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Abstract—There exists a certain level of ambiguity regarding close-to-ideal diversity of the blocks among peers, and thu
whether network coding can further improve download per- applying network coding in such systems cannot be justified.
formance in P2P content distribution systems, as compared to In this paper, we consider the fundamental problem of
commonly applied heuristics such as rarest first protocols. In . . = . :
this paper, we revisit the problem of broadcasting multiple data distributing multiple da_ta blocks from one or a few sourcgs
blocks from a single source in an overlay network using gossip- t0 all the other nodes in a randomly connected network, with
like protocols. Our new finding reveals that the marginal benefit upload bandwidth constraints at peers. The performancganet
of network coding critically depends on the dynamics of network s the broadcast delay needed for all the peers to obtaihall t
topologies. We show that although network coding is optimal as a blocks. We consider classic gossiping algorithms, in wieigbh

block selection mechanism, simple non-coding protocols are close . . .
to optimal in complete and random graphs, leading to marginal peer randomly chooses a neighboring peer to upload to during

benefits of network coding. However, network coding demonstres  €ach transmission opportunity, and focus on the fundarhenta
salient benefits in clustered and time-varying topologies, which problem of which block to choose for transmission when

are common in real-world systems with ISP-locality mechanisms multiple blocks contend for limited bandwidth resources.
implemented. Through both theorefical analysis and simulation — niativated by the aforementioned debate, we attempt to
results, we unveil the underlying reasons behind discrepancies in . Lo
the power of network coding under different scenarios. demystlfy the poyver of ngtwork coding in P2P !"letworks by
asking the following questions: 1) Does randomized network
coding achieve the optimal broadcast delay as a block smbect
protocol? 2) Even if network coding achieves the optimahgel
Peer-to-peer (P2P) systems, or application-layer overty how much benefit can it bring over reasonably good non-coding
works, have emerged as a powerful tool for broadcasting pbukotocols such as rarest first, which is also decentralinelde:
content in today’s Internet. Many practical deploymentg).(e quires much lower computational complexity? and 3) Are¢her
BitTorrent) of such systems are built on a simple desigany factors that critically affect the marginal benefit ofwerk
philosophy: each peer connects to a random set of other pegging, so much so that such benefit is only substantial under
to form a mesh-like overlay network. Gossip-like algorighmcertain circumstances? Note that all these questionsreequi
are then applied on top of it to disseminate content blocks. careful reinvestigation in gossip-based overlay broageasit
Known as a powerful tool to achieve multicast capacities fgatures a distinctly different model from the DAG, heavily
directed acyclic graphs (DAGs) [1], [2tandomized network Studied in information theory.
coding[2] has been introduced into P2P content disseminationSeeking answers to these questions, we first show the delay
systems (Ava|anche [3]) With network Coding’ each peer wtlmallty of network COding in a continuous time model wdner
able to encode the blocks it has obtained with a random lind@hdom transmission delays and arbitrary network topemgi
code and transmit the encoded block. Although it has bedf¢ allowed, extending Yeung's optimality result [4] for a
experimentally shown that network coding reduces downlo&dscrete time model. We further give a theoretical lowerrizbu
times [3] in BitTorrent-like systems, the subsequent elat On the delay of any gossip algorithms that use random nefghbo
literature has raised doubts regarding the benefits of mitw@election with arbitrary block selection schemes in coteple
coding in P2P networks. graphs. The theory of approximating Markov population pro-
On one side, network coding has been proved to be optinf&SSes With ODEs is used to derive the bound. We numerically
in a time-synchronized gossiping model [4], and greatly- outNOW that both network coding and non-coding protocolsgar
performs a naive sequential dissemination in completehgragirst policies) can achieve performance very close to the-the
[5]. However, assuming P2P networks as complete graplﬁ%t,'ca_l limits |n.complete and ra.ndo'm g'ra'lph's. This means the
it is shown that network coding cannot offer further benefif§larginal benefit of network coding is trivial in these graphs
over centralized scheduling without coding [6]. Such a visw  Motivated by the third question, we proceed to study the
strengthened by the empirical observation [7] that Bitéots IMPact of network topology on the power of network coding.

rarest first algorithm, as a decentralized protocol, guaesn Due to the ever-increasing burden P2P applications put on
network providers [8], a large number of application-level

This work is supported by NSERC Discovery, CRD and Strat&gjiants traffic cqntrol SCh_emes have been proposed to COI’lStI’air_SB-UOS
(RGPIN 238994-06, CRDPJ 379623-08, STPGP 364910-08). ISP traffic, reducing the costs to ISPs [8], [9]. Howeverffica
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locality induces ISP-based topological clustering, thpawst of Il. RELATED WORK
which on algorithm performance remains to be explored. Time

