
On Meeting P2P Streaming Bandwidth Demand with Limited Supplies

Chuan Wu and Baochun Li

Department of Electrical and Computer Engineering
University of Toronto

Toronto, Canada M5S 3G4

ABSTRACT

As a basic requirement of live peer-to-peer multimedia streaming sessions, the streaming playback rate needs to be strictly
enforced at each of the peers. In real-world peer-to-peer streaming sessions with very large scales, the number of streaming
servers for each session may not be easily increased, leading to a limited supply of bandwidth. To scale to a large number
of peers, one prefers to regulate the bandwidth usage on eachof the overlay links in an optimal fashion, such that limited
supplies of bandwidth may be maximally utilized. In this paper, we propose a decentralized bandwidth allocation algo-
rithm that can be practically implemented in peer-to-peer streaming sessions. Given a mesh P2P topology, our algorithm
explicitly reorganizesthe bandwidth of data transmission on each overlay link, such that the streaming bandwidth demand
is always guaranteed to be met at any peer in the session, without depending on anya priori knowledge of available peer
upload or overlay link bandwidth. Our algorithm is especially useful when there exists no or little surplus bandwidth sup-
ply from servers or other peers. It adapts well to time-varying availability of bandwidth, and guarantees bandwidth supply
for the existing peers during volatile peer dynamics. We demonstrate the effectiveness of our algorithm with in-depth
simulation studies.

Keywords: Peer-to-peer streaming, bandwidth allocation, scalability, decentralized algorithm

1. INTRODUCTION

The peer-to-peer communication paradigm has been successfully used in live media streaming applications over the In-
ternet.1,2 As participating peers contribute their upload bandwidth capacities to serve other peers in the same streaming
session, the load on dedicated streaming servers is significantly mitigated. Therefore, as one of the most significant bene-
fits, peer-to-peer streaming enjoys the salient advantage of scalability, as compared to traditional streaming using multiple
unicast sessions.

In current-generation mesh-based peer-to-peer streamingapplications,1–3 it is critical to achieve and maintain a specific
streaming playback rate at each participating peer, in order to guarantee the smooth playback of the media. For example,
with the H.264 codec, a Standard-Definition stream demands approximately 800 Kbps, while 480p (848 × 480 pixels)
High-Definition media stream using the H.264 codec requires1700 Kbps. In this paper, such streaming playback rates
are collectively referred to as thedemandof P2P streaming bandwidth, and we wish to make sure that suchdemands are
satisfied on all participating peers in the streaming session.

On a participating peer in the streaming session, whether ornot the streaming bandwidth demand can be achieved
depends on three constraints. First, the last-mile download capacity must exceed the streaming rate. We typically assume
that this constraint is always satisfied, as otherwise the required streaming rate cannot be achieved with any solution.It
is most likely the case in reality, as peers without sufficient last-mile download capacities would soon leave the session,
and join another session to download the media encoded at lower bit rates. Second, assuming that the peer in question is
served by multiple upstream peers, the last-mile upload capacities of these upstream peers are limited. Finally, the available
bandwidth on each overlay link between two peers is limited,subject to link capacity and cross traffic in the Internet core.

In essence, the decisive factor of meeting the P2P streamingbandwidth demand in the session is thebandwidth supply
from either dedicated streaming servers or uploading peers. Ideally, when the total bandwidth supply is abundant, a
peer can easily contact new streaming servers or peers when its demand cannot be met at any time. However, such a
simple solution does not work effectively at all when there exist very limited bandwidth supplies to meet the demand.

E-mail: {chuanwu, bli}@eecg.toronto.edu

Such a microeconomic phenomenon of tight supply-demand relationships occurs in real-world scenarios, when a pool of
streaming servers scrambles to meet the demand of a P2P session that scales up in a short period of time — a typical
flash crowd scenario. As adding streaming servers (i.e., adding bandwidth supplies) is by no means straightforward,one
needs to take advantage of existing bandwidth supplies in the most efficient manner in scenarios with tight supply-demand
relationships.

In this paper, we seek to propose a new bandwidth allocation algorithm that dynamically adjusts the bandwidth utiliza-
tion on each overlay link, so that the streaming bandwidth demand is achieved on each participating peer in the session, even
with very limited bandwidth supplies. Given a mesh peer-to-peer topology, our new algorithm effectively“reorganizes”
the bandwidth allocated to each link in the topology, with full awareness of the streaming rate demand of the peer-to-peer
session. The new algorithm we propose enjoys the following salient advantages.First, although the rates allocated are
subject to the capacity constraints at the edge and on the overlay links, our new algorithm does not need knowledge of
these capacity constraints.Second, our algorithm is fully decentralized, and can thus be realistically implemented. To
design such an algorithm, we formulate the bandwidth allocation problem in peer-to-peer streaming as afeasibilityprob-
lem, and propose a simple algorithm to find its solution. We discuss the implementation and prove the convergence of the
algorithm in synchronous and asynchronous environments.Third, we show that even in cases of persistent peer dynamics
and network changes, the algorithm is still guaranteed to achieve the streaming playback rate at any participating peer
and at any time during the streaming session.Finally, our solution is across-the-board and not specific to any particular
mesh-based topology construction mechanism, P2P streaming protocol, or media codec, as the problem of bandwidth allo-
cation to guarantee smooth streaming playback is fundamental and widely applicable with any P2P topology construction
algorithm. Bandwidth allocation may also be realisticallyimplemented in any P2P streaming protocol, by using per-link
bandwidth shaping mechanisms at peers (usually based on UDPas the transport protocol).

The organization of this paper is as follows. In Sec. 2, we present our system model and motivate the feasibility problem
formulation of the bandwidth allocation problem. In Sec. 3,we discuss the distributed algorithm to solve the problem, and
its convergence to the feasible solution in an ideal synchronous environment. In Sec. 4, a practical bandwidth allocation
protocol is designed, and its convergence in asynchronous and dynamic environments is discussed. Simulation results are
presented in Sec. 5. We discuss related work and conclude thepaper in Sec. 6 and Sec. 7, respectively.

