On Meeting P2P Streaming Bandwidth Demand with Limited Supplies

Chuan Wu and Baochun Li

Department of Electrical and Computer Engineering
University of Toronto
Toronto, Canada M5S 3G4

ABSTRACT

As a basic requirement of live peer-to-peer multimediaestiag sessions, the streaming playback rate needs to tiystri
enforced at each of the peers. In real-world peer-to-peeausting sessions with very large scales, the number ofsinga
servers for each session may not be easily increased, ¢etmdénlimited supply of bandwidth. To scale to a large number
of peers, one prefers to regulate the bandwidth usage onodédlal overlay links in an optimal fashion, such that limited
supplies of bandwidth may be maximally utilized. In this pgpve propose a decentralized bandwidth allocation algo-
rithm that can be practically implemented in peer-to-pé&erasning sessions. Given a mesh P2P topology, our algorithm
explicitly reorganizeghe bandwidth of data transmission on each overlay linkh sbat the streaming bandwidth demand
is always guaranteed to be met at any peer in the sessiomuwitlepending on ang priori knowledge of available peer
upload or overlay link bandwidth. Our algorithm is espdgiakeful when there exists no or little surplus bandwidtp-su
ply from servers or other peers. It adapts well to time-vagyavailability of bandwidth, and guarantees bandwidthpgup
for the existing peers during volatile peer dynamics. We diestrate the effectiveness of our algorithm with in-depth
simulation studies.

Keywords: Peer-to-peer streaming, bandwidth allocation, scatghiecentralized algorithm

1. INTRODUCTION

The peer-to-peer communication paradigm has been suattgsasfed in live media streaming applications over the In-
ternet’'2 As participating peers contribute their upload bandwidipazities to serve other peers in the same streaming
session, the load on dedicated streaming servers is sagmtiffanitigated. Therefore, as one of the most significanebe
fits, peer-to-peer streaming enjoys the salient advantageatability, as compared to traditional streaming using multiple
unicast sessions.

In current-generation mesh-based peer-to-peer streaappigations; it is critical to achieve and maintain a specific
streaming playback rate at each participating peer, inrdalguarantee the smooth playback of the media. For example,
with the H.264 codec, a Standard-Definition stream demapgdsoaimately 800 Kbps, while 480848 x 480 pixels)
High-Definition media stream using the H.264 codec requir&30 Kbps. In this paper, such streaming playback rates
are collectively referred to as tltmandof P2P streaming bandwidth, and we wish to make sure thatdeiclands are
satisfied on all participating peers in the streaming sessio

On a participating peer in the streaming session, wheth@obthe streaming bandwidth demand can be achieved
depends on three constraints. First, the last-mile dovaht@g@acity must exceed the streaming rate. We typicallynagsu
that this constraint is always satisfied, as otherwise thaired streaming rate cannot be achieved with any solution.
is most likely the case in reality, as peers without suffitiast-mile download capacities would soon leave the sessio
and join another session to download the media encoded at loivrates. Second, assuming that the peer in question is
served by multiple upstream peers, the last-mile uploaddaitips of these upstream peers are limited. Finally, tadave
bandwidth on each overlay link between two peers is limisedbject to link capacity and cross traffic in the Internetcor

In essence, the decisive factor of meeting the P2P streamaindwidth demand in the session is bandwidth supply
from either dedicated streaming servers or uploading pektsally, when the total bandwidth supply is abundant, a
peer can easily contact new streaming servers or peers whéemand cannot be met at any time. However, such a
simple solution does not work effectively at all when thexesevery limited bandwidth supplies to meet the demand.

E-mail: {chuanwu, bl} @eecg.toronto.edu

Such a microeconomic phenomenon of tight supply-demarmdioakhips occurs in real-world scenarios, when a pool of
streaming servers scrambles to meet the demand of a P2Brséssi scales up in a short period of time — a typical
flash crowd scenario. As adding streaming serviees &dding bandwidth supplies) is by no means straightforwaine,
needs to take advantage of existing bandwidth suppliesimibst efficient manner in scenarios with tight supply-desnan
relationships.

In this paper, we seek to propose a new bandwidth allocatgmrithm that dynamically adjusts the bandwidth utiliza-
tion on each overlay link, so that the streaming bandwidthated is achieved on each participating peer in the sessien, e
with very limited bandwidth supplies. Given a mesh peepg¢er topology, our new algorithm effectivelgeorganizes”
the bandwidth allocated to each link in the topology, with éwareness of the streaming rate demand of the peer-to-pee
session. The new algorithm we propose enjoys the followalgist advantageskirst, although the rates allocated are
subject to the capacity constraints at the edge and on thdagJiks, our new algorithm does not need knowledge of
these capacity constraint§econd our algorithm is fully decentralized, and can thus be stighklly implemented. To
design such an algorithm, we formulate the bandwidth ationgroblem in peer-to-peer streaming afeasibility prob-
lem, and propose a simple algorithm to find its solution. Vewd$s the implementation and prove the convergence of the
algorithm in synchronous and asynchronous environmdittisd, we show that even in cases of persistent peer dynamics
and network changes, the algorithm is still guaranteed hiese the streaming playback rate at any participating peer
and at any time during the streaming sessiBmally, our solution is across-the-board and not specific to antcodar
mesh-based topology construction mechanism, P2P strggrotocol, or media codec, as the problem of bandwidth allo-
cation to guarantee smooth streaming playback is fundahend widely applicable with any P2P topology construction
algorithm. Bandwidth allocation may also be realisticathplemented in any P2P streaming protocol, by using pér-lin
bandwidth shaping mechanisms at peers (usually based oreld i transport protocol).