: loi h h ih P The pioneering work by Ahlswedet al. [1] has proved that
varying topologies are a'not er phenomenon In erent_to ggtwork coding can achieve multicast capacity in directed n
networks: peers may actively alter their neighbors to disco

bett i velv d due t q *~ works from a network-flow perspective. Hx al. [2] proposed
etier connections or passively do So due 1o peer dynamics,,nqomized network coding, which was subsequently applied

While most prior theoretical work analyzes P2P algorithmg BjtTorrent-like P2P content distribution by Gkantsicé
on static complete graphg5], [6], [10], [11], the impact of g| (3], who show network coding can speed up downloads
topological clustering and time-varying properties algorithm  gyer random block selection by 2-3 times in their simulagion
performance remains largely unexplored. To our knowledgowever, Legoutet al. [7] find in their experiments that the
this paper is the first attempt to analyze the impact of theggest first algorithm of BitTorrent guarantees closed®ai
important topological dynamics on the power of network egdi giversity of the blocks among peers, and using network apdin
in gossip-based overlay broadcast. in such systems cannot be justified.

We leverage an epidemic spreading model [12] to explicitly Such a confusion is largely due to the lack of theoretical un-
bound from below the delay gap between randomized netwailrstanding of network coding’s benefit in P2P networkscwhi
coding and the local rarest first [7] policy, when the networkre better modeled by gossip-based overlay broadcastaihst
consists of peer clusters with random global links, and whe the widely explored directed network model in informatio
links may vary over time. The model solves a basic case whittreory. Yeung [4] shows in a time-synchronized model that
two blocks are to be broadcast, due to the significant ditfficulnetwork coding achieves the optimal delay performancetigr a
in treating inter-dependent random processes. Howeveait wiransmission schedules in P2P networks. Relal. [5] shows
outweighs its direct result is the model's value to shedtligin a time-synchronized model that network coding can ahiev
on the root causes of performance discrepancy of differeatshorter broadcast delay éfblocks in complete graphs, as
algorithms with the presence of these topological dynaniMs compared to a naive sequential dissemination. Mosk-Aoyama
extend the results to more general scenarios, includinthetin et al. [13] further analyzes the broadcast delay using network
BitTorrent workloads, through extensive simulations. coding in arbitrary graphs and shows its correlation with th

We find clustering (traffic locality) and time-varying topel Spectral properties of the graph. Sanghetval. [11] considers
gies are two major factors that determine the benefit of nétwdhe problem of broadcasting multiple blocks in P2P networks
coding in gossip-based overlay broadcast: and proposes a decentralized block exchange algorithndbase

. ) o on push and pull that has a close-to-optimal performance.

« In static clustered topologies, unlike in complete and pegpite these efforts, there exists a major gap in undetstan
random graphs, network coding demonstrates significany the penefit of network coding ovetate-of-the-art protocols
lower broadcast delays than non-coding protocols. TRgch as rarest first policies in practical P2P systems, where
marginal benefit of network coding exhibits a thresholg,nsmissions are not synchronized and may incur random
behavior, depending on certain clustering metrics. delays. Motivated by this, we not only prove the optimality

« Time-varying topologies reduce the broadcast delay gf hetwork coding in a continuous-time gossiping model, but

network coding while adversely affecting the performancg,qre importantly, we focus on the marginal benefits of nekwor

of local rarest first — which critically depends on the aCzading over reasonably good non-coding block selectioi pol

cessibility of unbiased global views — amplifying networksjes \while most prior work assumes complete graph as the

coding’s benefit. underlying network, our new finding reveals that topolobjica

« When time-varying topologies and clustering are considynamics serve as a critical factor that impacts the makgina
ered together, network coding’s benefit exhibits compl§anefits of network coding in P2P networks.
manners depending on the topological dynamics.

The remainder of this paper is organized as follows. The Ill. PROBLEM FORMULATION

related work is reviewed in Sec. Il. We formulate the problem In this paper, we model the P2P network as a gréhh=

in Sec. lll and prove the delay-optimality of network codindV, E;) with || = N nodes (peers) and edge et that may

in arbitrary graphs with a continuous-time model in Sec. I\thange over time. Each nodéas an average upload bandwidth
In Sec. V, we give a lower bound on the broadcast delay pf and sufficiently large download bandwidth. To accommodate
any gossip algorithms that fall into a certain class in catel random transmission delays, we assume the time it takes for
graphs, and show that both coding and non-coding protocolsdes to transmit a block follows a certain distribution with
can achieve performance close to the theoretical limitoinc meanl/u;, whereas the size of each block is assumed to be 1.
plete and random graphs. In Sec. VI, we model traffic locality An edge between two peers represents a data connection
and time-varying topologies via epidemic spreading modets between them. A node maintains connections with a subset of
quantify the benefit of network coding in these cases. Selc. \dll the other peers, which form itseighborhood Inspired by
presents extensive simulation results under a wide rangegafsip-based overlay broadcast systems, we study theepmobl
settings, including synthetic BitTorrent workloads. S&ftill  of delivering k& data blocks{b;,bs,...,bx} that are initially
concludes the paper. possessed bw, source nodes to all the other nodes in the



network. We are concerned with theoadcast delayl’'(G¢, k), at time O bysy. Note that all the “transmission edges” are
defined as the time needed to disseminatetdtlocks to all determined by transmission schedules.