2. MOTIVATION AND PROBLEM FORMULATION

Consider ameshpeer-to-peer topologyG = (S,N ,A), whereS is the set of streaming servers,N is the set of participating
peers, andA is the set of directed overlay links. We assume such a mesh topology is constructed and maintained with
a certain topology construction protocol,e.g., the random mesh construction by randomly assigning neighbors to the
participating peers using central tracking servers, as employed by most current-generation P2P streaming applications.4,5

The overlay links among peers in the topology are established based on their media content availability during streaming,
i.e., a peer streams from one or moreupstreampeers, which can provide it with media blocks it requires, and further
serves one or moredownstreampeers with the media streams. Each directed overlay link in setA is represented as(i, j),
indicating upstream peeri serves a flow of required media blocks to the downstream peerj.

In this paper, we focus on the availability ofbandwidthin the peer-to-peer topology, arguably the most critical resource
in peer-to-peer streaming sessions. We study both the “demand” and the “supply” of bandwidth based on the given topol-
ogy. On the side ofdemandof bandwidth, a streaming playback rateR is strictly required at each participating peer to
guarantee smooth playback,i.e., media content should be downloaded at an aggregated bandwidth of no lower thanR at
the peer. On the side ofsupplyof bandwidth, however, we need to consider both peer upload bandwidth and overlay link
bandwidth constraints, withouta priori knowledge on either. How do we meticulously allocate the supply of bandwidth
so that the streaming playback rateR — the “demand” in each session — can be satisfied at all times? This problem is
henceforth referred to as thebandwidth allocationproblem, as we seek to design a practical and decentralized algorithm
to address such a challenge. While our focus in the paper is noton the specific peer-to-peer topology construction pro-
tocol nor media scheduling protocol, we will discuss the interactive play between our bandwidth allocation and topology
construction in peer-to-peer streaming in Sec. 4.

Since we do not need to consumemorebandwidth than the required streaming playback rate at eachpeer, we believe it
is practical to formulate such a bandwidth allocation problem as afeasibilityproblem, and aim to find afeasiblebandwidth
allocation solution that guarantees a streaming rate of no lower thanR at each peer.

One may wonder why a naive bandwidth allocation may fail to satisfy the streaming bandwidth demand at all peers.
We show this with an example in Fig. 1, which implies that an explicit bandwidth allocation algorithm is required.

In this example peer-to-peer streaming network, the required streaming rate isR = 1 Mbps. Peersa1, a2, anda3

directly stream at this rate from servers, which has3 Mbps of upload capacity, and then serveb1, b2, andb3. Assume
that bandwidth bottlenecks occur at the upload links of the threea peers, with upload capacities of0.8, 1.0 and1.2 (in
Mbps), respectively. With a naive even bandwidth allocation method, their upload capacities are evenly shared among their
respective downstream peers, and the allocated bandwidthsare labeled on the links (numbers outside the brackets). Such a
bandwidth allocation outcome is infeasible (i.e.,streaming bandwidth demand is not satisfied at all peers), aspeerb1 only
obtains an aggregate bandwidth of0.9 Mbps, whileb3 is allocated more than1 Mbps.

Sa1

a2

a3

b1

b2

b3

1.0

1.0

1.0
0.4

[0.45]

 0.4

[0.35]

0.5

[0.55]

0.5

[0.45]

0.6

[0.55]

0.6

[0.65]

Figure 1. Infeasible bandwidth allocation with a naive protocol: an example.

When the required streaming bandwidth is not successfully achieved, the common practice with existing peer-to-peer
protocols is to find new upstream peers, or to start a new connection from the streaming server, which may well fail to
locate available bandwidth when there is a tight supply-demand relationship of bandwidth in the network. It is important to
note, however, that if bandwidths are explicitlyreallocatedbased on the current topology, a feasible solution that satisfies
all the peers can be achieved, as shown in brackets in our example. After such a “reorganizing” process, the “supply”
of bandwidth is maximally utilized, the need to find new upstream peers is eliminated, and server bandwidth costs are
minimized.

In order to design a practical algorithm to achieve such feasible rate allocation solutions in a particular P2P mesh
topology, we first formally formulate the problem. Letxij denote the allocated transmission rate on the overlay link(i, j),
∀(i, j) ∈ A. In practical peer-to-peer systems, such overlay link rates are restricted by the capacities of last-mile access
links of the peers, and affected by the cross traffic sharing the same underlying IP network. LetCij denote the currently
available bandwidth along overlay link(i, j), subject to the cross traffic. LetOi denote the upload capacity at peeri,
∀i ∈ S ∪ N . The feasibility problem is formally defined by the following set of linear rate and capacity constraints:

LC:
∑

i:(i,j)∈A
xij ≥ R, ∀j ∈ N , (1)

∑

j:(i,j)∈A
xij ≤ Oi, ∀i ∈ S ∪ N , (2)

xij ≤ Cij , ∀(i, j) ∈ A. (3)

Let x = (xij , (i, j) ∈ A) be the|A|-dimensional vector of allocated link bandwidths. LetXR be the region defined by
the streaming rate constraints in (1),i.e., XR = {x :

∑

i:(i,j)∈A xij ≥ R,∀j ∈ N}. Let XC be the region defined by the
capacity constraints in (2) and (3),i.e., XC = {x :

∑

j:(i,j)∈A xij ≤ Oi,∀i ∈ S ∪ N , xij ≤ Cij ,∀(i, j) ∈ A}. A solution
to this feasibility problem represents a feasible bandwidth allocation scheme, expressed asx ∈ XR ∩ XC .