The organization of this paper is as follows. In Sec. 2, weg@neour system model and motivate the feasibility problem
formulation of the bandwidth allocation problem. In Secw@, discuss the distributed algorithm to solve the problemd, a
its convergence to the feasible solution in an ideal syrmabwe environment. In Sec. 4, a practical bandwidth allooati
protocol is designed, and its convergence in asynchronmadisignamic environments is discussed. Simulation restdts a
presented in Sec. 5. We discuss related work and conclugeafier in Sec. 6 and Sec. 7, respectively.

2. MOTIVATION AND PROBLEM FORMULATION

Consider aneshpeer-to-peer topolog§ = (S, NV, A), whereS is the set of streaming servers,is the set of participating
peers, and4 is the set of directed overlay links. We assume such a meshogypis constructed and maintained with
a certain topology construction protoca.g, the random mesh construction by randomly assigning neighto the
participating peers using central tracking servers, ad@agd by most current-generation P2P streaming applicsfié
The overlay links among peers in the topology are estaldisfased on their media content availability during stregmin
i.e, a peer streams from one or maspstreampeers, which can provide it with media blocks it requires] &rther
serves one or morgownstreanpeers with the media streams. Each directed overlay linktipdss represented &g, j),
indicating upstream peeéiserves a flow of required media blocks to the downstream jpeer

In this paper, we focus on the availability lehndwidthin the peer-to-peer topology, arguably the most criticabrece
in peer-to-peer streaming sessions. We study both the “dé'haand the “supply” of bandwidth based on the given topol-
ogy. On the side oflemandof bandwidth, a streaming playback r&keis strictly required at each participating peer to
guarantee smooth playbadle. media content should be downloaded at an aggregated bdthdsiino lower thark at
the peer. On the side slpplyof bandwidth, however, we need to consider both peer uplaadwidth and overlay link
bandwidth constraints, withowat priori knowledge on either. How do we meticulously allocate thepsupf bandwidth
so that the streaming playback ré&te— the “demand” in each session — can be satisfied at all timés8 problem is
henceforth referred to as tiandwidth allocatiorproblem, as we seek to design a practical and decentraligedtam
to address such a challenge. While our focus in the paper iemtite specific peer-to-peer topology construction pro-
tocol nor media scheduling protocol, we will discuss theiattive play between our bandwidth allocation and topplog
construction in peer-to-peer streaming in Sec. 4.

Since we do not need to consumerebandwidth than the required streaming playback rate atpeeh we believe it
is practical to formulate such a bandwidth allocation peabbs deasibilityproblem, and aim to find feasiblebandwidth
allocation solution that guarantees a streaming rate obwer thanR at each peer.

One may wonder why a naive bandwidth allocation may fail tisgathe streaming bandwidth demand at all peers.
We show this with an example in Fig. 1, which implies that apliei bandwidth allocation algorithm is required.

In this example peer-to-peer streaming network, the requstreaming rate i® = 1 Mbps. Peersi, a2, andas
directly stream at this rate from serverwhich has3 Mbps of upload capacity, and then sebse b2, andbs. Assume
that bandwidth bottlenecks occur at the upload links of treda peers, with upload capacities 018, 1.0 and 1.2 (in
Mbps), respectively. With a naive even bandwidth allogatisethod, their upload capacities are evenly shared ameirg th
respective downstream peers, and the allocated bandveidiiabeled on the links (numbers outside the bracketsh &uc
bandwidth allocation outcome is infeasiblee(, streaming bandwidth demand is not satisfied at all peergeas, only
obtains an aggregate bandwidthood Mbps, whilebs is allocated more thah Mbps.

0.6
[0.65]
a3
0.6
1.0 [0.55]
S b3
Q
0.5
1.0
[0.45]
a2
0.5
[0.55]

Figure 1. Infeasible bandwidth allocation with a naive protocol: an example

When the required streaming bandwidth is not successfuliesed, the common practice with existing peer-to-peer
protocols is to find new upstream peers, or to start a new adionefrom the streaming server, which may well fail to
locate available bandwidth when there is a tight supply-aieshrelationship of bandwidth in the network. It is impotten
note, however, that if bandwidths are explicitBallocatedbased on the current topology, a feasible solution thadfgegi
all the peers can be achieved, as shown in brackets in ourpeanfter such a “reorganizing” process, the “supply”
of bandwidth is maximally utilized, the need to find new upatn peers is eliminated, and server bandwidth costs are
minimized.

In order to design a practical algorithm to achieve suchilidmsate allocation solutions in a particular P2P mesh
topology, we first formally formulate the problem. Let; denote the allocated transmission rate on the overlay(fink,
V(i,7) € A. In practical peer-to-peer systems, such overlay linksrate restricted by the capacities of last-mile access
links of the peers, and affected by the cross traffic shahegsame underlying IP network. L&t; denote the currently
available bandwidth along overlay linf, j), subject to the cross traffic. L&?; denote the upload capacity at peer
Vi € S UN. The feasibility problem is formally defined by the followgiiset of linear rate and capacity constraints:

LC:

>, w 2R, VEN, (1)
i:(4,j)EA
Y w2 <0;, VieSUN, 2)
Ji(i,j)eA
Tij < Cij, V(Z,]) c A. (3)

Letz = (z45, (4,7) € A) be the|.A|-dimensional vector of allocated link bandwidths. L&t be the region defined by
the streaming rate constraints in (g, Xr = {z : Zi:(i’j)eA zi; > R,Vj € N'}. Let X be the region defined by the
capacity constraints in (2) and (3g., X¢ = {z : Ej:(i’j)eA xi; < O0,Vie SUN,z;; <Cij,V(i,5) € A}. Asolution
to this feasibility problem represents a feasible bandwadiocation scheme, expressedras Xz N X¢.