the nodes irG;. We are also interested in thebroadcast delay = To model the process of information accumulation at nodes
T (Gy, k), at which1 — e of all the peers finish downloading, over time, for each node € V, we then connect the introduced
e.g., e = 5% gives a 95th percentile value in the CDF oFerticesu,, along the time line with edges of infinite capacity.

individual peer download times. In other words, for any two consecutive vertices over time
We consider a class dBossip Algorithms that conform to andu., (1 < t2), there is an edge of infinite capacity from,
the following rules. For each nodec V, at ratey;, it to u,. These “memory edges” model the fact that the blocks,

a) randomly chooses one of its neighbors to serve, and ©Nce possessed by a node, are retained in that node indgfinite

b) transmits one or a linear combination (in Galois field) ofVer time. Without loss of generality, we may assume that all
blocks it has obtained. the blocks possessed by nodgs are transmitted uncoded on

Criterion a) is the random target peer selection originaté
from the classical gossiping problem [14], [15] and has mdge OO0 O---—--0
been applied to the analysis of information disseminatijn [
[11], [13], [16]. Criterion b) concerns with the block sefien.
We consider the following block selection/encoding altoris:

« Random Useful Block (RUB).Among the blocks needed
by the target peer, the sender transmits a random block.
o Local Rarest First (LRF). Among the blocks needed by
the target peer, the sender transmits a random block Wﬂi'a 1. Continuous-time trellis for a network where transiioiss are subject
the smallest number of copies in the neighborhood.  to random delays. maxflow;) = 3 at timet as shown by the grey edges.
» Global Rarest First (GRF). Among the blocks needed penote the value of a max-flow from nodg to a nodev; €
by the target peer, the sender transmits a random blogk by maxflow(v,). Note thatG* is an acyclic graph since each
with the smallest number of copies in the network.  edge inE* goes from a node at an earlier time to a node at a
« Randomized Network Coding (NC).The sender linearly |ater time. According to the well-known theorem on multidas
encodes all the (COded) blocks it has obtained USi%ndC graphs [1], [19], those nod@s with maxﬂov\(vt) >k
random coefficients in Galois fiel@F'(2?) and uploads can receive alk blocks. Thus, given a transmission schedule
the encoded block to the target peer [17], [18]. A pegl/* E*), the minimum possible time*(v) it takes a node
has finished downloading when it has obtairietinearly ,, ¢ V to receive allk blocks is
independent coded blocks.

Note that RUB, LRF and NC can all be implemented in a
decentralized way. RUB requires data reconciliation betweBy [2], when the field size is large enough, this lower bound is
the sender and receiver. LRF requires each peer to be awaracifievable with high probability by applying a random linea
the block distribution in its neighborhood. In contrast, N@2s code at each node < V. Therefore, we have obtained the
not involve any control overhead. Since GRF requires globflllowing optimality result of network coding in gossip-4ed
views at the peers, it is impractical to implement and onlyverlay broadcast.

Iae edge fromu;, to u., (11 < t2).

t*(v) = inf{t : maxflow(v;) > k}.

serves as a reference algorithm. Proposition 1: Randomized Network Coding achieves the
minimum possible broadcast delay for any topology and any
IV. ON THE OPTIMALITY OF NETWORK CODING transmission schedule* = (V*, E*) with high probability.
First, it is necessary to point out that applying a random V. COMPLETE AND RANDOM GRAPHS

linear code at each transmitting node can achieve the obtima, this section, we first derive a theoretical lower bound
broadcast delay, regardless of the network topology amtary, the proadcast delay of any “gossip algorithm” in complete
peer selection schedule (transmission schedule). Y&ir@. graphs. We then compare different algorithms against the
[4] have shown its optimality in a discrete-time model whergerived lower bound numerically. We find in complete and
transmissions are synchronized. Here we extend [4] 10 Q¥hdom graphs, rarest first algorithms are enough to achieve
continuous-time model mentioned in Sec. lll, where ra”dOEFose-to-optimal performance, and the further improvemen

transmission delays are allowed. _ _ _ brought by network coding is trivial.
We model the block transmission using a continuous-time

trellis G* = (V*, E*) constructed in the following way. To A Performance Bounds

model block transmissions, if a block is sent from nadat Assume that the network is a complete graphMofnodes
time t; and is received by node at time t5, we introduce (G; = Ky, Vt > 0). We call a node a typé-node if it
verticesu;, € V* andwv,, € V* to represent node at timet;  holds i blocks. Let X;(t) € Z* (i = 0,1,...,k) denote
and nodev at timet., respectively. A directed edge of capacitthe number of typei-nodes. Then the procesX (¢) :=