3. DECENTRALIZED BANDWIDTH ALLOCATION: THE SYNCHRONOUS CASE

We are now ready to propose our iterative algorithm to solve the feasibility problemLC. We show that it can be readily
implemented in a fully decentralized fashion, and analyze its convergence in the synchronous case.

3.1 Feasible bandwidth allocation: an iterative algorithm

Inspired by the iterative optimization algorithm proposedby Kar et al.,6 we design a simple iterative algorithm to derive a
feasible solution satisfying all the constraints in the problemLC.

Let x(n)
ij be the allocated rate on link(i, j), ∀(i, j) ∈ A, at thenth step. Let

λ
(n)
j = max(0,R−

∑

i:(i,j)∈A
x

(n)
ij),

and

e
(n)
ij =











1 if
∑

j:(i,j)∈A x
(n)
ij > Oi,

or x
(n)
ij > Cij ,

0 otherwise.

We updatex(n)
ij by:

x
(n+1)
ij =



















x
(n)
ij if λ

(n)
j = 0, e

(n)
ij = 0,

x
(n)
ij + αnλ

(n)
j if λ

(n)
j > 0, e

(n)
ij = 0,

x
(n)
ij − βne

(n)
ij if λ

(n)
j = 0, e

(n)
ij > 0,

x
(n)
ij + αnλ

(n)
j − βne

(n)
ij if λ

(n)
j > 0, e

(n)
ij > 0,

(4)

whereαn andβn are two sequences with the following properties:

lim
n→∞

αn = 0,

∞
∑

n=1

αn = ∞, lim
n→∞

βn = 0,

∞
∑

n=1

βn = ∞, lim
n→∞

αn

βn

= 0. (5)

For example, the sequencesαn = a
n

andβn = b√
n

, wherea, b are positive constants, satisfy the above properties.

In each stepn, λ
(n)
j represents how much more bandwidth peerj needs to acquire in order to achieve the required

streaming rateR. e
(n)
ij can be understood as abinary indicator of insufficient bandwidth, showing whether available

bandwidth is exceeded along overlay link(i, j): either the upload capacity of peeri is exceeded, orx(n)
ij goes beyond the

available bandwidth on overlay link(i, j).

The intuition behind the updates in (4) is as follows: Whenever an overlay link does not have sufficient bandwidth, the
allocated rate along the link is reduced; whenever the aggregate rate on the download links of a peer falls belowR, the
allocated link bandwidths are increased, according to how much the aggregate rate deviates fromR. αn andβn denote the
step lengths of the updates. The increment step lengthαn is much smaller than the decrement step lengthβn for sufficiently
largen, and both of them are diminishing. These are important properties to guarantee the convergence of the algorithm to
a feasible solution ofLC, as will be used in our convergence analysis.

3.2 Practical implementation in the synchronous case

Our iterative algorithm can be readily implemented in a fully distributed fashion. We first study its decentralized imple-
mentation in the synchronous case, where updates are synchronized to occur at timesn = 1, 2, In the subsequent
section, we will show that, with minor modifications, the implementation can also achieve feasible bandwidth allocation in
asynchronous and dynamic environments.

In the synchronous case, the allocated bandwidth on a link(i, j) is adjusted at the downstream peerj during the actual
streaming process. The media streams are transmitted from upstream peers at the allocated transmission rates,xij ’s, using
a bandwidth shaping mechanism.

In our implementation, at timesn = 1, 2, . . ., peerj calculatesλ(n)
j based on the discrepancy betweenR and the

currently allocated rates on its download links,i.e., λ
(n)
j = max(0,R − ∑

i:(i,j)∈A x
(n)
ij). If λ

(n)
j > 0, it increases the

allocated rates byx(n)′

ij = x
(n)
ij + αnλ

(n)
j , ∀i : (i, j) ∈ A; otherwise, it setsx(n)′

ij = x
(n)
ij . Meanwhile, peerj estimates

the actually achieved receiving ratey(n)
ij from each of its upstream peers, by dividing the number of bytes received on

each link in a time interval by the interval length. It setse
(n)
ij = 1 if the actual receiving rate is lower than the allocated

rate on the link,i.e., y
(n)
ij < x

(n)
ij , or setse(n)

ij = 0 otherwise. It then proceeds to update the allocated rates again by

x
(n+1)
ij = x

(n)′

ij − βne
(n)
ij , ∀i : (i, j) ∈ A, and requests these new transmission rates from its respective upstream peers.

After an upstream peer receives the new requested ratesx
(n+1)
ij from all its downstream peers, it adjusts its sending rates

to the new values.

We note that our implementation doesnotdepend on anya priori knowledge of peer upload and overlay link bandwidth,
nor any feedback from IP-layer routers. In our implementation, the value ofinsufficient bandwidth indicatore(n)

ij on each
link (i, j) is inferred by comparing the allocated transmission rate from upstream peeri with the achieved receiving rate at
downstream peerj during the streaming process. The rationale behind this is that when an allocated transmission rate is
larger than a respective receiving rate, bandwidth insufficiency is implied either at the upstream peer or on the overlaylink,
i.e., e

(n)
ij = 1; otherwise, no bandwidth limit is exceeded along link(i, j), ande

(n)
ij = 0. In this way, although we formally

formulate the problemLC with Oi andCij in (2) and (3), respectively, we do not actually need to perform any bandwidth
probing to explicitly derive the values of these bandwidth limits.

3.3 Convergence analysis

We now analyze the convergence of our decentralized implementation of the iterative algorithm, in the synchronous case.
To facilitate our analysis, we consider the realistic scenario that, if the aggregate requested (sending) rate at an upstream
peeri is higher than its upload capacity, the receiving rates at all its downstream peers are lower than their respective
requested rate,i.e., each of them is able to detect the bandwidth insufficiency. Our discussion is divided into two cases: (1)
a feasible solution exists forLC , i.e., XR ∩XC 6= φ; and (2) a feasible solution does not exist forLC, i.e., XR ∩XC = φ.