3. DECENTRALIZED BANDWIDTH ALLOCATION: THE SYNCHRONOUS CASE

We are now ready to propose our iterative algorithm to sdheefeasibility probleni C. We show that it can be readily
implemented in a fully decentralized fashion, and analygednvergence in the synchronous case.

3.1 Feasible bandwidth allocation: an iterative algorithm

Inspired by the iterative optimization algorithm proposgcKar et al.® we design a simple iterative algorithm to derive a
feasible solution satisfying all the constraints in theljpeon L C.

Leta:) be the allocated rate on linkk, 7), V(4,7) € A, at thenth step. Let

A = max(0, R — Z xg)),

J

i:(i,7)€A
and
) _ Lt peam; > O
€ij orx(RUBS Cij,
0 otherW|se
(1) 1y
We updater;;” by:
2 if AU =0,el =0,
) _ () + ozn)\(g") if)\§" > 0,el) =0,
Lij n) Bn n) i)\gn) _ 0 e(n) > 0,
(") + an Bn f;l if A(" > O,egj) >0,
4)
wherea,, and3,, are two sequences with the following properties:
nlirrgcanfo Zanfoo hmﬂnf()Zﬁnfoonhm ﬁ—n:O. (5)

n=1 n=1

For example, the sequences = < andg,, = wherea, b are positive constants, satisfy the above properties.

f!
In each step, A (”) represents how much more bandwidth pgereeds to acquire in order to achieve the required
streaming rateR. e(") can be understood ashénary indicator of insufficient bandwidth, showmg whether asble

bandwidth is exceeded along overlay lifkj): either the upload capacity of peeis exceeded, 013 goes beyond the
available bandwidth on overlay link, ;).

The intuition behind the updates in (4) is as follows: Wheneveoverlay link does not have sufficient bandwidth, the
allocated rate along the link is reduced; whenever the agggerate on the download links of a peer falls bel@wthe
allocated link bandwidths are increased, according to howinthe aggregate rate deviates fr@nq,, andg,, denote the
step lengths of the updates. The increment step lemgih much smaller than the decrement step lerijtfor sufficiently
largen, and both of them are diminishing. These are important ptigssto guarantee the convergence of the algorithm to
a feasible solution df C, as will be used in our convergence analysis.

3.2 Practical implementation in the synchronous case

Our iterative algorithm can be readily implemented in ayfulistributed fashion. We first study its decentralized ieapl
mentation in the synchronous case, where updates are syl to occur at times = 1,2,.... In the subsequent
section, we will show that, with minor modifications, the iiementation can also achieve feasible bandwidth allogétio
asynchronous and dynamic environments.

In the synchronous case, the allocated bandwidth on gdigk is adjusted at the downstream pgeturing the actual
streaming process. The media streams are transmitted fpetream peers at the allocated transmission ratg's, using
a bandwidth shaping mechanism.

In our implementation, at times = 1,2,..., peer;j calculates\; (") hased on the discrepancy betweRrand the
currently allocated rates on its download links,,)\(") = max(0,R — >2;.; iyea x(")) If /\.5-") > 0, it increases the

allocated rates byg;”l = xff) + an)\;"), Vi : (i,5) € A; otherwise, it sets;l(?)/ = xff) Meanwhile, peey estimates

the actually achieved receiving ray{e]’.’) from each of its upstream peers, by dividing the number oédyeceived on
each link in a time interval by the interval length. It sejg) = 1 if the actual receiving rate is lower than the allocated

rate on the linkij.e., yi(;l) < LEJ ,E;” = 0 otherwise. It then proceeds to update the allocated ratais &y

:cl(;’+1) = ¢§;‘> — ﬁnegb), Vi : (i,7) € A, and requests these new transmission rates from its réspepistream peers.
After an upstream peer receives the new requested xé;féé) from all its downstream peers, it adjusts its sending rates
to the new values.

n)

, Or setse

We note that our implementation daastdepend on ang priori knowledge of peer upload and overlay link bandwidth,
nor any feedback from IP-layer routers. In our implementatthe value ofnsufficient bandwidth indicatofrgy) on each
link (4, §) is inferred by comparing the allocated transmission ratmfupstream peérwith the achieved receiving rate at
downstream peef during the streaming process. The rationale behind thisaiswhen an allocated transmission rate is
larger than a respective receiving rate, bandwidth ingeffixy is implied either at the upstream peer or on the ovéiri&y
ie., eg’?) = 1; otherwise, no bandwidth limit is exceeded along I{iakj), andel(.?) = 0. In this way, although we formally
formulate the problerh C with O; andC;; in (2) and (3), respectively, we do not actually need to penfany bandwidth
probing to explicitly derive the values of these bandwidithits.

3.3 Convergence analysis

We now analyze the convergence of our decentralized impitatien of the iterative algorithm, in the synchronous case
To facilitate our analysis, we consider the realistic scentat, if the aggregate requested (sending) rate at atnegps
peeri is higher than its upload capacity, the receiving rates latsatlownstream peers are lower than their respective
requested raté.e., each of them is able to detect the bandwidth insufficieney. discussion is divided into two cases: (1)
a feasible solution exists f&rC , i.e, Xgr N X # ¢; and (2) a feasible solution does not existifdz, i.e, Xp N X = ¢.

