 1 − ǫ, x2(0) = ǫ. If k > 2, a similar argument
can be used to derive (1). Now it is clear thatT (ǫ) for IDEAL
equals to the smallestt such thatxk(t) ≥ 1 − ǫ, proving (2).
Whenk = 2, (1) can be solved analytically to give an explicit
lower bound (3). ⊓⊔

It turns out in simulation that the above bound also provides
a good approximation for random graphs if the average node
degree is large enough.

B. Performance of Different Algorithms

We now evaluate NC, RUB, LRF and GRF against the
derived delay lower bound in complete graphs, and against
IDEAL in random graphs through simulations. We utilize
hardware accelerated network coding [21] implemented with
SSE2 SIMD vector instructions on x86 processors to scale to
a large number of data blocks simulated. Coding operations
are performed inGF (28). For each set of parameters, 30
independent experiments are conducted to take the average.
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Fig. 2 and Fig. 3 show the average broadcast delays in
complete graphs ask andN vary. The theoretical lower bound
is obtained from Proposition 2 by lettingǫ = 1/N . We can see
that in complete graphs, GRF and LRF can result in almost
exactlythe same delay as NC can. All these algorithms achieve
performance very close to the lower bound, with RUB being
slightly inferior (by less than 5% though). We also see the
expected broadcast delay grows linearly in trend ask increases,



and nearly logarithmically asN grows (although not exactly
logarithmically by (3)).

We have also compared the algorithm performance in Erdos-
Renyi random graphs [22] with parameterp, where each pair
of peers are connected with probabilityp. Fig. 4 shows that
as p decreases from 1 to2−7, all the algorithms are always
close-to-optimal in that their performance approaches theideal
gossip algorithm. To take a closer view, we plot the delay
improvements of NC over RUB, LRF and GRF in Fig. 5.
What’s interesting is that NC’s marginal benefits become even
more trivial as the graph becomes sparser (with a smallerp).
Even for complete graphs, NC can improve at most5% over
RUB, and at most0.18% over GRF and LRF.

From our analysis and simulation in this section, we find that
network coding is not necessarily needed to achieve close-to-
optimal broadcast delay in complete or random graphs. Local
rarest first (LRF) as a decentralized algorithm can achieve
almost exactly the same performance as its global counterpart
GRF and network coding can. When the graph is sparse
(p < 2−4), even RUB can be close to optimal.

VI. CLUSTERED AND TIME-VARYING TOPOLOGIES

To study the impact of clustering (traffic-locality) and time-
varying topologies on gossip algorithms, we develop an epi-
demic model [12] in this section to quantify the performance
gap between NC and LRF, LRF being the decentralized al-
gorithm that achieves very close-to-optimal performance in
random graphs. GRF will be used only as a reference algorithm
in simulations as it assumes centralized knowledge and is
impractical to be implemented in reality.

A. Network Model

To model ISP-aware traffic locality, we consider a network
composed of clusters with random global links across clusters.
Such a topology is a natural abstraction of those networks
where peers prefer connections within the same ISP.

DefineGt(m,n) as a graph of sizeN = mn that consists of
m clusters of peers:K1

n,K2
n, . . . ,Km

n , each of which is a clique
of sizen, as shown in Fig. 6. We could view each cluster as a
model of an ISP or a geographically clustered community. Each
peerp in Ki

n also maintains global links withdG (dG ≪ n)
other nodes chosen u.a.r. from

⋃

j=1,...,m,j 6=i Kj
n.

K
1

n

K
2

n

K
3

n

Fig. 6. A clustered topology composed ofm = 3 clusters, each being a
complete graph ofn nodes.

The n− 1 + dG links from peerp are changing periodically
with cycle δ, i.e., they are reselected by the above rules every
time p has uploaded a multiple ofδ blocks. In our analysis,

we consider the extreme case ofδ = 1. This leads to thedG

global links being reselected every time before peerp uploads a
block. By random target peer selection from the neighborhood,
this essentially means that at the time of an upload, peerp will
choose a random peer in its own cluster (a local neighbor) with
probability (n − 1)/(n − 1 + dG), or a random peer in other
clusters (a global neighbor) with probabilitydG/(n− 1 + dG).
Since the upload process is Poisson with rateµ = 1, each peer
uploads to a random global neighbor at the points of a Poisson
process with rate

λo = 1 · dG/(n − 1 + dG) ≪ 1. (5)

B. Intuitions on the Benefit of Network Coding

Intuitively, careful choices of blocks should be made when
transmitting across clusters to optimally utilize the precious
bandwidth between them. Unlike in complete or random
graphs,a peer’s choice based on a rarest first policy heavily
depends on whether it can obtain an unbiased global view.