Theorem 1shows that, when a feasible solution exists,i.e., there is sufficient bandwidth in the overlay to support all
peers at the required streaming rateR, the decentralized implementation of our iterative algorithm converges to such a
solution.

Theorem 1. If XR ∩ XC 6= φ, with iterative updates in (4) and diminishing step lengthsin (5), the sequence{x(n)}
converges tõx, a feasible solution of problemLC, i.e., x̃ ∈ XR ∩ XC .

Theorem 2addresses the second case, when a feasible bandwidth allocation solution does not exist,i.e., the overlay
cannot accommodate all the peers atR. Theorem 2 states that, at all the peers, our implementationis able to achieve the
maximum throughput supported by the overlay.

LetRmax be the maximum throughput at the peers that the network can support,i.e., the maximum aggregate streaming
bandwidth that each peer can acquire. It implies that there exist feasible solutions to the following problem:

LC’:
∑

i:(i,j)∈A
xij ≥ Rmax, ∀j ∈ N , (6)

∑

j:(i,j)∈A
xij ≤ Oi, ∀i ∈ S ∪ N ,

xij ≤ Cij , ∀(i, j) ∈ A.

Theorem 2. If XR ∩ XC = φ, with iterative updates in (4) and diminishing step lengthsin (5), the sequence{x(n)}
converges to the feasible region of problemLC’, i.e., limn→∞ ρ(x(n),X ′) = 0, whereX ′ is the region defined by the
constraints inLC’.

Due to space constraints, interested readers are referred to our technical report7 for complete proofs of both theorems.
The key intuition behind the proofs is to show that, based on the diminishing step lengths, in each step of the iterative
algorithm, the current bandwidth allocation improves towards a feasible solution ofLC or approaches the feasible region
of LC’. Based on these theorems, a corollary follows:

Corollary 1. During the convergence of{x(n)}, the actually achieved streaming rate at each peerj, i.e.,
∑

i:(i,j)∈A y
(n)
ij ,

is asymptotically increasing and converges toR if the network can support such rate at each peer, andRmax otherwise.

During the dynamic process of bandwidth allocation, a peer’s achieved streaming rate may temporarily decrease when
the allocated rates on its download links decrease due to lack of available bandwidth. However, over time, this achieved
streaming rate is asymptotically increasing until it reachesmin(R,Rmax).

4. DECENTRALIZED BANDWIDTH ALLOCATION: THE ASYNCHRONOUS CASE

Granted, while important as a first step in our study, the synchronous case that we have considered is an idealistic view
of practical peer-to-peer networks. Peers are inherentlyasynchronous, with different processing times and messaging
latencies. Fortunately, with minor modifications, we can extend our decentralized implementation to the asynchronous
case, with the ability to handle peer and network dynamics.

In an asynchronous overlay, if we execute our decentralizedimplementation previously proposed for the synchronous
case, the step lengths at a certain timet, α(t) andβ(t), are not identical at all the peers, as peers update the allocated
rates at their own paces. However, it is the key to guarantee algorithm convergence by updating bandwidth allocation
synchronously with the same step lengths across the network, as used in proofs of Theorem 1 and 2. Thus the iterative
synchronous implementation may fail to converge in the asynchronous case.

Fortunately, we are able to show that, the update process canstill be proven to converge to a feasible solution ofLC in
an asynchronous environment, if each peer follows thesynchronous update ruleacross its own download and upload links.
More rigorously, on a downstream peerj, all increments of allocated rates on all its download linksare performed at the
same timet, and use a same diminishing step lengthαj(t), i.e., xij(t + 1) = xij(t) + αj(t)λj(t),∀i : (i, j) ∈ A. On the
other hand, on an upstream peeri, all decrements of allocated rates on all its upload links are performed at the same time
t, and use a same diminishing step lengthβi(t), i.e., xij(t + 1) = xij(t) − βi(t)eij(t),∀j : (i, j) ∈ A.

We are now ready to present our decentralized implementation in the asynchronous case, and show its convergence to
a feasible solution. In the asynchronous implementation, the allocated rate on a link(i, j) is adjusted with the cooperation
of both upstream peeri and downstream peerj, i.e., increment at peerj and decrement at peeri. To implement this, rate
updates and inferred values of theinsufficient bandwidth indicatorsneed to be passed between upstream and downstream
peers in special protocol messages, referred to asRate Update (RU)messages. These protocol messages are delivered
using reliable transport protocols such as TCP.

Our decentralized asynchronous implementation executed at each peeri proceeds as follows.

Initialization:

1. Initialize the set of current upstream peersUi and downstream peersDi, as well as the step countersni = 1, and
mi = 1.

2. For every upstream peeru in Ui:

(2.1) Setxui = R/|Ui| andeui = 0.

(2.2) Sendxui andeui to peeru with aRU message.

Next, peeri executes the following steps in its dual roles as a downstream peer and an upstream peer, using step
countersni andmi, respectively.

As a downstream peer:

1. ReceiveRU messages from its upstream peers, and estimate the actuallyachieved receiving rateyui from each of
them. AdjustUi if it detects any upstream peer failures.

2. After it has receivedRUmessages from all its existing upstream peers, do the following:

(2.1) Retrieve allocated ratesxui(t), ∀u ∈ Ui, from the receivedRUmessages.

(2.2) Computeλi(t) = max(0,R− ∑

u:(u,i)∈A xui(t)).

(2.3) For each upstream peeru:

(2.3.1) Ifλi(t) > 0, increase the allocated rate byxui(t+1) = xui(t)+αni
λi(t); otherwise, setxui(t+1) = xui(t).

(2.3.2) Ifyui < xui(t), seteui(t + 1) = 1; otherwise, seteui(t + 1) = 0.