Theorem Ishows that, when a feasible solution exists, there is sufficient bandwidth in the overlay to support all
peers at the required streaming rðe decentralized implementation of our iterative aldyoni converges to such a
solution.

Theorem 1. If Xz N X¢ # ¢, with iterative updates in (4) and diminishing step lengthg5), the sequencéz(™}
converges t@, a feasible solution of probleilnC, i.e.,z € Xr N X¢.
Theorem 2addresses the second case, when a feasible bandwidthtialiosalution does not exist.e., the overlay

cannot accommodate all the peerskatTheorem 2 states that, at all the peers, our implementatiahle to achieve the
maximum throughput supported by the overlay.

Let R ,ax be the maximum throughput at the peers that the network gaposui.e., the maximum aggregate streaming
bandwidth that each peer can acquire. It implies that thast feasible solutions to the following problem:

LC:

Z xij 2 Rma)u VJ € N? (6)
i:(i,j)EA
Z xingi, VZESUN,
J:(3,5)€A

Tij < Cij, V(’L,]) e A

Theorem 2. If Xr N X¢ = ¢, with iterative updates in (4) and diminishing step lengthg5), the sequencéz(™}
converges to the feasible region of probl&@’, i.e., lim,, ., p(z(™, X’) = 0, where X is the region defined by the
constraints irLC’.

Due to space constraints, interested readers are refercad technical repoftfor complete proofs of both theorems.
The key intuition behind the proofs is to show that, basedhendiminishing step lengths, in each step of the iterative
algorithm, the current bandwidth allocation improves tmigaa feasible solution df C or approaches the feasible region
of LC’. Based on these theorems, a corollary follows:

(n)

Corollary 1. During the convergence df:(™)}, the actually achieved streaming rate at each p’)eiee.,zi:(i’j)eA Yii s
is asymptotically increasing and convergegtdf the network can support such rate at each peer,ang otherwise.

During the dynamic process of bandwidth allocation, a peschieved streaming rate may temporarily decrease when
the allocated rates on its download links decrease due kooleavailable bandwidth. However, over time, this achieved
streaming rate is asymptotically increasing until it reeghin(R, Ruax)-

4. DECENTRALIZED BANDWIDTH ALLOCATION: THE ASYNCHRONOUS CASE

Granted, while important as a first step in our study, the sgorous case that we have considered is an idealistic view
of practical peer-to-peer networks. Peers are inheragiynchronouswith different processing times and messaging
latencies. Fortunately, with minor modifications, we catee® our decentralized implementation to the asynchronous
case, with the ability to handle peer and network dynamics.

In an asynchronous overlay, if we execute our decentralinptementation previously proposed for the synchronous
case, the step lengths at a certain titne(¢t) and 5(t), are not identical at all the peers, as peers update theatdlbc
rates at their own paces. However, it is the key to guararg@ithm convergence by updating bandwidth allocation
synchronously with the same step lengths across the netasrised in proofs of Theorem 1 and 2. Thus the iterative
synchronous implementation may fail to converge in the elsgonous case.

Fortunately, we are able to show that, the update processtitldre proven to converge to a feasible solutiorL@ in
an asynchronous environment, if each peer followsstireehronous update rubross its own download and upload links.
More rigorously, on a downstream pegrall increments of allocated rates on all its download liaks performed at the
same time, and use a same diminishing step lengilit), i.e., z;;(t + 1) = x;;(t) + «; (), (¢), Vi : (i,7) € A. Onthe
other hand, on an upstream pégall decrements of allocated rates on all its upload linksparformed at the same time
t, and use a same diminishing step lengift), i.e., z;; (¢ + 1) = x;;(t) — Bi(t)es;(t), Vi : (¢,7) € A.

We are now ready to present our decentralized implementatithe asynchronous case, and show its convergence to
a feasible solution. In the asynchronous implementatimatiocated rate on a linf, j) is adjusted with the cooperation
of both upstream peérand downstream peér i.e., increment at peej and decrement at peérTo implement this, rate
updates and inferred values of timsufficient bandwidth indicatonseed to be passed between upstream and downstream
peers in special protocol messages, referred tBae Update (RUnessages. These protocol messages are delivered
using reliable transport protocols such as TCP.

Our decentralized asynchronous implementation executeach peef proceeds as follows.

Initialization:

1. Initialize the set of current upstream pe&ftsand downstream peef?;, as well as the step countets = 1, and

2. For every upstream peelin U;:
(21) Setr,; = R/|Z/{l| andeui =0.
(2.2) Sendr,,; ande,,; to peeru with aRU message.

Next, peeri executes the following steps in its dual roles as a downsingeer and an upstream peer, using step
counterse,; andm,;, respectively.
As a downstream peer:

1. ReceiveRU messages from its upstream peers, and estimate the acuhlgved receiving ratg,; from each of
them. Adjust; if it detects any upstream peer failures.

2. After it has receive®U messages from all its existing upstream peers, do the foigpw
(2.1) Retrieve allocated rates;(t), Vu € U;, from the receivedRU messages.
(2.2) Compute\;(t) = max(0, R — >, i) Tuilt))-
(2.3) For each upstream peer

(2.3.1) If \;(¢) > 0, increase the allocated rate By; (t + 1) = x4 (t) + an, Ai(t); otherwise, set,,; (t+1) = @y (t).
(2.3.2) Ify,; < x,i(t), Setey;(t + 1) = 1; otherwise, set,;(t + 1) = 0.
(2.3.3) Send:,,; (t + 1) ande,; (¢t + 1) to peeru with aRU message.

3. Increment step counter; = n; + 1.

As an upstream peer:

1. ReceiveRU messages from its downstream peers. Adusif it detects any downstream peer failures, or receives
RU messages from new downstream peers.