1 from u, to v, is also introduced. Denote the source nodgX,(t), X1(t),..., Xk (t)} characterizes network states. Define



the normalized process oX (t) as ™ (t) := X (t)/N. For deterministic fluidx(t) = {0, 1,22}

tractability, we assume the time for each peer to upload ekblo ¢

follows an exponential distribution with raje= 1. (t) = =(0) +/0 F(x(u))du, t=0,
We denote the probability that a typerode can update & hich can be rewritten as

type-s node with useful blocks at time by o;;(¢). With any i = —(1— z0)a

gossip algorithm defined in Sec. llb;;(¢t) = 1 if i > j. We { 0= 0720,

define theideal gossip algorithm (IDEAL) as the one with

0;i(t) = 1foralli # 0, j # k. This meansiny non-empty node with 0(0) = 1 — ¢, 22(0) = e. If & > 2, a similar argument

can update any of its non-full neighbors with useful blodks can be used to derive (1). Now it is clear th&e) for IDEAL

is clear that the broadcast delay of IDEAL gives a lower bo“%uals to the smallegtsuch thatr,(t) > 1 — ¢, proving (2).

on the broadcast delay of any gossip algorithm. Based on thjghen 1. — 2, (1) can be solved analytically to give an explicit
we can obtain the following proposition: lower bound (3). 0

Proposition 2: AssumeG; = Ky, Vi > 0, and initially |t turns out in simulation that the above bound also provides

Ny = Ne nodes each holdl blocks, where: € (0,1) is asmall 3 good approximation for random graphs if the average node
constant. Let{z;(t) : t > 0} be determined by the ODEs degree is large enough.

(4)

i‘l = (1 — Io)xo — T1T2 — I%

o =—(1 — o), B. Performance of Different Algorithms

x:"' = —wo)(zi1 —w), 1=1,2....,k=-1, (1) We now evaluate NC, RUB, LRF and GRF against the
tp=(1 — zo)Tp—1, derived delay lower bound in complete graphs, and against
. ko e _ _ oy IDEAL in random graphs through simulations. We utilize
Wlth iz i(t) =1, 20(0) = 1—¢ 24(0) = ¢, anda; (0) =0 hardware accelerated network coding [21] implemented with
fori=1,...,k—1. As N — o, the e-broadcast delay of any . . |
ossip algorithni™© has a lower bound: SSE2 SIMD vector instructions on x86 processors to scale to
9 ’ a large number of data blocks simulated. Coding operations
T > inf{t: zx(t) > 1 — €} (2) are performed inGF(2%). For each set of parameters, 30

i . ) independent experiments are conducted to take the average.
If k=2, such a lower bound is explicitly given by

1200, - 350

1000F

1
T > 21n(1 —1) +Inln(= —1). (3)
€ €
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Sketch of ProofiLet us first analyze the case &f = 2.
Consider the delay of IDEAL. Whemw;;(t) = 1 for all
i £ 0, 7 # 2, X(¢t) is a Markov process with transitions
Iy = (-1,1,0) andi; = (0,—1,1), and their corresponding
intensitieSqE?_’))(Hi (X e Z.3):
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This is because when a non-empty node uploads to an emptyg ‘ oLRe HroLRanc)
. v 8 - = -
node (which happens at rat&V — Xo)u - 5¢), Xo decreases  § pac

by 1 andX; increases by 1, and the second transition occurs § 1000

when a type2 or type 1-node updates another typenode.
Considering the normalized process™)(t) := X(t)/N,

the above intensities can be rewritten qég))(ﬂ = Nﬁl(%) ey e S e s S o
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(X € 2,?), where 2 2
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X X X Fig. 4. Average broadcast delajsy. 5. The delay improvements of
—) = 1-— 20y, 20 as random graph parametgrvaries. NC over other algorithms gs varies.
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N N N N = 1000, k = 256. N = 1000, k = 256.
3 (E) = - (X2 X (&)2). Fig. 2 and Fig. 3 show the average broadcast delays in
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complete graphs asand N vary. The theoretical lower bound
Hence,z™)(t) is a density dependent jump Markov procesis obtained from Proposition 2 by letting= 1/N. We can see
(see [20], pp. 51). We sek'(x) = >, 16 /(x) and note that that in complete graphs, GRF and LRF can result in almost
M (0) = x(0) = (1 —¢,0,¢) does not depend oiV. By exactlythe same delay as NC can. All these algorithms achieve
Kurtz Theorem (Theorem 8.1 in [20]), under the conditiongerformance very close to the lower bound, with RUB being
easily verified here (boundedness and Lipschitz continafty slightly inferior (by less than 5% though). We also see the
F(z)), asN — oo, ™ (t) convergesalmost surelyto the expected broadcast delay grows linearly in trend ascreases,