(2.3.3) Sendxui(t + 1) andeui(t + 1) to peeru with aRUmessage.

3. Increment step counter:ni = ni + 1.

As an upstream peer:

1. ReceiveRU messages from its downstream peers. AdjustDi if it detects any downstream peer failures, or receives
RUmessages from new downstream peers.

2. After it has receivedRUmessages from all its existing downstream peers, do the following:

For each downstream peerj:

(2.1) Retrieveeij(t) andxij(t) from theRUmessage from peerj.

(2.2) If eij(t) = 1, decrease the allocated rate byxij(t+1) = xij(t)−βmi
eij(t); otherwise, setxij(t+1) = xij(t).

(2.2) Adjust the sending rate to peerj to xij(t + 1), and sendxij(t + 1) in aRUmessage to peerj.

3. Increment the step counter:mi = mi + 1.

Theorem 3 shows the convergence of our decentralized asynchronous implementation of the iterative algorithm.

Theorem 3. With our decentralized asynchronous implementation, and under the assumption that both the message
passing delay and the time between consecutive updates are finite, the sequence{x(t)} (the rate vector at timet) converges
to a feasible solution ofLC if XR ∩ XC 6= φ, or to the feasible region ofLC’ otherwise.

Again, interested readers are referred to our technical report7 for the proof of Theorem 3. The key to guarantee the
convergence is, as pointed out earlier, when a downstream peer i updates the allocated rates on its download links, it
increases them altogether with the same diminishing step lengthαni

; when an upstream peeri updates the allocated rates
on its upload links, it deducts them altogether with the samediminishing step lengthβmi

. In this case, the bandwidth
allocation still improves towards feasibility in each step.

We conclude our discussion in the asynchronous case with an important note that, our asynchronous implementation
can maximally guarantee the required streaming bandwidth at each peer, in cases of both peer and network dynamics. To
understand such robustness against dynamics, we consider the influence of dynamicsduring andafter the convergence
process.

Dynamics during convergence.Our asynchronous implementation of the algorithm can readily adapt to dynamics
introduced before the allocated rates converge.First, when a new peeri joins the streaming session, it is assigned an
initial set of upstream peers, which is decided by the topology construction protocol based on media content availability,
and executes theinitialization phase. After its selected upstream peers receive itsRU messages, they include peeri in
their respective sets of downstream peers. Thus, peeri can immediately participate in the asynchronous implementation
as a downstream peer from the initial step counterni = 1, while its upstream peers continue their own execution with
their current step counter values.Second, in the case of peer failures or departures, after the downstream and upstream
peers detect peeri’s failure or departure, they simply removei from their respective sets of upstream or downstream peers
and continue with their execution, effectively excludingi from later message exchanges and computation.Finally, our
implementation naturally adapts to fluctuating overlay link bandwidth due to the appearing and vanishing of congestion
along the links, since our implementation uses binary indicators of insufficient bandwidtheij , rather than explicita priori
knowledge of link bandwidth.

To derive the convergence properties of the asynchronous implementation in dynamic networks, the analysis in Theo-
rem 3 still applies,i.e., we can still show the bandwidth allocation dynamically improves towards feasibility in the current
network, and converges to one feasible solution if there exists one in the dynamic network. Formally, we present it as
Corollary 2, which can be obtained directly from Theorem 3:

Corollary 2. If dynamics occur during the convergence of our asynchronous implementation of the iterative algorithm, the
rate vectorx(t) improves towards feasible bandwidth allocation of the current overlay, and converges to a feasible solution
whenever there exists one, or maximizes the peer throughputin the dynamic overlay.

Dynamics after convergence.If dynamics occur after allocated rates have converged, theaffected peers initiate a new
round of protocol execution with reset step counters, in which the bandwidth allocation continues to improve towards
feasibility or throughput maximization.

The handling of the case that a new peer joins the streaming session is similar to that discussed when dynamics occur
during convergence, except that all peers now execute the protocol fromni = 1 or mi = 1. In the cases of peer failure or
departure, or overlay link bandwidth fluctuations, which have caused the loss of streaming rate at a particular downstream
peer, the affected downstream peer will reallocate its bandwidth requests towards its remaining upstream peers, and send
out the newRU messages to each of them. In this way, a new round of protocol execution is invoked, and the involved
peers reset their step counters and cooperate in the protocol execution from their current bandwidth allocation.

To conclude our analytical discussions of bandwidth allocations in peer-to-peer streaming sessions, we reiterate our
motivation for this work.Whydo we need to perform bandwidth allocation in a particular P2P topology, when P2P topolo-
gies are highly dynamic? We believe that our bandwidth allocation algorithms arecomplementaryto existing topology
construction protocols (e.g.,random peer selection), and may help these protocols so thatthey are more effective, espe-
cially in the case of tight supply-demand relationships of bandwidth. Once a P2P topology is first constructed using a
particular protocol, our bandwidth allocation algorithm can be used to maximally utilize the existing supply of bandwidth
in such a topology. If the required streaming rate is not satisfied on all the peers in the topology, the topology construction
protocol can be reactivated to construct better topologies. After the topology change, our bandwidth allocation algorithm
can come into play again, which achieves the highest level ofpeer streaming rate satisfaction in the new topology. With
our bandwidth allocation algorithm, the need for topology reconstruction,i.e., to find new upstream peers and adjust peer
connectivity, is minimized, and the feasible streaming rate is achieved quickly at the peers to counter the effects of network
dynamics.

5. PERFORMANCE EVALUATION

To evaluate the effectiveness, in particular the dynamic behavior of convergence, we have conducted an in-depth empirical
study on our decentralized asynchronous implementation proposed in Sec. 4 with C++-based simulations. We choose to
simulate our implementation in the asynchronous case due toits practicality in realistic P2P topologies. The first several
proof-of-concept experiments use small example topologies, akin to the concept of “unit testing” in software development.