2. After it has receive®RU messages from all its existing downstream peers, do thenfivih:
For each downstream pegr
(2.1) Retrievee;; (t) andzx;;(t) from theRU message from pegr
(2.2) If e;5(t) = 1, decrease the allocated ratedyy(t + 1) = x;;(t) — Bm, ;5 (t); otherwise, set; (t+1) = x;;(t).
(2.2) Adjust the sending rate to pegto x;;(t + 1), and send;; (t + 1) in aRU message to pegr
3. Increment the step counter;; = m; + 1.

Theorem 3 shows the convergence of our decentralized asymals implementation of the iterative algorithm.

Theorem 3. With our decentralized asynchronous implementation, amteuthe assumption that both the message
passing delay and the time between consecutive updatesiteetfie sequencge(t) } (the rate vector at timg converges
to a feasible solution dfC if Xr N X # ¢, or to the feasible region &fC’ otherwise.

Again, interested readers are referred to our technicalrtefor the proof of Theorem 3. The key to guarantee the
convergence is, as pointed out earlier, when a downstream: pgdates the allocated rates on its download links, it
increases them altogether with the same diminishing stegihey,,,; when an upstream pe¢updates the allocated rates
on its upload links, it deducts them altogether with the salingnishing step lengtt®,,,. In this case, the bandwidth
allocation still improves towards feasibility in each step

We conclude our discussion in the asynchronous case wittnpartant note that, our asynchronous implementation
can maximally guarantee the required streaming bandwidtheh peer, in cases of both peer and network dynamics. To
understand such robustness against dynamics, we consalérfluence of dynamicduring and after the convergence
process.

Dynamics during convergencedur asynchronous implementation of the algorithm can hgatiapt to dynamics
introduced before the allocated rates converfist, when a new peer joins the streaming session, it is assigned an
initial set of upstream peers, which is decided by the tagplonstruction protocol based on media content avaitgpili
and executes thmitialization phase. After its selected upstream peers receivBlitsnessages, they include peen
their respective sets of downstream peers. Thus, pean immediately participate in the asynchronous impleatent
as a downstream peer from the initial step coumtee= 1, while its upstream peers continue their own execution with
their current step counter valueSecondin the case of peer failures or departures, after the doaerst and upstream
peers detect peé's failure or departure, they simply removéom their respective sets of upstream or downstream peers
and continue with their execution, effectively excludinfrom later message exchanges and computatiénally, our
implementation naturally adapts to fluctuating overlak loandwidth due to the appearing and vanishing of congestion
along the links, since our implementation uses binary s of insufficient bandwidth;;, rather than explicia priori
knowledge of link bandwidth.

To derive the convergence properties of the asynchronopkementation in dynamic networks, the analysis in Theo-
rem 3 still appliesi.e., we can still show the bandwidth allocation dynamically moyes towards feasibility in the current
network, and converges to one feasible solution if therstexne in the dynamic network. Formally, we present it as
Corollary 2, which can be obtained directly from Theorem 3:

Corallary 2. If dynamics occur during the convergence of our asynchreimoplementation of the iterative algorithm, the
rate vector(t) improves towards feasible bandwidth allocation of theentroverlay, and converges to a feasible solution
whenever there exists one, or maximizes the peer throughpie dynamic overlay.

Dynamics after convergencH.dynamics occur after allocated rates have convergedaffieeted peers initiate a new
round of protocol execution with reset step counters, inciwhithe bandwidth allocation continues to improve towards
feasibility or throughput maximization.

The handling of the case that a new peer joins the streamgsjoseis similar to that discussed when dynamics occur
during convergence, except that all peers now execute titeqml fromn, = 1 or m; = 1. In the cases of peer failure or
departure, or overlay link bandwidth fluctuations, whiclrdnaaused the loss of streaming rate at a particular dovamstre
peer, the affected downstream peer will reallocate its Wéditt requests towards its remaining upstream peers, ardl se
out the newRU messages to each of them. In this way, a new round of proteeaiudion is invoked, and the involved
peers reset their step counters and cooperate in the ptetamition from their current bandwidth allocation.

To conclude our analytical discussions of bandwidth alioca in peer-to-peer streaming sessions, we reiterate our
motivation for this work Whydo we need to perform bandwidth allocation in a particulg® Ripology, when P2P topolo-
gies are highly dynamic? We believe that our bandwidth alion algorithms areomplementaryo existing topology
construction protocolse(g.,random peer selection), and may help these protocols sahtyatare more effective, espe-
cially in the case of tight supply-demand relationships afdwidth. Once a P2P topology is first constructed using a
particular protocol, our bandwidth allocation algorithemde used to maximally utilize the existing supply of bardttvi
in such a topology. If the required streaming rate is nosfiatl on all the peers in the topology, the topology constsact
protocol can be reactivated to construct better topologhéter the topology change, our bandwidth allocation ailtdpon
can come into play again, which achieves the highest levpkef streaming rate satisfaction in the new topology. With
our bandwidth allocation algorithm, the need for topologganstructioni.e., to find new upstream peers and adjust peer
connectivity, is minimized, and the feasible streaming iaachieved quickly at the peers to counter the effectstafork
dynamics.