As a starting point, we analyze the casem = 2, k = 2
and bound from below the gap between the expected broadcast
delays of NC and LRF. We will extend the results to more
general cases using simulations.

Let TKi
n

(i = 1, 2) denote the time at which all peers inKi
n

finish downloading. Assume the source peer is inK1
n. It is easy

to seeT (Gt(2, n), 2) = TK2
n
. Let Z1 denote the first time that

a block (sayb1) gets intoK2
n, and Z2 the first time that the

other block (sayb2) gets intoK2
n. We have

T (Gt(2, n), 2) = TK2
n

= Z1 + (Z2 − Z1) + (TK2
n
− Z2).

We can deriveT (Gt(2, n), 2) by deriving Z1, Z2 − Z1 and
TK2

n
− Z2.

First, denote byS1(t) the number of non-empty nodes in
K1

n. Z1 is the first time that any of such nodes uploads to a
node inK2

n. The evolution ofS1(t) in K1
n is approximately the

same as if there were a single complete graphKn, asλo ≪ 1
and the uploads fromK2

n can hardly affect data propagation in
K1

n. SinceS1(t) evolves in roughly the same way for NC and
LRF according to Sec. V-B, NC and LRF will have roughly the
sameZ1. Onceb1 gets intoK2

n, any further injections ofb1

from K1
n will trivially affect its dissemination inK2

n asλo ≪ 1.
However, NC and LRF have different values ofZ2 − Z1.

Consider the phaseZ1 ≤ t < Z2. Denote by pij (i =
0, 1, 2, j = 0, 1) the probability that a typei-node inK1

n can
inject a useful block intoK2

n when it’s updating a typej-node
in K2

n. For NC, if the field sizeq is big enough and there is
no linear dependency (like the ideal algorithm), we have in the
second phase (as shown in Fig. 7):

p
(NC)
ij = 1, ∀i ∈ {0, 1, 2}, ∀j ∈ {0, 1}.

For LRF, consider the best scenario (to give a lower bound on
LRF-NC gap) that a uniform distribution of different blocksis
achieved inK1

n. We have

p
(LRF )
ij =

{

1, if i = 2 and j = 1,
1
2 , otherwise.



We havep21 = 1, because any node with 2 blocks can update
a node with one block. However,p20 = 1/2, because when
a type 2-node inK1

n updates an empty node inK2
n, the view

of the sender is dominated by the block distribution inK1
n as

dG ≪ n− 1, and thusb1 andb2 will be chosen equally likely.
Moreover,p11 = 1/2, p10 = 1/2, since when a type 1-node in
K1

n is uploading to any node inK2
n, a new block, sayb2, can

be injected intoK2
n only if the sender holdsb2. Because NC

has greaterpij , it has a smallerZ2 − Z1.
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n when updating a typej-node inK2

n during the phaseZ1 ≤ t < Z2.

The time needed for the third phaseTK2
n
− Z2 is also the

same for NC and LRF. For LRF, onceb2 gets intoK2
n, further

injections ofb2 from K1
n will have a trivial impact asλo ≪ 1.

As b1 gets intoK2
n first, we can assume the number ofb2 is

always less than that ofb1 in K2
n. Thus, whenever aK2

n-node
that holds ab2 is ready to upload,b2 will be chosen by local
rarest first. Thus,b2 propagates inK2

n like there were nob1 in
K2

n, which takes time2 ln(n−1)+O(2) on expectation (easily
following from an argument using the linearity of expectations).
Thus, we haveE[TK2

n
− Z2] ≈ 2 ln(n − 1) + O(2). It is not

hard to verify when network coding is applied,E[TK2
n
− Z2]

cannot be further reduced and is still2 ln(n − 1) + O(2).
Therefore, network coding is beneficial because it induces

a smallerZ2 − Z1 due to better utilization of the bottleneck
across clusters. In other words, the expected broadcast delay
gap between NC and LRF satisfies:

E[TLRF − TNC ] ≥ E[ZLRF
2 ] − E[ZNC

2 ].