and nearly logarithmically asv grows (although not exactly we consider the extreme case ©f= 1. This leads to thels
logarithmically by (3)). global links being reselected every time before peeploads a

We have also compared the algorithm performance in Erddseck. By random target peer selection from the neighbadhoo
Renyi random graphs [22] with parameterwhere each pair this essentially means that at the time of an upload, peveil
of peers are connected with probability Fig. 4 shows that choose a random peer in its own cluster (a local neighbof) wit
as p decreases from 1 t@~7, all the algorithms are always probability (n — 1)/(n — 1 + dg), or a random peer in other
close-to-optimal in that their performance approachesdbal clusters (a global neighbor) with probabilitd /(n — 1+ dg).
gossip algorithm. To take a closer view, we plot the delagince the upload process is Poisson with pate 1, each peer
improvements of NC over RUB, LRF and GRF in Fig. 5uploads to a random global neighbor at the points of a Poisson
What'’s interesting is that NC’s marginal benefits become evenocess with rate
more trivial as the graph becomes sparser (with a smajler
Even for complete graphs, NC can improve at m@&t over do=1-dg/(n—1+dg) <1. )
RUB, and at mosbt.18% over GRF and LRF. B. Intuitions on the Benefit of Network Coding

From our analysis and simulation in this section, we find that Intuitively,

S : ! ps careful choices of blocks should be made when
network coding is not necessarily needed to achieve ¢ e'ltransmitting across clusters to optimally utilize the joes

optimal broadcast delay in complete or random graphs. Logalqidth between them. Unlike in complete or random
rarest first (LRF) as a decentralized alg_orlthm can aCh'e?j?aphs,a peer's choice based on a rarest first policy heavily
almost exactly the same performance as its global Coumerp@epends on whether it can obtain an unbiased global view
GRF and network coding can. When the graph is sparsey o starting point, we analyze the case — 2, k — 2
—4 . y = , =
(p <277), even RUB can be close to optimal. and bound from below the gap between the expected broadcast
VI. CLUSTERED AND TIME-VARYING TOPOLOGIES delays of NC and LRF. We will extend the results to more

To study the impact of clustering (traffic-locality) and &m general cages using S|mulat|ons.. ) .
varying topologies on gossip algorithms, we develop an epj- !_et Tre;, (1= ,172) denote the time at Wh'Ch, all pegrsIﬂiL
demic model [12] in this section to quantify the performanciish downloading. Assume the source peer ig(ih Itis easy
gap between NC and LRF, LRF being the decentralized & S€€T(G:(2,7n),2) :_TKi-QLet Zy denote the first time that
gorithm that achieves very close-to-optimal performange f# PloCK (sayb:) gets into &7, z;md Z, the first time that the
random graphs. GRF will be used only as a reference algoritifier block (say:) gets intoX;. We have
in simulations as it assumes centralized knowledge and iST(Gt(Qvn)’m =Tx> = Zy + (Zy — Z1) + (T2 — Zo).
impractical to be implemented in reality. " "

We can deriveT' (G¢(2,n),2) by deriving Z;, Z2 — Z; and
A. Network Model Ty — Zo.

To model ISP-aware traffic locality, we consider a network ﬁirst, denote byS;(¢) the number of non-empty nodes in
composed of clusters with random global links across dlssteK!. Z; is the first time that any of such nodes uploads to a
Such a topology is a natural abstraction of those networksede inK?2. The evolution ofS;(¢) in K} is approximately the
where peers prefer connections within the same ISP. same as if there were a single complete grahh as\, < 1

DefineG:(m,n) as a graph of siz& = mn that consists of and the uploads fron&k? can hardly affect data propagation in
m clusters of peersk}, K2,..., K™, each of which is a clique K!. SinceS(t) evolves in roughly the same way for NC and
of sizen, as shown in Fig. 6. We could view each cluster asleRF according to Sec. V-B, NC and LRF will have roughly the
model of an ISP or a geographically clustered communityhEasame Z;. Onceb; gets into K2, any further injections ob;
peerp in K} also maintains global links witll: (dg < n) from K} will trivially affect its dissemination ink? as), < 1.
other nodes chosen u.ar. frdoh_, ., .., Kj. However, NC and LRF have different values B8 — Z;.
Consider the phas&/; < ¢t < Z,. Denote byp;; (i =
0,1,2,5 = 0,1) the probability that a typé-node in K} can
inject a useful block intdk? when it's updating a typg-node
in K2. For NC, if the field sizeg is big enough and there is
no linear dependency (like the ideal algorithm), we havehin t
second phase (as shown in Fig. 7):

p =1, vie{o,1,2}, ¥j€{0,1}.