5. PERFORMANCE EVALUATION

To evaluate the effectiveness, in particular the dynamiab®r of convergence, we have conducted an in-depth ecapiri
study on our decentralized asynchronous implementatiopgsed in Sec. 4 with C++-based simulations. We choose to
simulate our implementation in the asynchronous case diig poacticality in realistic P2P topologies. The first sae
proof-of-concept experiments use small example topo@ikin to the concept of “unit testing” in software develah

Experiment A (behavior of convergence): We first illustrate how the implementation converges in aaneple
topology in Fig. 2. We simulate a streaming session wWith= 800 Kbps. In this network, peerg; and p, di-
rectly stream from the server (not shown in Fig. 2), and sevémini-sources” fops, p, andps. The rate vector is
x = (x13, %23, %14, T34, Tos,Z35). ENd-to-end delays on overlay links af&0, 50, 60, 100, 80, 120) (in milliseconds),
respectively. We investigate both feasible and infeasib&es.

pl p2
p3

p4 p5
Figure 2. An example peer-to-peer streaming topology.

The feasible caseThe overlay topology is able to suppe#, p, andps at R, with upload capacities of)(7,0.8,1.0)
(in Mbps) atp, p2, ps, respectively, and available link capacitieg0#,0.5, 0.5, 0.8, 0.6,0.9) (in Mbps) on the six links.

The infeasible cas@ he overlay topology is unable to supppst p, andps atR, with upload capacities 06(7, 0.8, 0.6)
(in Mbps) atp;, p2 andps. Available link capacities are the same as in the feasilde.ca

The step length sequences used in our experiments,ate1/n andg,, = 1/(10+/n). Results for the two experiments
are illustrated in Fig. 3 and Fig. 4, respectively.

Fig. 3(a) depicts the convergence of allocated link ratgss, in the feasible case, which are all initiatediti) Kbps. In
the first iterationps andp, find that there is insufficient bandwidth on lifik, 3) and(1, 4), respectively, ag,’s aggregate
sending rate exceeds its upload capacity. Based on thedelesiirom its downstream peefs, decreases;3 andxzy4. In
the next iteration, as the aggregate download link ratpg ahdp, fall below R, they increase the allocated rates on their
download links. During the convergenesy, andzs; keep increasing gs;’s spare upload capacity is being utilized, and

©
o
=}
®
o
=]
®
o
=]

— P3 — X13 — P3

©
@
o
N
a
=)

®
o
S
J
o
]

[
a
=)

=)

@

o
@
o
o

Achieved streaming rate (Kbps)
3
o

Achieved streaming rate (Kbps)

=
o
S
-3
=3
S
=
o
S
o
a
s}

0 1 5 0 1 2 3 4 5 0 2

2 3 4] 4 6 4
time (seconds) time (seconds) time (seconds) time (seconds)

@ ® @
Figure 3. Convergence in the example topology: the feasible dégere 4. Convergence in the example topology: the infeasible case.

the rate vector quickly converges to a feasible solut{8f(, 430, 322, 478, 352, 448). Correspondingly, Fig. 3(b) shows
the convergence of the actually achieved streaming ratdsegieers during the bandwidth allocation process. Though
there is a temporary decrease initially, these rates dygadiease to reach the required rate.

Fig. 4 illustrates the convergence in the infeasible casehich the maximum throughput achievedpat p, andps
is 700 Kbps. We observe that while their initial streaming rates @0, 650, 700 Kbps, respectively, the rates quickly
converge tdr00 Kbps at all three peers. This reveals that our implememtasi@ble to achieve fair allocation among the
peers, when there is insufficient “supply” of bandwidth ie thverlay. The observations we have had in both feasible and
infeasible cases have supported Corollary 1 in Sec. 3.

Experiment B (effects of dynamics): We next investigate how our implementation converges imadyic environ-
ments, again with the example topology in Fig. 2. In this ekpent, upload capacities at, p, andps are (0.7, 1.0, 1.5)
(in Mbps) and available link capacities on the six links &bet, 0.8, 0.5,0.8,0.35,0.9) (in Mbps). We study two cases,
and show our results in Fig. 5(a) and (b), respectively.

Dynamics occur during convergencge, andp, already exist in the overlay sessigm, joins the session at time p4
joins atl secondps joins at2 seconds, and then leaves the network a&tseconds.

Dynamics occur after convergencg, andp, already exist in the overlay sessiopy joins the session at tim@ py
joins at1 seconds, angs joins at2 seconds. The available bandwidth on lifik 3) is then decreased to1 Mbps at6
seconds. Finallyp; leaves the session & seconds.

1000 1000 5
9 — P3| 7 — P3 O = D=4
2 900 Es) --- P4 5 .| D=8
< & 900 - Ps5 g [Jp=12
2 ~
g 80 € 800H,-s =
2 700 2 V2 g
£ £ 700f |+ &
5 o0 s 82f
k2 B 600 3
T 500 - i =
3 3 il ¥ s 1r
£ 400 2 5007 i g
< L g ol °,
3005 5 45 6 7 8 910w 99 5 m 15 20 100 200 300 400 500 600 700 800 9001000
time (seconds) time (seconds) Number of peers in the overlay
(@) (b)

Figure 5. Convergence in the example topology: the dynamic casefFigure 6. Converge speed in large random networks.

In the first case, comparing its results in Fig. 5(a) with Bfh), we can see that the convergence process is slightly
prolonged due to peer dynamics, but is still performed Hgpith the second case, after all three peers have joined the
session and their rates stabilize 6ateconds, the decrease of available bandwidth on(linR) causes the decrease of
p3's streaming rate. Ags attempts to acquire additional bandwidth allocations frgmit further affectsps. ps andps
then further adjust their bandwidth allocation, whilgis not affected. After the rates converge again,2asecondsp;’s
departure causes all three peers to cooperate in anothret obvate adjustment, which quickly converges to a new Basi
bandwidth allocation.