C. Quantifying the Gap between NC and LRF

We now give a lower bound onE[ZLRF
2 ] − E[ZNC

2 ]. We
need to deriveE[Z2] for both NC and LRF. LetD1 = Z1, and
D2 = Z2 − Z1. ThenE[Z2] = E[D1] + E[D2]. Note that for
large n, the evolution of the number of non-empty nodes in
K1

n is

S1(t) = n − X0(t) =
n

(n − 1)e−t + 1
≈ et, (6)

by the solution to (1) fork = 2. We first deriveE[D1] and
then E[D2] by conditioning onD1, arriving at the following
proposition:

Proposition 3: For largen, λo ≪ 1, m = 2 andk = 2, the
gap between the expected broadcast delays of NC and LRF has
the lower bound:

E[TLRF − TNC ] ≥ E[ZLRF
2 ] − E[ZNC

2 ] >
1

3
. (7)

Proof: By the discussions above,D1 = Z1 is the same for
NC and LRF. Consider anon-homogeneous Poisson process

{N(t), t ≥ 0} [23] with intensity functionλoS1(t) ≈ λoe
t.

ThenD1 ≡ inf{t : N(t) ≥ 1}. Since the mean value function
of N(t) is

m1(t) =

∫ t

0

λoe
sds = λoe

t − λo,

we have

FD1
(t) := Pr(D1 ≤ t) = Pr(N(t) ≥ 1) = 1 − e−m1(t),

and thus

E[D1] =

∫ ∞

0

td(1 − e−m1(t)) = eλoE1(λo), (8)

where E1(λo) =
∫ ∞

λo

(e−y/y)dy is the exponential integral (see
[24], pp. 228), regardless of whether NC or LRF is applied.

The values ofD2 are different for NC and LRF. To derive
E[D2], we consider the process{N ′(t) := N(t + D1) −
N(D1), t ≥ 0} conditioning onD1. Note thatN ′(t) is another
non-homogeneous Poisson processwith different intensities for
NC and LRF.

We first consider NC. Sincep(NC)
ij = 1 for all i = 0, 1, 2, j =

0, 1 in the second phase, which remain the same as in the first
phase, for largen, the intensity function is

λ1(t) = λoS1(t + D1) = λoe
t+D1 . (9)

The mean value function ofN ′(t) for NC is mNC
2 (t) =

∫ t

0
λ1(s)ds. Given D1, we haveD2 ≡ inf{t : N ′(t) ≥ 1}.

Hence, for NC, we have

Pr(D2 ≤ t)=ED1
[Pr(D2 ≤ t|D1)] = ED1

[Pr(N ′(t) ≥ 1|D1)]

=

∫ ∞

0

(1 − e−mNC

2 (t))dFD1
(s) = 1 − eλo−t−λoet

,

and thus
E[DNC

2 ] =

∫ ∞

0

td(1 − eλo−t−λoet

) = 1 − λoe
λoE1(λo)

< 1 −
1

2
λo ln(1 +

2

λo

) → 1, asλo → 0, (10)

where the inequality holds becauseezE1(z) > 1
2 ln(1+ 2

z
), for

z > 0 (see [24], pp. 229, Eq. 5.1.20).

For LRF, sincep21 = 1 andpij = 1/2 for all other i, j, the
intensity function ofN ′(t) is

λ2(t) =
1

2
λoS1(t + D1) +

1

2
X2(t + D1)λo ·

et

n
(11)

By the solution to (1) fork = 2 in Sec. V, we have

X2(t) =
n(n − 1) + net

(n2 − 1) + (n − 1)t + et
≤

n2 − n + net

n2 − 1 + nt − t + t + 1

=
n + (et − 1)

n + t
≤

et − 1

t
. (12)

where the first inequality is due toet ≥ t + 1, ∀t. Thus,

λ2(t) ≤
1

2
λoS1(t + D1) +

1

2

et+D1 − 1

t + D1
λo ·

et

n
→

1

2
λoe

t+D1 ,

as n → ∞. Sinceλ2(t) ≥ 1
2λoe

t+D1 , we have for largen,
λ2(t) = 1

2λoe
t+D1 . The mean value function ofN ′(t) for LRF



is mLRF
2 (t) =

∫ t

0
λ2(s)ds. Similarly, we have for LRF

Pr(D2 ≤ t) =

∫ ∞

0

(1 − e−mLRF

2 (t))dFD1
(s)