_ _ For LRF, consider the best scenario (to give a lower bound on
Fig. 6. A clustered topology composed of = 3 clusters, each being a LRE-NC gap) that a uniform distribution of different blocls
complete graph ofr nodes. . . 1

achieved ink,. We have

Then — 1+ dg links from peerp are changing periodically o _
with cycle d, i.e., they are reselected by the above rules every p(ERF) _ 1, ifi=2andj=1,
time p has uploaded a multiple of blocks. In our analysis, “ %, otherwise.



We haveps; = 1, because any node with 2 blocks can updatgV(¢),t > 0} [23] with intensity function),S;(t) =~ A.et.

a node with one block. Howevepyy = 1/2, because when Then D; = inf{¢ : N(¢) > 1}. Since the mean value function
a type 2-node inK! updates an empty node 2, the view of N(t) is ,

of the sender is dominated by the block distributionh’@ as ma(t) = / Aeds = Agel — Ao,

de < n—1, and thusb; andb, will be chosen equally likely. 0

Moreover,p;; = 1/2, pi1p = 1/2, since when a type 1-node inye have

K} is uploading to any node i2, a new block, say,, can

be injected intok? only if the sender holds,. Because NC ~ Fp, (t) := Pr(Dy <t) = Pr(N(t) > 1) = 1 —e”™®),

has greatep,;, it has a smalleZ, — Z;. and thus

ElDi] = /000 (- ™) = M), (@)

where BE(),) = f;:(e‘y/y)dy is the exponential integral (see
[24], pp. 228), regardless of whether NC or LRF is applied.

NG LRF The values ofD, are different for NC and LRF. To derive
Fig. 7. The probability that a typenode ink: can inject a new block into E[D2], we consider the proces§N'(t) := N(t + D1) —
K2 when updating a typg-node in K2 during the phase&; < t < Z. N(Dy),t > 0} conditioning onD;. Note thatN’(¢) is another

non-homogeneous Poisson procesth different intensities for
The time needed for the third pha&: — 7> is also the NC and LRF.

te i 2
same for NC and LRF. For LRF, onde gets intoK;, further We first consider NC. Sincpgj.vc) —1foralli=0,1,2,j =

Z\Jegtlons{ Oif:ﬁ f;??ff’tl V\\/c” ha\r/1e a trl\gal mpanCtrii\oeril' 0,1 in the second phase, which remain the same as in the first
S 01 GEIS N0 fx;, TS, We can assume the numue S phase, for larger, the intensity function is

always less than that @ in K2. Thus, whenever & 2-node
that holds ab, is ready to upload), will be chosen by local A(t) = AS1(t+Dq) = Aoe! TP, (9)
rarest first. Thusb, propagates ik’ like there were nd; in . , . NC
K2, which takes timeIn(n— 1)+ O(2) on expectation (easily Tt\e mean value function ofV'(t) for. NC is M2 ®) =
following from an argument using the linearity of expeatas). Jo Mi(s)ds. Given Dy, we haveD; = inf{t : N'(t) = 1}.
Thus, we haveE[Ty: — %] ~ 2In(n — 1) + O(2). It is not Hence, for NC, we have
hard to verify when network coding is applieB{Tx2 — Z3] Pr(Dy < t)=Ep, [Pr(Dy < t|D;)] = Ep, [Pr(N'(t) > 1|D;)]
cannot be further reduced and is slln(n — 1) + O(2). oo Ne ,
Therefore, network coding is beneficial because it induces =/ (1—e 2 )dFp, (s) =1 — el
a smallerZ, — Z; due to better utilization of the bottleneck 0

across clusters. In other words, the expected broadcasy def"d th}ffé 0 N \
gap between NC and LRF satisfies: E[Dy "] = /0 td(l — et ™77 ) =1 = Aoe™Er(Ao)
c 1 2
BT rp — Trc] > E[Z3"] ~ E[25'7). <-4 )~ 1, ash,—0,  (10)