Experiment C (large networks): We are now ready to investigate how the asynchronous ingai¢ation of our
iterative algorithm converges in more realistic and largetworks, generated with the BRITE topology generétior this
set of experiments, peers are classified into two classés:3@hem are Ethernet peers, with Mbps upload capacities;

the remainder are ADSL peers, withd — 0.6 Mbps upload capacities. The streaming server is an Ethbowt The
message passing delays on overlay links are sampled frordighé@ution of pairwise ping times between PlanetLab
nodes’ Available link bandwidths are chosen from the distributafrmeasured capacities between PlanetLab nodes as
well.1° As our bandwidth allocation algorithm is orthogonal to peelection strategies used by the streaming applications,
we apply random peer selection as our topology construgtiotocol. The experiment is further divided into two parts.

Exp. C. 1 To investigate the scalability of the protocol, we examitseconvergence speed in networks of different
sizes and various numbers of upstream peers for each pgén & static setting, without peer dynamics.

The results in Fig. 6 show that our algorithm scales very wih the increase of network sizes. This reveals that, in
realistic large networks, by adjusting its bandwidth adlibgn with peers in its neighborhood, each peer can quidiktgio
the required streaming bandwidth. The convergence isrfagten a peer has more upstream peers.

Exp. C. 2 We then simulate a practical dynamic streaming sessiom ®it= 800 Kbps, and monitor the achieved
streaming rates at the peers during)aminute period. In the sessio2(0 peers join and depart following an On/Off model,
with On/Off periods both following an exponential distrimn with an expected length @f seconds. Each peer executes
the following: Upon joining, it randomly select® upstream peers and executes the bandwidth allocationitalgor
During such execution, if its achieved streaming rate isWweék for 2 seconds, it randomly adds a new upstream peer if it
currently has fewer tha upstream peers (due to peer failures), or randomly swititheew upstream peers otherwise.

_850 = —— _850, ————— _850 _850,

2 —— T=150s,D=8 @ —— T=50s,D=8 @ —— T=10s,D=8 @ — T=10s,D=12
o) o el a

< < < <

2800 08 ©800| ©800]|

S © g kS

j=2 j=2] j=2 j=2)

=3 £ = =

% 750 % 7 g 750 E 750

<} o ot e

@ > @ 1]

2700 B B 700 8700

] [} (] (7}

= = = £

1 o) 5} S

<(650 <650 <650 <(650

0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600
time (seconds) time (seconds) time (seconds) time (seconds)
(@) (b) (© (d)

Figure 7. Average achieved streaming rate in a dynamic streamingrsestic®00 peers.

The results in Fig. 7 demonstrate that our algorithm canigeothe peers with steady streaming rates under high peer
churn rates. In the case that each peer joins/leaves @desgconds, with200 peers, every second there & peer
joins/departures on average. Even in such an extremelyntignenvironment, the streaming rates at existing peers are
rather satisfactory any time during the streaming sessiomparing Fig. 7(c) with (d), we can see that the streamitegsra
are better if each peer has more upstream peers.

We have also experimented with varying available overlal bandwidths. However, as the available link capacities
sampled from those between PlanetLab nodes are generatly langer thariR, such variations do not materially affect
our results. We choose not to present further details okthgperiments.

6. RELATED WORK

When it comes to the problem of streaming bandwidth alloaatianeshoverlay topologies, existing peer-to-peer stream-
ing systems either use TCP, TFR@r UDP with heuristic traffic shapets 1?13 For those using TCP or TFRE!?
transmission rates are adjusted on a per-link basis, ame h@o guarantee that the required streaming rate can be pro
vided to each participating peer. In our bandwidth allaratiwe explicitly take the streaming bandwidth demand into
consideration in the rate adjustment at each peer acrogs dibwnloading links. Delivering media packets over UDP,
GridMedig applies traffic shapers at a sending peer for each of its doeama peers. While the main purpose of such
traffic shapers is to guarantee smooth delivery and avoikigbdeirsts, it is not discussed how to allocate the upload@ap

ity when it is lower than the total requested rate from the mstweam peers. In Promis&gach downstream peer assigns
a sending rate to each of its upstream peers based on theitigdd rates. The problem is not addressed with respect to
how the sender should carefully allocate upload capac€itguitiple peers wish to stream from it at high rates. Sintylar

in another well-known pull-based peer-to-peer mesh stimgsystem, Chainsaithe peers are sending packets as their
bandwidths allow, but it is not specified how the sendings#tevards different neighbors are to be regulated. In PRIYE,
Maghareiet al. suggest that each P2P connection in the mesh streamingpetiduld have roughly the same bandwidth

in order to maximize the utilization of peer access link baidth, but have not emphasized on the achievement of this in
practice.

With respect to resource allocation in overlay multicagil@ations or for general network flow problem, there exist
studies that establish optimization models and propodehiited solution algorithm&-17 A fundamental requirement
of these algorithms is that the available bandwidths in #tevark are knowra priori, and the network topology is static
during algorithm convergence. This is generally not ré¢ialis practice. In contrast, our algorithm only utilizesdeto-end
feedbacks, without depending on amyriori knowledge of capacities, and also adapts well to peer dysgami

Optimization based approaches have been applied in Iteongestion control among multiple unicast flotw$-20
While earlier work mainly deals with elastic traffic and aimsmaximize concave user utility functions, there have been
recent discussions on congestion control with sigmoiitalitility functions?!:22 which are closer to the streaming sce-
nario we consider. Nevertheless, fundamental differetiedsetween our work and these existing work. First, all @& th
existing work discuss rate control among point-to-pointrgections, while we consider many-to-many mesh topoldgies
peer-to-peer streaming. Second, previous work requiedbfieck from IP-layer routers along the paths of the flowslewvhi
only end-to-end peer feedback is required in this papeallyirwe model the bandwidth allocation problem as a fedisibi
problem, which represents simpler solution algorithm asier convergence, as opposed to an optimization problen, a
also well addresses the practical consideration that kaifgyto guarantee a feasible streaming bandwidth for alspgee
sufficient in realistic systems.