=−

∫ ∞

s=0

(1 − e−
1
2
λo(et+s−es))de−λoes+λo = 1 −

2e−
1
2
λo(et−1)

et + 1

Hence, by lettingy = 1
2λoe

t, u = 4
3λo

y + 1
3 , we have

E[DLRF
2 ]

=

∫ ∞

t=0

td
−2e−

1
2
λo(et−1)

et + 1
= λoe

1
2
λo

∫ ∞

1
2
λo

e−y

y2 + 1
2λoy

dy

≥ λoe
1
2
λo

∫ ∞

1
2
λo

e−y

(y + λo

4 )2
dy =

4

3
e

3
4
λo

∫ ∞

1

e−
3λo

4
u

u2
du

=
4

3
e

3
4
λoE2(

3λo

4
) (E2(z) :=

∫ ∞

1

e−zt

t2
dt)

=
4

3
− λoe

3
4
λoE1(

3λo

4
) (E2(z) = e−z − zE1(z))

>
4

3
−

4

3
ln(1 +

4

3λo

)
3λo

4 →
4

3
, asλo → 0, (13)

where ezE1(z) < ln(1 + 1
z
) [24]. From (8), (10) and (13),

we have for largen and λo ≪ 1, E[ZLRF
2 ] − E[ZNC

2 ] =
E[DLRF

2 ] − E[DNC
2 ] > 1

3 . ⊓⊔

Implications. The above analysis implies that NC automat-
ically makes better choices of blocks when transmitting across
clusters. Such an implication can be generalized to the caseof
k > 2 blocks andm > 2 clusters. When a typei-node in one
cluster transmits to a typej-node in another cluster, NC proves
its benefits over LRF in two aspects.

First, if i > j, with the local rarest first, since the sender’s
view is dominated by its own cluster, it may not choose the
rarest block that is most urgently needed by the receiver’s
cluster, while NC does not have this issue. Second, ifi ≤ j,
any non-coding protocol suffers from the curse of the coupon
collector problem, as the sender can hold a subset of the blocks
in the receiver or in the receiver’s cluster. In contrast, NC
alleviates redundancy by issuing more diverse coded blocks
as long as the field size is large enough. Due to these reasons,
we conjecture that asm and k increase, the marginal benefit
of network coding will become more salient. While deriving
analytical bounds fork > 2 and m > 2 is an open question,
we resort to extensive simulations to study the general case.

VII. E XPERIMENTAL STUDIES

We now study the impact of topological dynamics on algo-
rithm performance through simulation. Coding operations are
done in GF (28) and again implemented with SSE2 SIMD
instructions [21] to achieve simulation scalability. For each
parameter setting, 30 independent experiments are conducted
to calculate the average.

A. Time-Varying and Clustered Topologies

First, we discuss the impact of time-varying property in non-
clustered topologies. Fig. 8 shows when each peer reforms
its neighborhood with cycleδ = 1, the performance of NC,

GRF, RUB are not affected by the sparsity (p) of the graph.
Comparing with Fig. 4 for static topologies, we find even if the
graph is sparse, the performance of NC, GRF and RUB can be
maintained at the same level as that in dense graphs (p = 1) by
letting peers reselect their neighbors once in a while. However,
the performance of LRF suffers in time-varying sparse graphs
due to a lack of accurate global knowledge.

Fig. 9 shows varyingδ can hardly affect the performance
of RUB, NC and GRF, with RUB being constantly inferior.
Similarly, LRF suffers when the graph is changing at a higher
frequency due to its inability to keep track of the information
in a node’s new neighborhood. Fig. 10 shows that the relation
between broadcast delay andk is nearly linear even if the
topology is changing. From Fig. 11, we see that ask increases,
the benefit of NC over RUB becomes less significant, as RUB
enjoys more diversity in choosing blocks in a time-varying
topology. In contrast, NC’s benefit over LRF becomes more
salient, as the inaccuracy in predicting the locally rarestblock
in a time-varying graph is amplified when there are more blocks
to be distributed.