C. Quantifying the Gap between NC and LRF here the | i holds b e g
W o he o ourd GBIZE1 173, v "L IS Lm0 4 . o

need to derivéE[Zs] for both NC and LRF. LetD; = Z;, and 4l pp- , Eq. 5.1.20). B

Dy = Zo — Z1. ThenE[Z,] = E[D;] + E[D,]. Note that for For.LRF, sincepa1 = 1 a}ndpij = 1/2 for all other, j, the

large n, the evolution of the number of non-empty nodes ifftensity function of N'(z) is

K} is 1 1 et
)\Q(t) = 7)\051(15 + Dl) + *Xg(t + Dl))\o - — (11)
_ _ n ot 2 2 n
S1(t) =n—Xo(t) = ————=~¢€, (6) . )
(n—1)et+1 By the solution to (1) fork = 2 in Sec. V, we have
by the solution to (1) fork = 2. We first deriveE[D;] and n(n —1) + net n2 — n + net
then E[D,] by conditioning onD;, arriving at the following Xo(t) = M= 1)+ (n—1)t+e ~n2—1+nt—t+t+1
proposition: nt(et—1) e —1
Proposition 3: For largen, A\, < 1, m =2 andk = 2, the = < . (12)
gap between the expected broadcast delays of NC and LRF has n+t t
the lower bound: where the first inequality is due 6 > ¢ + 1, Vt. Thus,
1 1 letwil_l ) e 1y
E[TLrr — Tnc] > E[Zy™F] - E[Z)€] > 3 (7) Aa(t) < 2)\051(f+ Dy) + > 17D Ao — = Shoe

Proof: By the discussions abové); = Z; is the same for asn — oco. Since A(t) > A.e' TP, we have for largen,

NC and LRF. Consider mon-homogeneous Poisson process(t) = 1\.e'*P1. The mean value function d¥’(t) for LRF



is mERE(t) = fot A2(s)ds. Similarly, we have for LRF GRF, RUB are not affected by the sparsip) ©f the graph.
o . Comparing with Fig. 4 for static topologies, we find even i th
Pr(Dy <t) = / (I—e™ ™ (”)dFDl(s) graph is sparse, the performance of NC, GRF and RUB can be
N 0 (et maintained at the same level as that in dense graphs1() by
_/ (1 — e~ ol =y goe—roe+X0 —_ q _ 2e”270¢ letting peers reselect their neighbors once in a while. Hewe
=0 et +1 the performance of LRF suffers in time-varying sparse gsaph

due to a lack of accurate global knowledge.

Hence, by lettingy = $X\.e’, u = 53y + &, we have . :
° Fig. 9 shows varyingy can hardly affect the performance

E[DLRF) : . o
oo ia(eto1) - 7y of R_UB, NC and GRF, with RUB bemg const_antly |nfer|0r.
_ / td 2e”2 _ )\OG%AO/ € dy Similarly, LRF suffers when the graph is changing at a higher
t=0 et +1 1, Y2+ %Aoy frequency due to its inability to keep track of the infornoati
. oo oV 4, 0 ,~Beu in a node’s new neighborhood. Fig. 10 shows that the relation
> )\065)\"/ Ay = —eZAO/ s—du between broadcast delay ardis nearly linear even if the
o W+ ) 3 o topology is changing. From Fig. 11, we see thakascreases,
_ éegAnE (3/\0) (Ea(z) = /OO e ?! dt) the benefit of NC over RUB becomes less significant, as RUB
3 27y 2 2 enjoys more diversity in choosing blocks in a time-varying
4 3 3\ . topology. In contrast, NC’s benefit over LRF becomes more
-3 Aoe i E (T) (Bx(2) = 7% — 2B () salient, as the inaccuracy in predicting the locally ratdstk
4 4 4 s 4 in a time-varying graph is amplified when there are more tdock
” 3 3 In(1+ 3>\0) T 3’7 asd =0, (13) to be distributed.
where ¢*E; () < In(1 + 1) [24]. From (8), (10) and (13), In a nutshell, periodically changing the topology can prive
we have for largen and X, < 1, E[ZFRF] — E[zNC] = the performance of NC, RUB and GRF from degrading as the
E[DLRF] — E[DYC] > % o 9graph becomes sparser. NC can best utilize the block diyersi

o o offered by a time-varying topology, whereas LRF — the close-
~ Implications. The above analysis implies that NC automaiy_qptimal algorithm in static random graphs — suffers friom
ically makes better choices of blocks when transmittingssr dramatically.
clusters. Such an implication can be generalized to the case Second, we consider the effect of clustering alone in static

]élu>st2erbtl:)alcr|1(ssmeiltnsd?c: ; t2 C'll;itoelési'nvgr:]s%:rZﬂgtg?dl(\alcltn ?Q\?estopologies § = oc). Fig. 12 and Fig. 13 show the broadcast
) X YPE ' P delays and NC’s improvements as the number of global neigh-
its benefits over LRF in two aspects.