As mentioned earlier, our iterative algorithm is inspirecthe work of Karet al® However, their iterative algorithm is
used to solve the same user utility maximization problendismussed by all the previous work on congestion contreticit
above. Our proposed algorithm is significantly differestyee seek to address a completely different problem of malcti
bandwidth allocation in peer-to-peer streaming.

7. CONCLUDING REMARKS

In this paper, we have proposed a practical algorithm tHatates the limited “supply” of bandwidth in peer-to-peer
streaming sessions, so that the “demand” of streaming ptkybates can be satisfied on all the peers. We model the
problem of bandwidth allocation as a feasibility problerefided as a set of linear constraints. We further propose an
iterative algorithm, which converges to a feasible solutfdt exists, adapts well to dynamics, and can be implengeirte

a fully decentralized fashion, in both the synchronous aythehronous cases. As a salient advantage of our algoritkem,
do not rely ona priori knowledge of available upload and link bandwidth. As futwark, we are interested in devising
practical schemes to achieve prioritized bandwidth atiocan the case of multiple streaming sessions.

REFERENCES

1. X. Zhang, J. Liu, B. Li, and T. P. Yum, “CoolStreaming/DQN@ Data-Driven Overlay Network for Live Media
Streaming,” inProc. of IEEE INFOCOM 2005

2. M. Zhang, L. Zhao, Y. Tang, J. Luo, and S. Yang, “Large-8c¢ale Media Streaming over Peer-to-Peer Networks
through Global Internet,” ifProc. of ACM Multimedia 2005

3. V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. Mot€hainsaw: Eliminating trees from overlay multi-
cast,” inProc. of the Fourth International Workshop on Peer-to-P8gstems (IPTPS’052005.

4. X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “A Measuarent Study of a Large-Scale P2P IPTV System,”
IEEE Trans. on Multimedia (to appearNovember 2007.

5. C. Wu, B. Li, and S. Zhao, “Magellan: Charting Large-Sdaéer-to-Peer Live Streaming Topologies,”Hroc. of
the 27th International Conference on Distributed CompyitBystems (ICDCS 20Qdune 2007.

6. K. Kar, S. Sarkar, and L. Tassiulas, “A Simple Rate Conitgbrithm for Maximizing Total User Utility,” inProc. of
IEEE INFOCOM 2001

7. C. Wu and B. Li, “On Meeting P2P Streaming Bandwidth Demamith Limited Supplies,” tech. rep.,
http://iqua.ece.toronto.edu/papers/meetbwdemandgeet, University of Toronto, June 2007.

8. A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: BostUniversity Representative Internet Topology Gener-
ator,” tech. rep., http://www.cs.bu.edu/brite, 2000.

9. “All-Sites-Pings for PlanetLab,” (http://ping.ecews.edu/ping/).

10. “PlanetLab IPerf,” (http://jabber.services.platedi-org/php/iperf/).

11

12.

13.

14.

15.

16.

17.
18.

19.

20.
21.

22.

. M. Handley, S. Floyd, J. Pahdye, and J. Widmer, “TCP FEifieRate Control (TFRC) : Protocol Specification,” (RFC
3448), Jan 2003.

D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “etil High bandwidth data dissemination using an overlay
mesh,” inProc. of ACM SOSP 2002003.

M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, ONRSE: Peer-to-Peer Media Streaming Using Collect-
Cast,” inProc. of ACM Multimedia 2003

N. Magharei and R. Rejaie, “PRIME: Peer-to-Peer Recallwen MEsh-based Streaming,”ifroc. of IEEE INFO-
COM 2007 May 2007.

Y. Cui, Y. Xue, and K. Nahrstedt, “Optimal Resource Alition in Overlay Multicast,” irProc. of 11th International
Conference on Network Protocols (ICNP 2008pvember 2003.

D. S. Lun, N. Ratnakar, R. Koetter, M. Medard, E. Ahmed] bBin Lee, “Achieving Minimum-Cost Multicast: A
Decentralized Approach Based on Network CodingPinc. of IEEE INFOCOM 2005

D. P. Bertsekas and J. N. TsitsiklBgrallel and Distributed Computation: Numerical Metho&sentice Hall, 1989.

F. P. Kelly, A. Maulloo, and D. Tan, “Rate Control for Comnication Networks: Shadow Prices, Proportional
Fairness and StabilityJournal of the Operational Research Socié®y pp. 237-252, March 1998.

S. H. Low and D. E. Lapsley, “Optimization Flow ControlBlasic Algorithm and ConvergencéEEE/ACM Trans-
actions on Networking, pp. 861-875, December 1999.

R. SrikantThe Mathematics of Internet Congestion ContRitkhauser, 2004.

J. Lee, R. R. Mazumdar, and N. B. Shroff, “Non-convexisues for Internet Rate Control with Multi-class Services:
Stability and Optimality,” inProc. of IEEE INFOCOM 20042004.

M. Chiang, S. Zhang, and P. Hande, “Distributed Rate ¢alimn for Inelastic Flows: Optimization Frameworks,
Optimality Conditions, and Optimal Algorithms,” iAroc. of IEEE INFOCOM 20052005.