Experiment A (behavior of convergence): We first illustrate how the implementation converges in an example
topology in Fig. 2. We simulate a streaming session withR = 800 Kbps. In this network, peersp1 and p2 di-
rectly stream from the server (not shown in Fig. 2), and serveas “mini-sources” forp3, p4 andp5. The rate vector is
x = (x13, x23, x14, x34, x25, x35). End-to-end delays on overlay links are(30, 50, 60, 100, 80, 120) (in milliseconds),
respectively. We investigate both feasible and infeasiblecases.

p1
 p2

p3

p4
 p5

Figure 2. An example peer-to-peer streaming topology.

The feasible case: The overlay topology is able to supportp3, p4 andp5 atR, with upload capacities of (0.7, 0.8, 1.0)
(in Mbps) atp1, p2, p3, respectively, and available link capacities of(0.4, 0.5, 0.5, 0.8, 0.6, 0.9) (in Mbps) on the six links.

The infeasible case: The overlay topology is unable to supportp3, p4 andp5 atR, with upload capacities of (0.7, 0.8, 0.6)
(in Mbps) atp1, p2 andp3. Available link capacities are the same as in the feasible case.

The step length sequences used in our experiments areαn = 1/n andβn = 1/(10
√

n). Results for the two experiments
are illustrated in Fig. 3 and Fig. 4, respectively.

Fig. 3(a) depicts the convergence of allocated link rates,xij ’s, in the feasible case, which are all initiated to400 Kbps. In
the first iteration,p3 andp4 find that there is insufficient bandwidth on link(1, 3) and(1, 4), respectively, asp1’s aggregate
sending rate exceeds its upload capacity. Based on the feedbacks from its downstream peers,p1 decreasesx13 andx14. In
the next iteration, as the aggregate download link rates atp3 andp4 fall belowR, they increase the allocated rates on their
download links. During the convergence,x34 andx35 keep increasing asp3’s spare upload capacity is being utilized, and

0 1 2 3 4 5
600

650

700

750

800

850

900

time (seconds)

A
ch

ie
ve

d
st

re
am

in
g

ra
te

 (
K

bp
s) P3

P4
P5

(a) (b)

0 1 2 3 4 5
100

200

300

400

500

600

700

800

900

time (seconds)

A
llo

ca
te

d
lin

k
ra

te
 (

K
bp

s)

X13
X23
X14
X34
X25
X35

Figure 3. Convergence in the example topology: the feasible case.

0 2 4 6 8
100

200

300

400

500

600

700

800

time (seconds)

A
llo

ca
te

d
lin

k
ra

te
 (

K
bp

s)

X13
X23
X14
X34
X25
X35

0 2 4 6 8
550

600

650

700

750

800

time (seconds)

A
ch

ie
ve

d
st

re
am

in
g

ra
te

 (
K

bp
s) P3

P4
P5

(a) (b)

Figure 4. Convergence in the example topology: the infeasible case.

the rate vector quickly converges to a feasible solution,(370, 430, 322, 478, 352, 448). Correspondingly, Fig. 3(b) shows
the convergence of the actually achieved streaming rates atthe peers during the bandwidth allocation process. Though
there is a temporary decrease initially, these rates steadily increase to reach the required rate.

Fig. 4 illustrates the convergence in the infeasible case, in which the maximum throughput achieved atp3, p4 andp5

is 700 Kbps. We observe that while their initial streaming rates are 750, 650, 700 Kbps, respectively, the rates quickly
converge to700 Kbps at all three peers. This reveals that our implementation is able to achieve fair allocation among the
peers, when there is insufficient “supply” of bandwidth in the overlay. The observations we have had in both feasible and
infeasible cases have supported Corollary 1 in Sec. 3.

Experiment B (effects of dynamics): We next investigate how our implementation converges in dynamic environ-
ments, again with the example topology in Fig. 2. In this experiment, upload capacities atp1, p2 andp3 are (0.7, 1.0, 1.5)
(in Mbps) and available link capacities on the six links are(0.4, 0.8, 0.5, 0.8, 0.35, 0.9) (in Mbps). We study two cases,
and show our results in Fig. 5(a) and (b), respectively.

Dynamics occur during convergence: p1 andp2 already exist in the overlay session.p3 joins the session at time0, p4

joins at1 second,p5 joins at2 seconds, and thenp1 leaves the network at3 seconds.

Dynamics occur after convergence: p1 andp2 already exist in the overlay session.p3 joins the session at time0, p4

joins at1 seconds, andp5 joins at2 seconds. The available bandwidth on link(1, 3) is then decreased to0.1 Mbps at6
seconds. Finally,p1 leaves the session at12 seconds.

(a) (b)

0 5 10 15 20
400

500

600

700

800

900

1000

time (seconds)

A
ch

ie
ve

d
st

re
am

in
g

ra
te

 (
K

bp
s) P3

P4
P5

0 1 2 3 4 5 6 7 8 9 10 11 12
300

400

500

600

700

800

900

1000

time (seconds)

A
ch

ie
ve

d
st

re
am

in
g

ra
te

 (
K

bp
s) P3

P4
P5

Figure 5. Convergence in the example topology: the dynamic case.

100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

Number of peers in the overlay

C
on

ve
rg

en
ce

 s
pe

ed
 (

se
co

nd
s)

 D=4
 D=8
 D=12

Figure 6. Converge speed in large random networks.
In the first case, comparing its results in Fig. 5(a) with Fig.3(b), we can see that the convergence process is slightly

prolonged due to peer dynamics, but is still performed rapidly. In the second case, after all three peers have joined the
session and their rates stabilize, at6 seconds, the decrease of available bandwidth on link(1, 3) causes the decrease of
p3’s streaming rate. Asp3 attempts to acquire additional bandwidth allocations fromp2, it further affectsp5. p3 andp5

then further adjust their bandwidth allocation, whilep4 is not affected. After the rates converge again, at12 seconds,p1’s
departure causes all three peers to cooperate in another round of rate adjustment, which quickly converges to a new feasible
bandwidth allocation.