. . ) . . bors of each peeis varies. Asdg decreases, the network
First, if ¢ > j, with the local rarest first, since the sender’ peetc ¢

view Is dominated by its own cluster, it may not choose th%as a higher degree of clustering. Clearly, the benefits of NC
rarest block that is most urgently needed by the receivegver all other algorithms exhibit a threshold behaviorytbaly

it ically whett; < 1. It h noting that NC’
cluster, while NC does not have this issue. Second,f j, crease dramatically whaty; < 1. IS worth noting that NC's

benefit over GRF also exceeds 20% whkn= 1 even if GRF

any non-coding protocol suffers from the curse of the COUPRRs the global knowledge. The benefit of NC becomes to drop

collector problem, as the sender can hold a subset of thdmloégain if de; is too small.

in the receiver or in the receiver’s cluster. In contrast, N id h bined eff ¢ ol . q
alleviates redundancy by issuing more diverse coded blocke/€ Now consider the combined effect of clustering an

as long as the field size is large enough. Due to these reaséwg?-varying topologies. When the to_po_logy s Char‘g”.‘g’ the
we conjecture that as: and k increase, the marginal benefifP€rformance of RUB, NC and GRF is increased as diversity

of network coding will become more salient. While derivin s introduced, shown in Fig..16 as compared to Fig. 12, while
analytical bounds fok > 2 andm > 2 is an open question, RF always performs poorly in clustered graphs due to a lack o

we resort to extensive simulations to study the general. casé?!0P@! knowledge. This explains why we see a drastic inereas
in NC'’s benefit over LRF (its benefit over RUB and GRF also

VII. EXPERIMENTAL STUDIES increases, but less dramatically) whén < 1 (Fig. 14 and 15).

We now study the impact of topological dynamics on algdnterestingly, there is a small bump aroud = 27 ~ 2% (128-
rithm performance through simulation. Coding operatiorss a256 random global neighbors) in Fig. 14 and 15 regarding the
done in GF(28) and again implemented with SSE2 SiMDPenefit of network coding. This is because in this range, the
instructions [21] to achieve simulation scalability. Foach 9raph exhibits behavior similar to that of time-varying dam
parameter setting, 30 independent experiments are cartiu@raphs (Fig. 8 and 11) instead of clustered graphs. Furthrerm

to calculate the average. NC’s benefit becomes more salient for dif: asé decreases
] . ) from oo (static) to 1, shown in Fig. 13, 14, and 15. Finally, as
A. Time-Varying and Clustered Topologies m increases, whileV remains unchanged, the benefit of NC

First, we discuss the impact of time-varying property in-norfirst increases as more cross-cluster bottlenecks appgearns
clustered topologies. Fig. 8 shows when each peer reforing=ig. 18, but then decreasesasfurther increases, since the
its neighborhood with cyclé = 1, the performance of NC, network demonstrates more behavior of a random graph.
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To verify our findings under more realistic workloads, we
synthesize a BitTorrent session with biased neighbor setec
that limits cross-ISP traffic. ISP-awareness has been sitown
bring savings to ISPs by ensuring traffic locality in content
distribution sessions (e.g. [8], [9]). However, our focusédis
to study the impact of such a mechanism on the performance op—2ee" Sesecetoned RS
of different gossip algorithms. Experiment Index Experiment Index

In the synthesized session, the ISP statistics are based amg. 20. NC's benefit in each expeFig. 21. NC's benefit in each exper-
the torent trace fom a game reported i [9) The network it 52 Z6 S0 SEEicnen 2o s, oo soe
consists of 996 peers spread among 354 ASes, the largest AS,s6kB. 5 — = 256KB. § — 32s.

(ISP 1) consisting of 31 peers. Since we lack the detailed

information about ISP sizes, we let the size of ISR-> 1) be blocks (each of size 256KB) is to be broadcast to all the peers
a random number between 1 aBd/ log(i + 1). Peer upload The seed (source) is a random peer in ISP 1. We consider ISP-
bandwidth values (kbps) are drawn from the distribution: 6dware neighbor selection [26]: each peer first selects ay man
(2.8%), 256 (4.3%), 128 (14.3%), 384 (32.3%), 768 (46.3%)eighbors as possible from its own ISP and then randomly
representing modem, ISDN, DSL, Cable and Ethernet connetiooses peers in other ISPs to maintain a total of 35 neighbor
tions, respectively [25]. A file of size 100MB broken into 40@Each peer reselects its neighbors evérgeconds to simulate
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time-varying topologies. behavior of network coding as compared to other gossiping
Fig. 19 plots the mean broadcast delays under diffefentalgorithms in different kinds of random graphs.
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broadcast delay (except for LRF) by introducing topolobjica
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