In a nutshell, periodically changing the topology can prevent
the performance of NC, RUB and GRF from degrading as the
graph becomes sparser. NC can best utilize the block diversity
offered by a time-varying topology, whereas LRF — the close-
to-optimal algorithm in static random graphs — suffers fromit
dramatically.

Second, we consider the effect of clustering alone in static
topologies (δ = ∞). Fig. 12 and Fig. 13 show the broadcast
delays and NC’s improvements as the number of global neigh-
bors of each peerdG varies. AsdG decreases, the network
has a higher degree of clustering. Clearly, the benefits of NC
over all other algorithms exhibit a threshold behavior; they only
increase dramatically whendG ≤ 1. It’s worth noting that NC’s
benefit over GRF also exceeds 20% whendG = 1 even if GRF
has the global knowledge. The benefit of NC becomes to drop
again if dG is too small.

We now consider the combined effect of clustering and
time-varying topologies. When the topology is changing, the
performance of RUB, NC and GRF is increased as diversity
is introduced, shown in Fig. 16 as compared to Fig. 12, while
LRF always performs poorly in clustered graphs due to a lack of
global knowledge. This explains why we see a drastic increase
in NC’s benefit over LRF (its benefit over RUB and GRF also
increases, but less dramatically) whendG ≤ 1 (Fig. 14 and 15).
Interestingly, there is a small bump arounddG = 27 ∼ 28 (128-
256 random global neighbors) in Fig. 14 and 15 regarding the
benefit of network coding. This is because in this range, the
graph exhibits behavior similar to that of time-varying random
graphs (Fig. 8 and 11) instead of clustered graphs. Furthermore,
NC’s benefit becomes more salient for alldG as δ decreases
from ∞ (static) to 1, shown in Fig. 13, 14, and 15. Finally, as
m increases, whileN remains unchanged, the benefit of NC
first increases as more cross-cluster bottlenecks appear, shown
in Fig. 18, but then decreases asm further increases, since the
network demonstrates more behavior of a random graph.
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Fig. 8. Average broadcast delays in ran-
dom graphs with time-varying topolo-
gies.k = 256, N = 1000, δ = 1.
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Fig. 9. Average broadcast delays in
random graphs as the topology changes
at different frequencies.k = 256,
N = 1000, p = 0.5. δ ∈
{1, 4, 16, 64, 128, 256, 512, 1024}.
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Fig. 10. Average broadcast delays
in random graphs with time-varying
topologies.N = 1000, p = 0.5, δ = 1.
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Fig. 11. Average improvements of
NC in random graphs with time-varying
topologies.N = 1000, p = 0.5, δ = 1.
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Fig. 12. Average broadcast delays in
clustered topologies.N = 1000, m =
10, k = 256, δ = ∞ (static topology).
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Fig. 13. The average improvements of
NC over other algorithms in clustered
topologies. N = 1000, m = 10,
k = 256, δ = ∞ (static topology).
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Fig. 14. The average improvements
of NC in clustered graphs with time-
varying global links.k = 256, N =
1000, m = 10, δ = 64.
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Fig. 15. The average improvements
of NC in clustered graphs with time-
varying global links.k = 256, N =
1000, m = 10, δ = 1.

−4−3−2−1 0 1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

log
2
(d

G
)

A
ve

ra
ge

 B
ro

ad
ca

st
 D

el
ay

δ = 1

 

 

RUB
LRF
GRF
NC
IDEAL

Fig. 16. Average broadcast delays
in clustered graphs with time-varying
global links. k = 256, N = 1000,
m = 10, δ = 1.
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Fig. 17. Average broadcast delays
in clustered graphs with time-varying
topologies. k = 256, N = 1000,
dG = 1, δ = 1.
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Fig. 18. Average improvements of NC
in clustered graphs with time-varying
topologies. k = 256, N = 1000,
dG = 1, δ = 1.
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Fig. 19. Average broadcast delays in
synthetic BitTorrent sessions. 996 Peers
spread among 354 ASes. File size =
100MB, block size = 256KB.