Experiment C (large networks): We are now ready to investigate how the asynchronous implementation of our
iterative algorithm converges in more realistic and largernetworks, generated with the BRITE topology generator.8 In this
set of experiments, peers are classified into two classes: 30% of them are Ethernet peers, with10 Mbps upload capacities;

the remainder are ADSL peers, with0.4 − 0.6 Mbps upload capacities. The streaming server is an Ethernethost. The
message passing delays on overlay links are sampled from thedistribution of pairwise ping times between PlanetLab
nodes.9 Available link bandwidths are chosen from the distributionof measured capacities between PlanetLab nodes as
well.10 As our bandwidth allocation algorithm is orthogonal to peerselection strategies used by the streaming applications,
we apply random peer selection as our topology constructionprotocol. The experiment is further divided into two parts.

Exp. C. 1: To investigate the scalability of the protocol, we examineits convergence speed in networks of different
sizes and various numbers of upstream peers for each peer (D) in a static setting, without peer dynamics.

The results in Fig. 6 show that our algorithm scales very wellwith the increase of network sizes. This reveals that, in
realistic large networks, by adjusting its bandwidth allocation with peers in its neighborhood, each peer can quickly obtain
the required streaming bandwidth. The convergence is faster when a peer has more upstream peers.

Exp. C. 2: We then simulate a practical dynamic streaming session with R = 800 Kbps, and monitor the achieved
streaming rates at the peers during a10-minute period. In the session,200 peers join and depart following an On/Off model,
with On/Off periods both following an exponential distribution with an expected length ofT seconds. Each peer executes
the following: Upon joining, it randomly selectsD upstream peers and executes the bandwidth allocation algorithm.
During such execution, if its achieved streaming rate is below R for 2 seconds, it randomly adds a new upstream peer if it
currently has fewer thanD upstream peers (due to peer failures), or randomly switchesto new upstream peers otherwise.

(a) (b)

0 100 200 300 400 500 600
650

700

750

800

850

time (seconds)

A
ch

ie
ve

d
st

re
am

in
g

ra
te

 (
K

bp
s) T=10s,D=12

0 100 200 300 400 500 600
650

700

750

800

850

time (seconds)

A
ch

ie
ve

d
st

re
am

in
g

ra
te

 (
K

bp
s) T=10s,D=8

(c) (d)

0 100 200 300 400 500 600
650

700

750

800

850

time (seconds)

A
ch

ie
ve

d
st

re
am

in
g

ra
te

 (
K

bp
s) T=150s,D=8

0 100 200 300 400 500 600
650

700

750

800

850

time (seconds)

A
ch

ie
ve

d
st

re
am

in
g

ra
te

 (
K

bp
s) T=50s,D=8

Figure 7. Average achieved streaming rate in a dynamic streaming session with 200 peers.

The results in Fig. 7 demonstrate that our algorithm can provide the peers with steady streaming rates under high peer
churn rates. In the case that each peer joins/leaves every10 seconds, with200 peers, every second there are20 peer
joins/departures on average. Even in such an extremely dynamic environment, the streaming rates at existing peers are
rather satisfactory any time during the streaming session.Comparing Fig. 7(c) with (d), we can see that the streaming rates
are better if each peer has more upstream peers.

We have also experimented with varying available overlay link bandwidths. However, as the available link capacities
sampled from those between PlanetLab nodes are generally much larger thanR, such variations do not materially affect
our results. We choose not to present further details of these experiments.

6. RELATED WORK

When it comes to the problem of streaming bandwidth allocation in meshoverlay topologies, existing peer-to-peer stream-
ing systems either use TCP, TFRC11 or UDP with heuristic traffic shapers.1,2,12,13 For those using TCP or TFRC,1,12

transmission rates are adjusted on a per-link basis, and there is no guarantee that the required streaming rate can be pro-
vided to each participating peer. In our bandwidth allocation, we explicitly take the streaming bandwidth demand into
consideration in the rate adjustment at each peer across allits downloading links. Delivering media packets over UDP,
GridMedia2 applies traffic shapers at a sending peer for each of its downstream peers. While the main purpose of such
traffic shapers is to guarantee smooth delivery and avoid packet bursts, it is not discussed how to allocate the upload capac-
ity when it is lower than the total requested rate from the downstream peers. In Promise,13 each downstream peer assigns
a sending rate to each of its upstream peers based on their advertised rates. The problem is not addressed with respect to
how the sender should carefully allocate upload capacity, if multiple peers wish to stream from it at high rates. Similarly,
in another well-known pull-based peer-to-peer mesh streaming system, Chainsaw,3 the peers are sending packets as their
bandwidths allow, but it is not specified how the sending rates towards different neighbors are to be regulated. In PRIME,14

Maghareiet al. suggest that each P2P connection in the mesh streaming overlay should have roughly the same bandwidth

in order to maximize the utilization of peer access link bandwidth, but have not emphasized on the achievement of this in
practice.

With respect to resource allocation in overlay multicast applications or for general network flow problem, there exist
studies that establish optimization models and propose distributed solution algorithms.15–17 A fundamental requirement
of these algorithms is that the available bandwidths in the network are knowna priori, and the network topology is static
during algorithm convergence. This is generally not realistic in practice. In contrast, our algorithm only utilizes end-to-end
feedbacks, without depending on anya priori knowledge of capacities, and also adapts well to peer dynamics.

Optimization based approaches have been applied in Internet congestion control among multiple unicast flows.6,18–20

While earlier work mainly deals with elastic traffic and aims to maximize concave user utility functions, there have been
recent discussions on congestion control with sigmoidal-like utility functions,21,22 which are closer to the streaming sce-
nario we consider. Nevertheless, fundamental differenceslie between our work and these existing work. First, all of the
existing work discuss rate control among point-to-point connections, while we consider many-to-many mesh topologiesin
peer-to-peer streaming. Second, previous work requires feedback from IP-layer routers along the paths of the flows, while
only end-to-end peer feedback is required in this paper. Finally, we model the bandwidth allocation problem as a feasibility
problem, which represents simpler solution algorithm and faster convergence, as opposed to an optimization problem, and
also well addresses the practical consideration that beingable to guarantee a feasible streaming bandwidth for all peers is
sufficient in realistic systems.

As mentioned earlier, our iterative algorithm is inspired by the work of Karet al.6 However, their iterative algorithm is
used to solve the same user utility maximization problem, asdiscussed by all the previous work on congestion control cited
above. Our proposed algorithm is significantly different, as we seek to address a completely different problem of practical
bandwidth allocation in peer-to-peer streaming.

7. CONCLUDING REMARKS

In this paper, we have proposed a practical algorithm that allocates the limited “supply” of bandwidth in peer-to-peer
streaming sessions, so that the “demand” of streaming playback rates can be satisfied on all the peers. We model the
problem of bandwidth allocation as a feasibility problem, defined as a set of linear constraints. We further propose an
iterative algorithm, which converges to a feasible solution if it exists, adapts well to dynamics, and can be implemented in
a fully decentralized fashion, in both the synchronous and asynchronous cases. As a salient advantage of our algorithm,we
do not rely ona priori knowledge of available upload and link bandwidth. As futurework, we are interested in devising
practical schemes to achieve prioritized bandwidth allocation in the case of multiple streaming sessions.

REFERENCES

1. X. Zhang, J. Liu, B. Li, and T. P. Yum, “CoolStreaming/DONet: A Data-Driven Overlay Network for Live Media
Streaming,” inProc. of IEEE INFOCOM 2005,

2. M. Zhang, L. Zhao, Y. Tang, J. Luo, and S. Yang, “Large-Scale Live Media Streaming over Peer-to-Peer Networks
through Global Internet,” inProc. of ACM Multimedia 2005,

3. V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. Mohr, “Chainsaw: Eliminating trees from overlay multi-
cast,” inProc. of the Fourth International Workshop on Peer-to-PeerSystems (IPTPS’05), 2005.

4. X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “A Measurement Study of a Large-Scale P2P IPTV System,”
IEEE Trans. on Multimedia (to appear), November 2007.

5. C. Wu, B. Li, and S. Zhao, “Magellan: Charting Large-ScalePeer-to-Peer Live Streaming Topologies,” inProc. of
the 27th International Conference on Distributed Computing Systems (ICDCS 2007), June 2007.

6. K. Kar, S. Sarkar, and L. Tassiulas, “A Simple Rate ControlAlgorithm for Maximizing Total User Utility,” inProc. of
IEEE INFOCOM 2001,

7. C. Wu and B. Li, “On Meeting P2P Streaming Bandwidth Demandwith Limited Supplies,” tech. rep.,
http://iqua.ece.toronto.edu/papers/meetbwdemand.pdf, ECE, University of Toronto, June 2007.

8. A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: Boston University Representative Internet Topology Gener-
ator,” tech. rep., http://www.cs.bu.edu/brite, 2000.

9. “All-Sites-Pings for PlanetLab,” (http://ping.ececs.uc.edu/ping/).
10. “PlanetLab IPerf,” (http://jabber.services.planet-lab.org/php/iperf/).

11. M. Handley, S. Floyd, J. Pahdye, and J. Widmer, “TCP Friendly Rate Control (TFRC) : Protocol Specification,” (RFC
3448), Jan 2003.

12. D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High bandwidth data dissemination using an overlay
mesh,” inProc. of ACM SOSP 2003, 2003.

13. M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, “PROMISE: Peer-to-Peer Media Streaming Using Collect-
Cast,” inProc. of ACM Multimedia 2003,

14. N. Magharei and R. Rejaie, “PRIME: Peer-to-Peer Receiver-drIven MEsh-based Streaming,” inProc. of IEEE INFO-
COM 2007, May 2007.

15. Y. Cui, Y. Xue, and K. Nahrstedt, “Optimal Resource Allocation in Overlay Multicast,” inProc. of 11th International
Conference on Network Protocols (ICNP 2003), November 2003.

16. D. S. Lun, N. Ratnakar, R. Koetter, M. Medard, E. Ahmed, and H. Lee, “Achieving Minimum-Cost Multicast: A
Decentralized Approach Based on Network Coding,” inProc. of IEEE INFOCOM 2005,

17. D. P. Bertsekas and J. N. Tsitsiklis,Parallel and Distributed Computation: Numerical Methods, Prentice Hall, 1989.
18. F. P. Kelly, A. Maulloo, and D. Tan, “Rate Control for Communication Networks: Shadow Prices, Proportional

Fairness and Stability,”Journal of the Operational Research Society49, pp. 237–252, March 1998.
19. S. H. Low and D. E. Lapsley, “Optimization Flow Control, I: Basic Algorithm and Convergence,”IEEE/ACM Trans-

actions on Networking7, pp. 861–875, December 1999.
20. R. Srikant,The Mathematics of Internet Congestion Control, Birkhauser, 2004.
21. J. Lee, R. R. Mazumdar, and N. B. Shroff, “Non-convexity Issues for Internet Rate Control with Multi-class Services:

Stability and Optimality,” inProc. of IEEE INFOCOM 2004, 2004.
22. M. Chiang, S. Zhang, and P. Hande, “Distributed Rate Allocation for Inelastic Flows: Optimization Frameworks,

Optimality Conditions, and Optimal Algorithms,” inProc. of IEEE INFOCOM 2005, 2005.