B. Heterogeneous and ISP-aware BitTorrent Sessions

To verify our findings under more realistic workloads, we
synthesize a BitTorrent session with biased neighbor selection
that limits cross-ISP traffic. ISP-awareness has been shownto
bring savings to ISPs by ensuring traffic locality in content
distribution sessions (e.g. [8], [9]). However, our focus here is
to study the impact of such a mechanism on the performance
of different gossip algorithms.

In the synthesized session, the ISP statistics are based on
the torrent trace from a game reported in [9]. The network
consists of 996 peers spread among 354 ASes, the largest AS
(ISP 1) consisting of 31 peers. Since we lack the detailed
information about ISP sizes, we let the size of ISP-i (i > 1) be
a random number between 1 and31/ log(i + 1). Peer upload
bandwidth values (kbps) are drawn from the distribution: 64
(2.8%), 256 (4.3%), 128 (14.3%), 384 (32.3%), 768 (46.3%),
representing modem, ISDN, DSL, Cable and Ethernet connec-
tions, respectively [25]. A file of size 100MB broken into 400
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Fig. 20. NC’s benefit in each exper-
iment. 996 Peers spread among 354
ASes. File size = 100MB, block size
= 256KB. δ = ∞.
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Fig. 21. NC’s benefit in each exper-
iment. 996 Peers spread among 354
ASes. File size = 100MB, block size
= 256KB. δ = 32s.

blocks (each of size 256KB) is to be broadcast to all the peers.
The seed (source) is a random peer in ISP 1. We consider ISP-
aware neighbor selection [26]: each peer first selects as many
neighbors as possible from its own ISP and then randomly
chooses peers in other ISPs to maintain a total of 35 neighbors.
Each peer reselects its neighbors everyδ seconds to simulate



time-varying topologies.
Fig. 19 plots the mean broadcast delays under differentδ.

Apparently, a time-varying topology (δ < ∞) helps to reduce
broadcast delay (except for LRF) by introducing topological
diversity, with NC’s delay decreasing the fastest asδ drops. In
the static topology (δ = ∞), NC’s average benefits (5% against
RUB, 3.66% against LRF, 0.5% against GRF) are less salient,
although it is still superior (up to 22.4% against LRF, 16.1%
against RUB) in many individual experiments due to its effi-
ciency in clustered topologies, shown in Fig. 20. However, such
benefits critically depend on the randomly formed topology in
each individual experiment, making the mean benefits across
all experiments low. As the topology becomes more dynamic,
NC’s benefit becomes much more significant (15.55% against
RUB, 43.8% against LRF, 1.22% against GRF on average when
δ = 32s).

One interesting observation is that the performance of LRF
actually degrades as the topology is changing more frequently,
and becomes even worse than that of RUB shown in Fig. 19
and 21. This means LRF, while being close-to-optimal in static
random graphs as shown in Sec. V-B, does not take advantage
of the diversity offered by a time-varying topology and is not
suitable for dynamic environments with ISP-aware neighbor
selections, which are quite likely to happen in real content
distribution sessions. Finally, although GRF is always close
to NC in the synthetic session, it assumes the availability
of global block statistics and is thus never feasible for real
implementation.

VIII. C ONCLUDING REMARKS

In this paper, we study the problem of broadcasting multiple
data blocks in networks of certain topologies using gossip-like
algorithms, focusing on analyzing the benefit of randomized
network coding. Although network coding achieves the optimal
delay in any topologies, non-coding protocols such as the local
rarest first policy can achieve performance very close to the
theoretical limits in complete and random graphs. As a result,
the application of network coding in these graphs cannot be
sufficiently justified.

We further demonstrate that clustering and time-varying
topologies are two key factors that boost the benefit of net-
work coding. In clustered graphs, randomized network coding
behaves as if it has the global knowledge to make optimal
decisions, while other decentralized block selection algorithms
fail to do so. Time-varying topologies can reduce broadcast
delays only for topology-oblivious protocols and will degrade
the performance of topology-dependent protocols such as the
local rarest first. Considering all these topological dynamics,
network coding is resilient to traffic locality mechanisms that
are common in ISP-aware P2P applications, and can take
the best advantage of the path diversity, introduced by either
passive or proactive topological changes, whereas other decen-
tralized block selection schemes suffer from different degrees
of insufficiency in these cases. One interesting direction for
further investigation is to theoretically understand the complex

behavior of network coding as compared to other gossiping
algorithms in different kinds of random graphs.
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